Négydimenziós téridomok szemléltetése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Négydimenziós téridomok szemléltetése"

Átírás

1 Négydimenziós téridomok szemléltetése Gévay Gábor 1 és Koji Miyazaki 2 1 Szegedi Tudományegyetem Bolyai Intézete, 6720 Szeged, Aradi vértanúk tere 1. gevay@math.u-szeged.hu 2 Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, , Japan kojigen@borg.jinkan.kyoto-u.ac.jp Kivonat. Az elemi geometriából ismert 3-dimenziós szabályos és félig szabályos poliéderek 4- dimenziós analogonjai a szabályos és uniform politópok. Koji Miyazaki videofilmje ilyen alakzatok szemléltetésére készült. A jelen cikkben a film megértéséhez szükséges geometriai háttérismereteket tárgyaljuk röviden, lehetőség szerint szemléletes megközelítésben, az elvontabb matematikai részletek mellőzésével. Egyik eszközünk ehhez a tárgyalt 3- és 4-dimenziós testek közötti analógia hangsúlyozása. Az előadás során bemutatott videofilm egy számítógépes szemléltető programról készült, amelynek alkotói Koji Miyazaki professzor (szakmai irányítás) és Satoshi Yamaguchi PhD hallgató (programozás) a kyotói egyetemről. A program 4-dimenziós szabályos és uniform politópok szemléltetésére szolgál. Az alábbiakban a szükséges geometriai háttérismereteket tárgyaljuk röviden. Eközben igyekszünk elkerülni a hosszadalmasabb előkészítést igénylő pontos matematikai definíciókat, inkább a szemléletes fogalmazásra törekszünk. A konvex sokszögek, mint síkbeli, azaz 2-dimenziós alakzatok, illetve konvex poliéderek, mint térbeli, azaz 3-dimenziós alakzatok jól ismertek az elemi geometriából. Matematikailag analóg objektumok tetszőlegesen sokdimenziós térben is definiálhatók, ezeket (konvex) politópoknak nevezzük. (A dimenziószámtól független egyik lehetséges definíció értelmében egy konvex politóp nem más, mint véges sok pont konvex burka, vagyis az a legszűkebb konvex alakzat, amely ezeket a pontokat tartalmazza.) A konvex sokszögek és poliéderek lehető legmagasabb fokú szimmetriát mutató fajtái, a szabályos sokszögek és szabályos poliéderek már több mint 2000 évvel ezelőtt is matematikai vizsgálat tárgyát képezték [1, 2]. A szabályos politópok 4-dimenziós változatait először Ludwig Schläfli vizsgálta a 19. sz. közepén [3]. A szabályos poliéderekre sokféle egymással egyenértékű definíció ismeretes, nekünk azonban célszerű itt is egy dimenziószámtól független definíciót alkalmazni. Ehhez a szimmetriatulajdonságokat hívjuk segítségül. Egy (térbeli) alakzat szimmetrikus, ha különböző szimmetriaműveletekkel, pl. tengely körüli forgatással, síkra tükrözéssel vagy középpontos tükrözéssel önmagába transzformálható. Másképpen szólva, a szimmetriaművelet végrehajtásával az eredetitől meg nem különböztethető helyzetbe hozható. Egy alakzaton végrehajtható szimmetriaműveletek összessége matematikailag szimmetriacsoportot alkot [4]. Mármost, ha egy poliéder bármely két csúcsához van olyan (a poliéderen végrehajtható) szimmetriaművelet, amely egyik csúcsot a másikba viszi, akkor azt mondjuk, hogy a poliéder szimmetriacsoportja tranzitív a csúcsokon. Szemléletesen kifejezve, ez azt jelenti, hogy bármely két 1

2 csúcs egymáshoz képest,,szimmetrikus helyzetben van. Egy poliéder pontosan akkor szabályos poliéder, ha ugyanez a tranzitivitási tulajdonság nemcsak a csúcsokon, hanem az éleken és a lapokon is teljesül. Ezt az igen erős szimmetria-feltételt csak 5-féle poliéder teljesíti, másképpen szólva, 3 dimenzóban 5 szabályos poliéder létezik. Ezek a (platóni testeknek is nevezett) poliéderek a következők: (a) szabályos tetraéder, (b) kocka, (c) szabályos oktaéder, (d) szabályos dodekaéder és (e) szabályos ikozaéder (1. ábra). (a) (b) (c) (d) (e) 1. ábra Egy 4-dimenziós politóp,,oldallapjai 3-dimenziós poliéderek, ezeket hiperlapoknak is nevezzük. Ha az előbbiekhez hasonlóan - a 0-dimenziós határoló elemekre ( = csúcsokra) - az 1-dimenziós határoló elemekre ( = élekre) - a 2-dimenziós határoló elemekre ( = lapokra) és - a 3-dimenziós határoló elemekre ( = hiperlapokra) egyaránt megköveteljük a tranzitivitást, a 4-dimenziós szabályos politóp fogalmát kapjuk. (Általánosan, egy n-dimenziós politópot röviden n-politópot pontosan akkor nevezünk szabályos vagy reguláris n-politópnak, ha minden k egész szám esetén, ahol 0 k < n, a k-dimenziós,,lapokon a szimmetriacsoportja tranzitív.) A definícióból az is következik, hogy a 2- és 3-dimenziós határoló elemek szabályos sokszögek, illetve szabályos poliéderek. Négydimenziós szabályos politópokból 6-féle van, a felvételen ezek közül a következő hárommal találkozunk. 2

3 A hiperkockát 8 kocka határolja, 16 csúcsa, 32 éle és 24 (2-dimenziós) lapja van. Egy csúcsban 4 kocka találkozik, egy él három kocka közös élét képezi, és két szomszédos kocka hiperlap egy közös négyzetlap mentén érintkezik. A (szabályos) 120-cellát 120 szabályos dodekaéder határolja, 600 csúcsa, 1200 éle és 720 ötszöglapja van. Egy csúcsban 4 dodekaéder hiperlap találkozik, egy él három hiperlap közös élét képezi, és minden ötszöglapon két szomszédos dodekaéder osztozik. A (szabályos) 600-cellát 600 szabályos tetraéder határolja, 120 csúcsa, 720 éle és 1200 háromszöglapja van. Egy csúcsban 20 tetraéder találkozik, egy él mentén 5 tetraéder érintkezik, és minden háromszöglap 2 szomszédos tetraéder közös lapja. A regularitás feltétele sokféleképpen gyengíthető, így változatos újabb politóposztályokat kapunk. Ilyen az uniform politópok osztálya. Egy n-politóp pontosan akkor uniform, ha szimmetriacsoportja a csúcsokon tranzitív és hiperlapjai (n-1)-dimenziós uniform politópok. Három dimenzióban ekkor éppen a félig szabályos poliédereket kapjuk. Ha egy félig szabályos poliéder szimmetriacsoportja megegyezik egy szabályos test szimmetriacsoportjával, akkor arkhimédészi testnek nevezzük. Arkhimédészi testből 13 fajta van. (a) (b) (c) 2. ábra Uniform politópokat könnyen előállíthatunk szabályos politópokból csonkítással, így például a csúcsok alkalmas levágásával. A dodekaéderből például (2. ábra) első lépésben az (a) csonkítást kapjuk (arkhimédészi csonkított dodekaéder): a csúcsok helyén szabályos háromszögek keletkeznek, az eredeti ötszöglapok pedig szabályos tízszögekké csonkulnak. A metsző síkokat a poliéder középpontjához közelebb felvéve, egy bizonyos pozícióban azok éppen a dodekaéder eredeti élfelezőpontjaiban találkoznak: a keletkezett háromszöglapok a csúcsuknál fogva összeérnek, ikozidodekaédert kapunk (b). Tovább növelve a csonkítás mélységét, a háromszöglapok már egymást is csonkítják, hatszöglapok keletkeznek. A keletkezett idom neve arkhimédészi csonkított ikozaéder, mivel a (most már kisméretűvé zsugorodott) ötszöglapok úgy is felfoghatók, mintha,,ellenkező irányból, az ikozaéderből indult volna a csonkítás, és annak csúcsai helyén kaptuk volna ezeket a lapokat (nem nehéz észrevenni, hogy gömbbé,,felfújva" ezt az idomot, a futball-labda jól ismert alakját kapjuk). Tulajdonképpen a dodekaéder és az ikozaéder között elhelyezkedő csonkítási sorozatot kaptunk [3, 5]. A sorozat 2 szélső tagja egymás duálisa: a dodekaédernek ugyanannyi csúcsa van, mint az ikozaédernek, és megfordítva (egyúttal, a csúcsok, élek és lapok egymáshoz való illeszkedésének rendje is fordított a két poliéderen). (Ez abban is megnyilvánul, hogy a fenti 3 lépéses csonkítási műveletsort fordított irányban is elvégezhettük volna: az ikozaéderrel kezdve, és a dodekaéderhez megérkezve, hiszen a csúcsokat metsző síkok éppen a duális ellenpár lapsíkjaival megegyező helyzetűek, ha eltekintünk a poliéder középpontjától való távolságuktól.) 3

4 Tekintsük most e poliéderek szemléltetési módját. Előző ábráink mindegyike merőleges vetítéssel készült: a vetítősugarak egymással párhuzamosak és merőlegesek a képsíkra (jelen esetben az ábra síkjára). A poliéder képe egy síkbeli konvex sokszögtartomány, amelyet az egyes lapok képei osztanak fel résztartományokra (e kisebb tartományok az eredeti poliéderlap helyzetétől függően kisebb-nagyobb torzulást szenvednek a vetítés során: a szabályos sokszögek affin képe keletkezik.) Megállapodás szerint pl. azon lapok képeit tüntetjük fel az ábrán, amelyek a poliédernek a képsíkkal átellenes oldalán helyezkednek el. Egy 4-dimenziós politóp egyik legegyszerűbb szemléltetése ennek analógiájára a következő [6]. A merőleges vetítés egy 3-dimenziós hipersíkra történik: ahol a vetítősugarak döfik ezt a hipersíkot, ott lesz a vetített pont képe. (Egy ilyen hipersík lényegében megegyezik egy közönséges 3-dimenziós euklideszi térrel; a hipersík, mint a 4-dimenziós tér egy altere egy rá merőleges egyenessel jelen esetben egy vetítősugárral együtt kifeszíti a 4-dimenziós teret.) Az eredmény az analógia alapján egy (3-dimenziós térbeli) konvex poliédertartomány, amelyet az eredeti hiperlapok (jelen esetben platóni vagy arkhimédészi poliéderek) affin képei osztanak fel kisebb tartományokra. (a) (b) 3. ábra A 600-cella esetén az így előálló alakzatot a 3/a ábra szemlélteti (pillanatkép a videofelvételből). A jobb láthatóság érdekében a tetraéder hiperlapok között hézagok vannak, és maguk a tetraéderek csak váz alakban láthatók, hogy az alakzat belsejébe is bepillanthassunk. A 3/b ábra hasonló módon a 120-cellát szemlélteti (az ábra nem konvex alakzatot mutat, aminek oka, hogy a legkülső, a vetítés miatt már igen lapossá torzult dodekaéderek a jobb szemléltetés érdekében el lettek hagyva). Ez a két politóp egymás duálisa, így az ikozaéder-dodekaéder pár kapcsán említett módon itt is létrehozható egy csonkítási sorozat a csúcsok alkalmas levágásával. Így 5 új uniform politópot kapunk, amelyek egyikét a 4. ábra mutatja. Jól látszanak az arkhimédészi csonkított tetraéder, illetve ikozaéder alakú hiperlapok (az előbbiek egy példánya külön is látható az 5. ábrán). A csonkított tetraéderek hatszöglapjukkal egymáshoz, háromszöglapjukkal pedig az ikozaéderekhez csatlakoznak. Jelenlétüket tekinthetjük úgy, mintha a 600-cella tetraédereiből jöttek volna létre (a csúcsoknál történő csonkítás eredményeként), de úgy is, mintha a 120-4

5 4. ábra 5. ábra cella 600 levágott csúcsa helyén keletkeztek volna. A 120 ikozaéder ennek megfelelően keletkezhetett volna a 600-cella csúcsainak helyén, de ugyanígy a 120-cella dodekaédereiből is, a csúcsoknál történő csonkításból adódóan. Megjegyezzük, hogy uniform politópokat tetszőleges, de 2-nél nagyobb dimenzióban nemcsak a csúcsoknál történő csonkítással lehet létrehozni, hanem például éleknél, illetve lehetőség szerint 1-nél magasabb dimenziós,,lapoknál is. Ikozaéder-dodekaéder pár esetén ekkor 2 újabb arkhimédészi test keletkezik: a rombikozidodekaéder (6/a ábra), illetve a nagy (a) 6. ábra (b) rombikozidodekaéder (6/b ábra). 4 dimenzióban ez a lehetőség az előbbi 5 mellé még 8 újabb politóp konstrukcióját jelenti. Mindezeket a lehetőségeket a videofilm úgy jeleníti meg, hogy az éppen bemutatott politóp állandó forgásban van a 4-dimenziós térben. A (3-dimenziós) vetületi kép is állandóan változik ennek megfelelően, és a hiperlapok (az egyes platóni vagy arkhimédészi testek) képei is állandó mozgásban vannak (részint folyamatosan változtatják alakjukat a vetítésből adódó torzulás következtében, részint egy folytosan változó helyzetű tengely körül forognak). Eredményként a 4-dimenziós térgeometria izgalmas világáról egy dinamikus és (közvetlen s átvitt értelemben egyaránt) sokszínű képet nyerhetünk. A bemutatott alakzatok a 4-dimenziós térnek ugyan nem a legegyszerűbb alakzatai, mégis, ahogyan a poliéderek változatos világa 5

6 segít megérteni a térgeometriát és hozzájárulhat a térszemlélet fejlesztéséhez, úgy a szóban forgó politópok szemléletes megjelenítése is segítséget adhat a geometria egy elvontabb (a megszokott 3-dimenziós geometriára sokban hasonlító, de attól mégis eltérő) fejezetének megközelítéséhez. Végül, de nem utolsósorban hozzájárulhat a 4-dimenziós tér körül kialakult, nemegyszer misztifikált és áltudományos elképzelések [7, 8] visszaszorításához. Irodalom 1. Euklidész: Elemek. Gondolat, Budapest, Struik, D. J.: A matematika rövid története. Gondolat Kiadó, Budapest, Coxeter, H. S. M.: Regular polytopes. Methuen, London, Coxeter, H. S. M.: A geometriák alapjai. Műszaki könyvkiadó, Budapest, Bérczi Szaniszló: A szabályos és félig szabályos testek táblázatos összefoglalása. In: Weyl, H.: Szimmetria. Gondolat, Budapest, 1982, o. 6. Miyazaki, K.: Variable polyhedric patterns on a sphere derived from regular and semiregular polytopes in four-dimensional space. Forma, 13 (2) (1998), Gévay Gábor: Folytonosság és dimenzió. Egy matematikus emlékére, aki összekapcsolta a kettőt. Természet Világa, 114(12) (1983), Gévay Gábor: Mire jó a négydimenziós krisztallográfia? Természet Világa, 117(6) (1986),

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.)

JOHANNES KEPLER (Weil der Stadt, december 27. Regensburg, Bajorország, november 15.) SZABÁLYOS TESTEK JOHANNES KEPLER (Weil der Stadt, 1571. december 27. Regensburg, Bajorország, 1630. november 15.) Német matematikus és csillagász, aki felfedezte a bolygómozgás törvényeit, amiket róla

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Négydimenziós konvex politóp ábrázolása GeoGebrával

Négydimenziós konvex politóp ábrázolása GeoGebrával DIMENZIÓK 11 Matematikai Közlemények V. kötet, 2017 doi:10.20312/dim.2017.02 Négydimenziós konvex politóp ábrázolása GeoGebrával Talata István Szent István Egyetem, Ybl Miklós Építéstudományi Kar, Budapest,

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

11. előadás. Konvex poliéderek

11. előadás. Konvex poliéderek 11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

GEOMETRIA 1, alapszint

GEOMETRIA 1, alapszint GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 &'( )''(!( * +**

DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 &'( )''(!( * +** DIMENZIÓK 13 Matematikai Közlemények VI. kötet, 2018 doi:10.20312/dim.2018.02 &'( )''(!( * +** Talata István Szent István Egyetem, Ybl Miklós Építéstudományi Kar, Budapest, és Dunaújvárosi Egyetem, Dunaújváros

Részletesebben

10. előadás. Konvex halmazok

10. előadás. Konvex halmazok 10. előadás Konvex halmazok Konvex halmazok Definíció: A K ponthalmaz konvex, ha bármely két pontjának összekötő szakaszát tartalmazza. Állítás: Konvex halmazok metszete konvex. Konvex halmazok uniója

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont. 1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen

Részletesebben

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.

Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van. Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben.

3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. 3. tétel Térelemek távolsága és szöge. Nevezetes ponthalmazok a síkon és a térben. TÁVOLSÁG Általános definíció: két alakzat távolsága a két alakzat pontjai között húzható legrövidebb szakasz hosszaa távolság

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom

Hraskó András, Surányi László: spec.mat szakkör Tartotta: Hraskó András. 1. alkalom 1. alkalom 1. Beszínezzük a koordináta-rendszer rácspontjait. Egyetlen szabályt kell betartanunk: az (a;b) pontnak ugyanolyan színűnek kell lennie, mint az (a-b;a) és az (a;b-a) pontnak (a és b egész számok).

Részletesebben

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák

Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Megoldatlan (elemi) matematikai problémák Diszkrét geometriai problémák Csikós Balázs ELTE TTK Matematikai Intézet Országos Diákkutatói Program, 2009.11.13. Csikós B. (ELTE TTK Matematikai Intézet) Diszkrét

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

1. 27 egyforma R ellenállásból a következő hálózatot hozzuk létre. Mekkora az eredő ellenállás A és B között?

1. 27 egyforma R ellenállásból a következő hálózatot hozzuk létre. Mekkora az eredő ellenállás A és B között? Véges ellenálláshálók Szorgalmi feladatok mindenkinek, az első beadónak ötösért! - csillagot ér, ha a megoldásod nem bonyolultabb, mint az enyém, - csillagot ér, ha ellenállásokból megvalósítod, és leméred

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal

Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry Síklapú

Részletesebben

Matematika pótvizsga témakörök 9. V

Matematika pótvizsga témakörök 9. V Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II. Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek

Részletesebben

Diszkrét démonok A Borsuk-probléma

Diszkrét démonok A Borsuk-probléma A Borsuk-probléma Bessenyei Mihály DE TTK Matematikai Intézet, Analízis Tanszék Regionális Matematika Szakkör (megnyitó el adás) Debrecen, 2017. október 16. Bevezetés Magyarázat a címhez... Napjainkban

Részletesebben

Szög. A Wikipédiából, a szabad enciklopédiából:

Szög. A Wikipédiából, a szabad enciklopédiából: Szög A Wikipédiából, a szabad enciklopédiából: http://hu.wikipedia.org/wiki/szög A sík egy pontjából kiinduló két félegyenes a síkot két tartományra osztja. Az egyik tartomány és a két félegyenes szöget

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I. Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Euler-formula, síkbarajzolható gráfok, szabályos testek

Euler-formula, síkbarajzolható gráfok, szabályos testek FEJEZET 5 Euler-formula, síkbarajzolható gráfok, szabályos testek "Minden emberi megismerés szemlélettel kezdődik, ebből fogalomalkotásba megy át és eszmékben végződik." I. Kant: A tiszta ész kritikája.

Részletesebben

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV

6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV 6 MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM TANÁRI KÉZIKÖNYV Módszertani megjegyzés: Ez a modul elsősorban a térszemlélet fejlesztését szolgálja, feladataiban és módszereiben eltér a szokványos feldolgozástól.

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

Bevezetés a síkgeometriába

Bevezetés a síkgeometriába a síkgeometriába 2016.01.29. a síkgeometriába 1 Fogalom, alapfogalom Álĺıtás,axióma Térelemek kölcsönös helyzete 2 A szögek A szögek mérése Szögfajták Szögpárok 3 4 a síkgeometriába Fogalom, alapfogalom

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás Géprajz - gépelemek AXO OMETRIKUS ábrázolás Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Egyszerű testek látszati képe Ábrázolási módok: 1. Vetületi 2. Perspektivikus

Részletesebben

Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D

Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések fajtái - 1 perspektívikus A párhuzamos A A' B A' B A vetítés középpontja B' Vetítési

Részletesebben

Lineáris vetítési eljárás

Lineáris vetítési eljárás Tudományos Diákköri Konferencia Gergye Menyhért Lineáris vetítési eljárás Konzulens: dr. Szoboszlai Mihály egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Építészeti Ábrázolás Tanszék 2014

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

Kártyázzunk véges geometriával

Kártyázzunk véges geometriával Kártyázzunk véges geometriával Bogya Norbert Bolyai Intézet Egyetemi tavasz, 2016 Tartalom Dobble Véges geometria Dobble újratöltve SET Kérdések Hogy tudunk ilyen kártyákat konstruálni? 8 helyett más

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül

PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA. Ábrázoló geometria példákon keresztül PROK ISTVÁN SZILÁGYI BRIGITTA ÁBRÁZOLÓ GEOMETRIA Ábrázoló geometria példákon keresztül 2011 1 Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0028 számú, a Természettudományos (matematika és fizika) képzés a műszaki

Részletesebben

Számítógéppel segített modellezés és szimuláció a természettudományokban

Számítógéppel segített modellezés és szimuláció a természettudományokban Számítógéppel segített modellezés és szimuláció a természettudományokban Beszámoló előadás Németh Gábor 2008. 05. 08. A kurzusról Intenzív, 38 órás kurzus 2008. 03. 25. -2008. 03. 30-ig Három csoport:

Részletesebben

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]

VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)] Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

TE IS LáTOd, AMIT Én LáTOk?

TE IS LáTOd, AMIT Én LáTOk? MATEMATIKAI KOMPETENCIATERÜLET TE IS LáTOd, AMIT Én LáTOk? TÉRSZEMLÉLET FEJLESZTÉS 5 12. ÉVFOLYAM I. RÉSZ módszertani ajánlások FELADATlapok A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program

Részletesebben

Jogi terek modellezése a 3D kataszterben

Jogi terek modellezése a 3D kataszterben Jogi terek modellezése a 3D kataszterben Iván Gyula főtanácsadó Fölmérési és Távérzékelési Intézet GIS OPEN 2012 Konferencia Felelni az alapkérdésekre Székesfehérvár, 2012. 03. 12-14. Tartalom A 2D és

Részletesebben

Számalakzatok Sorozatok 3. feladatcsomag

Számalakzatok Sorozatok 3. feladatcsomag Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 13 18 év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal,

Részletesebben

Hasonlóság 10. évfolyam

Hasonlóság 10. évfolyam Hasonlóság Definíció: A geometriai transzformációk olyan függvények, melyek értelmezési tartománya, és értékkészlete is ponthalmaz. Definíció: Két vagy több geometriai transzformációt egymás után is elvégezhetünk.

Részletesebben

Térszemlélet fejlesztése matematika órán eszközökkel, játékosan. - Tanulási problémás gyermekek segítése

Térszemlélet fejlesztése matematika órán eszközökkel, játékosan. - Tanulási problémás gyermekek segítése Térszemlélet fejlesztése matematika órán eszközökkel, játékosan - Tanulási problémás gyermekek segítése Tanulási problémás gyermekek ellátása tanórán Differenciálás, kevesebb feladat, más számkör Egyéni

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hatévfolyamos képzés Matematika 8. osztály VI. rész: Térgeometria Készítette: Balázs Ádám Budapest, 2019 2. Tartalomjegyzék Tartalomjegyzék VI.

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Int 1.4 Szakterület

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. október 12. 1. Diszkrét matematika 2. 5. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. október 12. Diszkrét matematika

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3

1. Szimmetriák. Háromszög-szimmetria. Rubin Zafir Kalcit aluminium-oxid: Al 2 O 3 kalcium-karbonát: CaCO 3 Egy kis reklám A Matematikatanárok Klubjának honlapja: https://www.cs.elte.hu/ miertmat/progs.html Recski András: Síkbarajzolható gráfok, rúdszerkezetek, transzformátorok. https://www.youtube.com/watch?v=iy4dzcwyf5s

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

Geometriai alapismeretek

Geometriai alapismeretek Geometriai alapismeretek A geometria alapfogalmai a tapasztalat útján absztrakcióval alakultak ki. Térelemek: pont, egyenes, sík Térelemek kölcsönös helyzete, fontosabb alapesetek: Egy pont vagy illeszkedik

Részletesebben

Programozási nyelvek 2. előadás

Programozási nyelvek 2. előadás Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai

Részletesebben

Geometriai alapfogalmak

Geometriai alapfogalmak Geometriai alapfogalmak Alapfogalmak (nem definiáljuk): pont, egyenes, sík, tér. Félegyenes: egy egyenest egy pontja két félegyenesre bontja. Ez a pont a félegyenes végpontja. A félegyenes végtelen hosszú.

Részletesebben

Geometriai feladatok, 9. évfolyam

Geometriai feladatok, 9. évfolyam Geometriai feladatok, 9. évfolyam Szögek 1. Nevezzük meg az ábrán látható szögpárokat. Mekkora a nagyságuk, ha α =52 o fok? 2. Mekkora az a szög, amelyik a, az egyenesszög 1/3-ad része b, pótszögénél 32

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Geometria 1, normálszint

Geometria 1, normálszint Geometria 1, normálszint 2. előadás 1 / 46 Geometria 1, normálszint ELTE Matematikai Intézet, Geometriai Tanszék 2019 A diákat készítette: Moussong Gábor Előadó: Lakos Gyula lakos@math.elte.hu 2. előadás

Részletesebben

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21. Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Algebra gyakorlat, 4. feladatsor, megoldásvázlatok

Algebra gyakorlat, 4. feladatsor, megoldásvázlatok Algebra gyakorlat, 4. feladatsor, megoldásvázlatok 0. Ha G egy véges csoport, akkor nyilván csak véges sok részcsoportja van. Legyen most G végtelen. Ha van végtelen rend g G elem, akkor g (Z, +), aminek

Részletesebben

Középpontos hasonlóság szerkesztések

Középpontos hasonlóság szerkesztések Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen

Részletesebben

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Áttekintés LP és geometria Többcélú LP LP és egy dinamikus modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 6. Előadás Áttekintés Kezdjük újra a klasszikus erőforrás allokációs problémával (katonák,

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

1. A Hilbert féle axiómarendszer

1. A Hilbert féle axiómarendszer {Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,

Részletesebben

Feladatok Házi feladat. Keszeg Attila

Feladatok Házi feladat. Keszeg Attila 2016.01.29. 1 2 3 4 Adott egy O pont és egy λ 0 valós szám. a tér minden egyes P pontjához rendeljünk hozzá egy P pontot, a következő módon: 1 ha P = O, akkor P = P 2 ha P O, akkor P az OP egyenes azon

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Műszaki rajz alapjai

Műszaki rajz alapjai Műszaki rajz alapjai Definíció A műszaki rajz valamilyen információhordozón rögzített, egyezményes szabályoknak megfelelően, grafikusan ábrázolt műszaki információ, amely rendszerint méretarányos Műszaki

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Egy tételr½ol, melyet Dürer majdnem megtalált

Egy tételr½ol, melyet Dürer majdnem megtalált Haladvány Kiadvány 2017.03.26 Egy tételr½ol, melyet Dürer majdnem megtalált Hujter Mihály hujter.misi@gmail.com A német reneszánsz legfontosabb alakjaként ismert Albrecht Dürer. Mivel apja (id½osebb Albrecht

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

Forgáshenger normálisának és érintősíkjának megszerkesztése II/1

Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Adott egy forgáshenger: t főegyenes tengelye két vetületi képével t: 0, 110,170-től jobb felső sarokig egy felületi pontjának második vetületi

Részletesebben

Síkbarajzolható gráfok Április 26.

Síkbarajzolható gráfok Április 26. Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,

Részletesebben

MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34.

MINTAFELADATOK. 1. feladat: Két síkidom metszése I.33.,I.34. MINTAFELADATOK 1. feladat: Két síkidom metszése I.33.,I.34. 2. feladat: Testábrázolás képsíktranszformációval Gúla ábrázolása (a magasságvonalának transzformálásával) Adott az m egyenes, a ráilleszkedő

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

A legfontosabb elért eredményeink (a mellékelt publikációs listának megfelelő sorrendben):

A legfontosabb elért eredményeink (a mellékelt publikációs listának megfelelő sorrendben): Az eredeti kutatási tervünknek megfelelően a diszkrét geometria több alapvető fontosságú, máig nyitott problémájával kapcsolatos kérdéseket vizsgáltunk (pl Kneser-Poulsen sejtés, gömbelhelyezések magasabb

Részletesebben

A Fermat-Torricelli pont

A Fermat-Torricelli pont Vígh Viktor SZTE Bolyai Intézet 2014. november 26. Huhn András Díj 2014 Így kezdődött... Valamikor 1996 tavaszán, a Kalmár László Matematikaverseny megyei fordulóján, a hetedik osztályosok versenyén. [Korhű

Részletesebben