Dinamikus modellek felállítása mérnöki alapelvek segítségével

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dinamikus modellek felállítása mérnöki alapelvek segítségével"

Átírás

1 IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék

2 IgyR - 3/1 p. 2/20 Tartalom 1. A modellezési feladat 2. A megmaradás elve termodinamikai alapok jelenségek, mechanizmusok 3. Kiegészítő egyenletek kitűzése és jellemzői 4. A modellezési eljárás és lépései modellezési cél szisztematikus modell építési eljárás a modell összetevői 5. A modell álapottér alakja állapotváltozók, potenciális bemenetek és kimenetek

3 IgyR - 3/1 p. 3/20 Az Általános modellezési feladat adott: modellezendő rendszer, modellezési cél meghatározandó: matematikai modell, amely leírja a rendszer viselkedését az adott célra

4 IgyR - 3/1 p. 4/20 A modellezési cél Feladatleírás: a rendszer és a modellezése cél együttese ezési cél fajtái dinamikus és statikus (állandósult állapotbeli) szimuláció tervezés folyamatirányítás (predikció, értéktartó szabályozás, identifikáció, diagnosztika) meghatározza a modell értelmezési tartományát modellezési cél befolyásolja: milyen jelenségeket vegyünk figyelembe modell matematikai formáját modell pontosságát (jellemző változókra nézve)

5 IgyR - 3/1 p. 5/20 7 lépéses modellezési eljárás Probléma definiálása 1 Probléma definiálása formális leírás a rendszer körülhatárolása modellezési cél meghatározása folyamatábra elkészítése (berendezések, változók) 2 Mechanizmusok meghatározása leírandó jelenségek összegyűjtése (pl. áramlás, átadás, reakció, párolgás) 3 Adatok összegyűjtése és értékelése állandók táblázatokból (pontosság!) berendezés és működés jellemzői mért adatok (előkísérletek) Mechanizmusok meghatározása Adatok összegyujtése és értékelése elkészítése megoldása megoldásának ellenorzése érvényességének ellenorzése

6 IgyR - 3/1 p. 6/20 7 lépéses modellezési eljárás Probléma definiálása 4 elkészítése mérlegelési térfogatok meghatározása modellezési feltételezések megfogalmazása modell egyenletek felírása (mérlegegyenletek, kiegészítő egyenletek) kezdeti- és peremfeltételek megadása 5 megoldása megoldó eljárás készítése vagy testreszabása a megoldás hihetőségének és pontosságának ellenőrzése Mechanizmusok meghatározása Adatok összegyujtése és értékelése elkészítése megoldása megoldásának ellenorzése érvényességének ellenorzése

7 IgyR - 3/1 p. 7/20 7 lépéses modellezési eljárás Probléma definiálása 6 megoldásának ellenőrzése kvalitatív viselkedés ellenőrzése mérnöki intuíció alapján dinamikus tulajdonságok (pl. stabilitás) meglétének ellenőrzése 7 érvényességének ellenőrzése modell kalibráció bizonytalan/ismeretlen paraméterek meghatározása paraméterbecsléssel modell validáció matematikai modell és a valós rendszer (mérés) pontos statisztikai összehasonlítása Mechanizmusok meghatározása Adatok összegyujtése és értékelése elkészítése megoldása megoldásának ellenorzése érvényességének ellenorzése

8 IgyR - 3/1 p. 8/20 Mechanizmusok - jelenségek P C R G A leggyakrabban előforduló mechanizmusok folyamatrendszereknél - a leíró tárgy áramlások (konvekció, diffúzió) - áramlástan hűtés/fűtés (hőátadás/energiaátadás) - hő- és áramlástan kémiai reakció - reakciókinetika fázisátalakulások (párolgás, forrás, olvadás,...) - termodinamika elegyedés/szétválasztás (desztilláció, oldódás, kristályosítás,...) - termodinamika (hősugárzás, bioreakció, adszorpció, abszorpció,...)

9 IgyR - 3/1 p. 9/20 A megmaradási egyenletek - 1 P C R G Mérlegelési térfogatok: ezekre irunk fel dinamikus mérlegegyenleteket általában állandó térfogat tökéletesen kevert (koncentrált paraméterű, közönséges differenciálegyenlet alakú mérleg) Megmaradó (extenzív) mennyiségek: összes tömeg energia (entalpia, belső energia) komponens tömeg, (impulzus) Dinamikus mérlegegyenlet általános alak: megmaradó mennyiségre { idobeli valtozas } = { } { bearamlas kiaramlas } + { forras nyelo }

10 IgyR - 3/1 p. 10/20 Intenzív mennyiségek P C R G Rendszer-egyesítéskor kiegyenlítődnek potenciál (hajtóerő) típusú mennyiségek áramlások és átadások hajtóerői (leggyakrabban lineáris közelítés "kereszthatás" nélkül) mérhetőek extenzív - intenzív párok összes tömeg m - nyomás p energia U - hőmérséklet T komponens tömeg m X - koncentráció c X (kémiai potenciál) Extenzív - intenzív mennyiségek közötti összefüggések U = c P mt (c P fajhő) m X = m ρ c X (ρ sűrűség )

11 IgyR - 3/1 p. 11/20 A megmaradási egyenletek - 2 P C R G Összes tömegre felírt dinamikus mérlegegyenlet nincs forrás/nyelő az összes tömeg m mérhető (pl. szintmérés) tökéletesen kevert esetben a be- (v B ) és kiáramlások (v K ) tömegáramok [kg/s] Példa: dm dt = v B v K

12 IgyR - 3/1 p. 12/20 A megmaradási egyenletek - 3 P C R G Energiára felírt dinamikus mérlegegyenlet nincs forrás/nyelő: kulső (pl. elektromos) fűtés-hűtés vagy hőátadás Q ([J/s]) tökéletesen kevert esetben a be- (c pb v B T B ) és kiáramlások (c P v K T ) energiaáramok [J/s] az energia U közvetlenül nem mérhető, helyette a hőmérsékletet használjuk az egyenletben => intenzív alakra hozás Példa: du dt = c pbv B T B c P v K T Q

13 IgyR - 3/1 p. 13/20 Kiegészítő egyenletek P C R G A modell teljes matematikai leírásához szükséges további összefüggések általában algebrai egyenletek fő típusai: extenzív-intenzív összefüggések átadást leíró egyenletek reakciókinetikát leíró egyenletek termodinamikai relációk mérlegelési térfogatokra vonatkozó összefüggések berendezésre és szabályozóra vonatkozó összefüggések

14 IgyR - 3/1 p. 14/20 ezési feltételezések P C R G A modellezési eljárás során fokozatosan kell összegyűjteni a listát Leggyakoribb modellezési feltételezések: rendszer időbeli viselkedésére vonatkozó feltételezések (pl. dinamikus, állandósult állapotú) mérlegelési térfogatokra vonatkozó feltételezések (pl. csak folyadék fázis, gáz és folyadék fázis) térbeli eloszlásra vonatkozó feltételezések (pl. tökéletesen kevert/koncentrált paraméterű) jelenségekre vonatkozó feltételezések (pl. nincs párolgás, van hőátadás) elhanyagolható hatásokkal kapcsolatos feltételezések (pl. sűrűség csak T -tőol függ, c P állandó) állapotok kívánt tartományai, pontosságuk (pl. T 20 és 30 o C közötti

15 IgyR - 3/1 p. 15/20 A modell összetevői P C R G Rendszer leírása (folyamatábra, változók) ezési cél Mechanizmusok ezési feltételezések Adatok (adat, mértékegység, lelőhely, pontosság) Mérlegelési térfogatok (folymatábrán jelölve) egyenletek (megmaradási egyenletek, kiegészítő egyenletek, kezdeti- és peremfeltételek) változók, paraméterek

16 IgyR - 3/1 p. 16/20 Állapottér modell alak P C R G (S) rendszer: jeleken végez muveletet y = S[u] bemenetek (u) és kimenetek (y); állapotok (x) SYSTEM u(t) inputs S states x(t) y(t) outputs A fizikai alapú modell jelei állapotok (x): megmaradó mennyiségek (vagy intenzív párjuk) bemenetek (u): diffegyenletek jobboldalán, befolyásolható (mérhető) kimenetek (y): mérhető, közvetlenül nem befolyásolható (állapotváltozó, vagy attól függ)

17 IgyR - 3/1 p. 17/20 Példa: szabad kifolyású tartály P C R G A feladat Adott egy állandó keresztmetszetű tartály, amelyben tiszta vizet tárolunk. A vizet a csapból egy beömlő szeleppel ellátott nyíláson át ereszthetjük bele, a fogyasztáskor szükséges vizet egy kiömlő szelep segitségével ereszthetjük ki, a kiömlés sebessége a tartálybeli vízszint függvénye. v B k B h k K v K Készítsük el a rendszer diagnosztikai célú modelljét, ha a vizszintet és a kapcsolók állapotát mérni tudjuk!

18 IgyR - 3/1 p. 18/20 Példa: szabad kifolyású tartály v B k B Mechanizmusok be- és kiáramlás h k K v K szabad kifolyás (hidrosztatikus nyomás által) ezési feltételezések F1 tökéletesen kevert F2 csak víz (csak összes tömeg mérleg) F3 szabad kifolyás F4 állandó keresztmetszet A F5 sűrűség (ρ) állandó

19 IgyR - 3/1 p. 19/20 Példa: szabad kifolyású tartály v B k B Mérlegegyenletek: összes tömeg mérleg h k K dm dt = v b v k (1) v K Kiegészítő egyenletek m = A h ρ (a h vizszint mérhető) v B = vb k B (a k B kapcsoló állás mérhető) v K = K h k K (szabad kifolyás, a k K kapcsoló állás mérhető)

20 IgyR - 3/1 p. 20/20 Példa: szabad kifolyású tartály v B k B egyenlet mérhető változókkal: h k K dh dt = v b Aρ k b K Aρ h k K (2) v K Állapottér alak állapotváltozó: h vízszint bemenetek: k B és k K kapcsoló állások kimenet: h vízszint

A folyamatmodellezés alapjai

A folyamatmodellezés alapjai A folyamatmodellezés alapjai Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/55 Tartalom 1 A folyamatrendszer

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1

DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN. 2003.11.06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 DINAMIKAI VIZSGÁLAT ÁLLAPOTTÉRBEN 2003..06. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet Egy bemenetű, egy kimenetű rendszer u(t) diff. egyenlet v(t) zárt alakban n-edrendű diff. egyenlet

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Számítógéppel segített folyamatmodellezés p. 1/20

Számítógéppel segített folyamatmodellezés p. 1/20 Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Gázturbina égő szimulációja CFD segítségével

Gázturbina égő szimulációja CFD segítségével TEHETSÉGES HALLGATÓK AZ ENERGETIKÁBAN AZ ESZK ELŐADÁS-ESTJE Gázturbina égő szimulációja CFD segítségével Kurucz Boglárka Gépészmérnök MSc. hallgató kurucz.boglarka@eszk.org 2015. ÁPRILIS 23. Tartalom Bevezetés

Részletesebben

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET:

KÖZEG. dv dt. q v. dm q m. = dt GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: GÁZOK, GŐZÖK ÉS FOLYADÉKOK ÁRAMLÓ MENNYISÉGÉNEK MÉRÉSE MÉRNI LEHET: AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÉRFOGATÁT TÉRFOGATÁRAM MÉRÉS q v = dv dt ( m 3 / s) AZ IDŐEGYSÉG ALATT ÁTÁRAMLÓ MENNYISÉG TÖMEGÉT

Részletesebben

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak

Gyártórendszerek Dinamikája. Irányítástechnikai alapfogalmak GyRDin-11 p. 1/19 Gyártórendszerek Dinamikája Irányítástechnikai alapfogalmak Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu GyRDin-11 p. 2/19 Tartalom

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban

Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban Szivattyú indítási folyamatok problémája több betáplálású távhőhálózatokban Dr. Halász Gábor 1 Dr. Hős Csaba 2 1 Egyetemi tanár, halasz@hds.bme.hu Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Hidrodinamikai

Részletesebben

Mechatronika alapjai órai jegyzet

Mechatronika alapjai órai jegyzet - 1969-ben alakult ki a szó - Rendszerek és folyamatok, rendszertechnika - Automatika, szabályozás - számítástechnika Cd olvasó: Dia Mechatronika alapjai órai jegyzet Minden mechatronikai rendszer alapstruktúrája

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben

A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben A mérnöki módszerek alkalmazásának lehetőségei a hő- és füstelvezetésben Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu, 2013. Zárt

Részletesebben

Projektfeladatok 2014, tavaszi félév

Projektfeladatok 2014, tavaszi félév Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:

Részletesebben

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai

LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Diszkrét és hibrid diagnosztikai és irányítórendszerek LTI Rendszerek Dinamikus Analízise és Szabályozásának Alapjai Hangos Katalin Közlekedésautomatika Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium

Részletesebben

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret

Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 6202-11 Épületgépészeti rendszerismeret Vizsgarészhez rendelt vizsgafeladat megnevezése: 6202-11/1 Általános épületgépészeti ismeretek Szóbeli

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

PHYWE Fizikai kémia és az anyagok tulajdonságai

PHYWE Fizikai kémia és az anyagok tulajdonságai PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses

Részletesebben

Részletes összefoglaló jelentés

Részletes összefoglaló jelentés Részletes összefoglaló jelentés 1. Hőátadási tényező vizsgálata egyidejű hő- és anyagátadási folyamatok esetén Az egyidejű hő- és anyagátadással járó szárítási folyamatoknál számos szerző utalt a hőátadási

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Kovács Ernő 1, Füvesi Viktor 2

Kovács Ernő 1, Füvesi Viktor 2 Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2010. Június 4. EURÓPAI ÉRETTSÉGI 2010 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2010. Június 4. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Csepeli Zsolt Bereczki Péter Kardos Ibolya Verő Balázs Workshop Miskolc, 2013.09.06. Előadás vázlata Bevezetés Vizsgálat célja,

Részletesebben

Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével

Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba

Részletesebben

Fizikai alapú közelítő dinamikus modellek

Fizikai alapú közelítő dinamikus modellek P C R G Fizikai alapú közelítő dinamikus modellek a Paksi Atomerőmű primerkörével kapcsolatos feladatokra Hangos Katalin Folyamatirányítási Kutató Csoport MTA SzTAKI Publikációs Díjazottak Előadása 2006

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker

Részletesebben

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok

Gingl Zoltán, Szeged, 2015. 2015.09.29. 19:14 Elektronika - Alapok Gingl Zoltán, Szeged, 2015. 1 2 Az előadás diasora (előre elérhető a teljes anyag, fejlesztések mindig történnek) Könyv: Török Miklós jegyzet Tiezte, Schenk, könyv interneten elérhető anyagok Laborjegyzet,

Részletesebben

Orvosi készülékekben használható modern fejlesztési technológiák vizsgálata

Orvosi készülékekben használható modern fejlesztési technológiák vizsgálata Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék Orvosi készülékekben használható modern fejlesztési technológiák vizsgálata

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!

Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz! Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold

Részletesebben

Digitális hangszintmérő

Digitális hangszintmérő Digitális hangszintmérő Modell DM-1358 A jelen használati útmutató másolása, bemutatása és terjesztése a Transfer Multisort Elektronik írásbeli hozzájárulását igényli. Használati útmutató Óvintézkedések

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

1. feladat Összesen 17 pont

1. feladat Összesen 17 pont 1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Integrált rendszerek n é v; dátum

Integrált rendszerek n é v; dátum Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

A BHTWaQe modell vízminv

A BHTWaQe modell vízminv A BHTWaQe modell vízminv zminőségi moduljának alkalmazási lehetőségei Vízminőség g modellezés Dr. Kutics Károly K Balatoni Integráci ciós s Kht. felkért szakért rtője K+F Consulting Kft. Siófok 2006. június

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2446-06 Műszer és méréstechnika modul. 1.

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ. Orvosi laboratóriumi technikai asszisztens szakképesítés. 2446-06 Műszer és méréstechnika modul. 1. Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes

Részletesebben

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11.

Haszongépj. Németh. Huba. és s Fejlesztési Budapest. Kutatási. Knorr-Bremse. 2004. November 17. Knorr-Bremse 19.11. Haszongépj pjármű fékrendszer intelligens vezérl rlése Németh Huba Knorr-Bremse Kutatási és s Fejlesztési si Központ, Budapest 2004. November 17. Knorr-Bremse 19.11.2004 Huba Németh 1 Tartalom Motiváció

Részletesebben

V. Moldex3D Szeminárium - econ Felhasználói Találkozó

V. Moldex3D Szeminárium - econ Felhasználói Találkozó V. Moldex3D Szeminárium - econ Felhasználói Találkozó A Moldex3D szerepe a minőségi termékgyártásban Dr. Molnár László econ Engineering Kft 2 econ Engineering Kft. High quality in CAE Cégadatok: Alapítás

Részletesebben

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás 2011. 09. 02.

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás 2011. 09. 02. Hajdúnánás geotermia projekt lehetőség Előzetes értékelés Hajdúnánás 2011. 09. 02. Hajdúnánástól kapott adatok a 114-es kútról Általános információk Geotermikus adatok Gázösszetétel Hiányzó adatok: Hő

Részletesebben

KS-409.3 / KS-409.1 ELŐNYPONTOK

KS-409.3 / KS-409.1 ELŐNYPONTOK KS-409.3 / KS-409.1 AUTOMATIZÁLT IZOKINETIKUS MINTAVEVŐ MÉRŐKÖR SÓSAV, FLUORIDOK, ILLÉKONY FÉMEK TÖMEGKONCENTRÁCIÓJÁNAK, EMISSZIÓJÁNAK MEGHATÁROZÁSÁRA ELŐNYPONTOK A burkoló csőből könnyen kivehető, tisztítható

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

A Balaton szél keltette vízmozgásainak modellezése

A Balaton szél keltette vízmozgásainak modellezése Numerikus modellezési feladatok a Dunántúlon 2015. február 10. A Balaton szél keltette vízmozgásainak modellezése Torma Péter Vízépítési és Vízgazdálkodási Tanszék Budapesti Műszaki és Gazdaságtudományi

Részletesebben

Pelletek térfogatának meghatározása Bayes-i analízissel

Pelletek térfogatának meghatározása Bayes-i analízissel Pelletek térfogatának meghatározása Bayes-i analízissel Szepesi Tamás KFKI-RMKI, Budapest, Hungary P. Cierpka, Kálvin S., Kocsis G., P.T. Lang, C. Wittmann 2007. február 27. Tartalom 1. Motiváció ELM-keltés

Részletesebben

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika

Összefoglaló kérdések fizikából 2009-2010. I. Mechanika Összefoglaló kérdések fizikából 2009-2010. I. Mechanika 1. Newton törvényei - Newton I. (a tehetetlenség) törvénye; - Newton II. (a mozgásegyenlet) törvénye; - Newton III. (a hatás-ellenhatás) törvénye;

Részletesebben

7. Koordináta méréstechnika

7. Koordináta méréstechnika 7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta

Részletesebben

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8.

Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. Számítógépvezérelt irányítás és szabályozás elmélete (Bevezetés a rendszer- és irányításelméletbe, Computer Controlled Systems) 8. előadás Szederkényi Gábor Pázmány Péter Katolikus Egyetem Információs

Részletesebben

1. feladat Összesen 14 pont Töltse ki a táblázatot!

1. feladat Összesen 14 pont Töltse ki a táblázatot! 1. feladat Összesen 14 pont Töltse ki a táblázatot! Szerkezeti képlet: A funkciós csoporton tüntesse fel a kötő és nemkötő elektronpárokat is! etanol etanal aminoetán A funkciós csoport neve: Szilárd halmazát

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

Épületgépészeti rendszerszerelő 31 582 21 0010 31 02 Központifűtés- és gázhálózatrendszerszerelő

Épületgépészeti rendszerszerelő 31 582 21 0010 31 02 Központifűtés- és gázhálózatrendszerszerelő Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra

TANMENET FIZIKA. 10. osztály. Hőtan, elektromosságtan. Heti 2 óra TANMENET FIZIKA 10. osztály Hőtan, elektromosságtan Heti 2 óra 2012-2013 I. Hőtan 1. Bevezetés Hőtani alapjelenségek 1.1. Emlékeztető 2. 1.2. A szilárd testek hőtágulásának törvényszerűségei. A szilárd

Részletesebben

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése

QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése QualcoDuna jártassági vizsgálatok - A 2014. évi program rövid ismertetése Szegény Zsigmond WESSLING Közhasznú Nonprofit Kft., Jártassági Vizsgálati Osztály szegeny.zsigmond@qualcoduna.hu 2014.01.21. 2013.

Részletesebben

Ideális gáz és reális gázok

Ideális gáz és reális gázok Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0170/2013 nyilvántartási számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. RÉSZLETEZŐ OKIRAT a NAT-2-0170/2013 nyilvántartási számú akkreditált státuszhoz Nemzeti Akkreditáló Testület RÉSZLETEZŐ OKIRAT a NAT20170/2013 nyilvántartási számú akkreditált státuszhoz A TiszaTeszt Méréstechnikai Kft. Kalibráló Laboratórium (4440 Tiszavasvári, Kabay J. u. 29.) akkreditált

Részletesebben

Verifikáció és validáció Általános bevezető

Verifikáció és validáció Általános bevezető Verifikáció és validáció Általános bevezető Általános Verifikáció és validáció verification and validation - V&V: ellenőrző és elemző folyamatok amelyek biztosítják, hogy a szoftver megfelel a specifikációjának

Részletesebben

Az elválasztás elméleti alapjai

Az elválasztás elméleti alapjai Az elválasztás elméleti alapjai Az elválasztás során, a kromatogram kialakulása közben végbemenő folyamatok matematikai leirása bonyolult, ezért azokat teljességgel nem tárgyaljuk. Cél: * megismerni az

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Térfogat és súly alapú faátvétel problémái

Térfogat és súly alapú faátvétel problémái 49. FAGOSZ Fakonferencia 2015. október 28-29. Balatonszemes Térfogat és súly alapú faátvétel problémái Nyugat-magyarországi Egyetem Innovációs Központ Pásztory Zoltán Fakitermelés Fakitermelés 6,5-7,5

Részletesebben

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok

A vulkáni kitöréseket megelőző mélybeli magmás folyamatok A vulkáni kitöréseket megelőző mélybeli magmás folyamatok Jankovics M. Éva MTA-ELTE Vulkanológiai Kutatócsoport SZTE ÁGK Vulcano Kutatócsoport Szeged, 2014.10.09. ábrák, adatok forrása: tudományos publikációk

Részletesebben

Szerszámtervezés és validálás Moldex3D és Cavity Eye rendszer támogatással. Pósa Márk 2015. Október 08.

Szerszámtervezés és validálás Moldex3D és Cavity Eye rendszer támogatással. Pósa Márk 2015. Október 08. Szerszámtervezés és validálás Moldex3D és Cavity Eye rendszer támogatással. Pósa Márk 2015. Október 08. Cégbemutató 2004: Reológiai alapkutatás kezdete a Kecskeméti Főiskolán 2011: Doktori munka befejezése,

Részletesebben

Primer oldali mérési és monitoring rendszerek, energetikai távfelügyelet és ellenőrzés

Primer oldali mérési és monitoring rendszerek, energetikai távfelügyelet és ellenőrzés Primer oldali mérési és monitoring rendszerek, energetikai távfelügyelet és ellenőrzés Tartalom: Épületfűtések szabályozása A primer szabályozás eszközei Energiafogyasztás mérése Monitoring, távfelügyelet

Részletesebben

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán Cseppfolyós halmazállapotú közegek hőtranszport-jellemzőinek számítása Gergely Dániel Zoltán Bevezetés Ez a segédlet elsősorban a Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai kar Gépészmérnök

Részletesebben

A napenergia hasznosítási lehetőségei a Váli völgy térségében. Simó Ágnes Biológia környezettan 2008

A napenergia hasznosítási lehetőségei a Váli völgy térségében. Simó Ágnes Biológia környezettan 2008 A napenergia hasznosítási lehetőségei a Váli völgy térségében Simó Ágnes Biológia környezettan 2008 A dolgozat szerkezete A megújuló energiák áttekintése A napenergia hasznosításának lehetőségei A Váli

Részletesebben

Logisztikai módszerek

Logisztikai módszerek BME GTK Ipari menedzsment és Vállalkozásgazdasági Tanszék Menedzser program Logisztikai módszerek dr. Prezenszki József - dr. Tóth Lajos egyetemi docens egyetemi docens LOGISZTIKAI MÓDSZEREK 3. Raktározás,

Részletesebben

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék

Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Készítette: Gönczi Gábor. Fővárosi Vízművek Zártkörűen Működő Részvénytársaság www.vizmuvek.hu vizvonal@vizmuvek.hu

Készítette: Gönczi Gábor. Fővárosi Vízművek Zártkörűen Működő Részvénytársaság www.vizmuvek.hu vizvonal@vizmuvek.hu Műtárgyvizsgálatok Fővárosi Vízművek Zrt-nél. (Víztároló medencék üzemtani felülvizsgálata, Homokszűrők visszamosatási ciklusának vizsgálata, Ülepítő optimalizálás) Készítette: Gönczi Gábor 1 Fővárosi

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt

I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt 2005. december 15. I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt Kristóf Gergely egyetemi docens BME Áramlástan Tanszék Áramlás katalizátor blokkban /Mercedes-Benz/ Égés hengertérben

Részletesebben

A legjobb fűtés minden évszakban. DIGITÁLIS SZABÁLYOZÁSÚ ELEKTROMOS KAZÁNOK Fűtéshez és használati melegvíz előállításához.

A legjobb fűtés minden évszakban. DIGITÁLIS SZABÁLYOZÁSÚ ELEKTROMOS KAZÁNOK Fűtéshez és használati melegvíz előállításához. A legjobb fűtés minden évszakban DIGITÁLIS SZABÁLYOZÁSÚ ELEKTROMOS KAZÁNOK Fűtéshez és használati melegvíz előállításához 2010 Katalógus Teljes biztonság és maximális kényelem A GABARRÓN elektromos kazánokok

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

zeléstechnikában elfoglalt szerepe

zeléstechnikában elfoglalt szerepe A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,

Részletesebben

Fázisváltó anyagok az energetikában

Fázisváltó anyagok az energetikában Fázisváltó anyagok az energetikában 2014.09.25. Kárpát-medencei Magyar Energetikai Szakemberek XVIII. Szimpóziuma Tartalom Fázisváltó anyagok bemutatása Felhasználás kapszulába ágyazva Folyamatban lévő

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13

KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13 KORSZERŰ ÁRAMLÁSMÉRÉS I. BMEGEÁTAM13 1. BEVEZETÉS 1.1. Az áramlástani mérések célja 1.1.1. Globális (integrál) jellemzők Áramlástechnikai gépek és a csatlakozó rendszer üzemének általános megítélése, hibafeltárás

Részletesebben

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe

Hálózat hidraulikai modell integrálása a Soproni Vízmű Zrt. térinformatikai rendszerébe Hálózat hidraulikai modell integrálása a térinformatikai rendszerébe Hálózathidraulikai modellezés - Szakmai nap MHT Vízellátási Szakosztály 2015. április 9. Térinformatikai rendszer bemutatása Működési

Részletesebben

Passzív és aktív aluláteresztő szűrők

Passzív és aktív aluláteresztő szűrők 7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.

Részletesebben