Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal
|
|
- Béla Gáspár
- 1 évvel ezelőtt
- Látták:
Átírás
1 Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry
2 Síklapú testek Sokszöglapok által határolt testek. Mi csak gúlákkal és hasábokkal foglalkozunk. Gúla Egy síkbeli sokszög csúcsait egy olyan ponttal kötjük össze, amely nem illeszkedik a sokszög síkjára. Az így keletkezett gúlának az említett sokszög az alapsokszöge, a többi lapjai az oldallapok. Hasáb Egy síkbeli sokszöget a térben eltolva hasábot kapunk. A sokszög kiinduló helyzete az alaplap, a végső helyzete a fedőlap, melyeket az oldallapok kötnek össze.
3 Hasáb Az alap- és fedőlap távolságát a hasáb magasságának nevezzük. Ha az alap- és fedőlapokat összekötő oldalélek merőlegesek az alapsíkra, akkor a hasáb egyenes, különben ferde hasábról beszélünk. Négyzet alapú egyenes hasáb Négyzet alapú ferde hasáb
4 Gúla Az oldalélek közös kezdőpontjának az alapsíktól mért távolsága a gúla magassága. Ha a magasság talppontja éppen az alaplap középpontja, akkor a gúla egyenes, különben ferde gúláról beszélünk. Négyzet alapú egyenes gúla Négyzet alapú ferde gúla
5 Gúla (hasáb) metszése egyenessel Szerkesztés: Ha az alaplap konvex, akkor egy egyenesnek és egy gúlának (hasábnak) csak két közös pontja lehet. Ha az alaplap konkáv, akkor kettőnél több metszéspont is lehet. A metszéspontokat úgy határozzuk meg, hogy az egyenes egyik vetítősíkjával belemetszünk a gúlába (hasábba). Miután az egyenes és a metszet ugyanabban a síkban vannak, a közös pontok kijelölhetők. Ezek a pontok általában valamelyik lap belsejében keletkeznek, de ritkán előfordulhat az is hogy az egyenes az egyik oldalélen metszi el a testet. Láthatóság (ha a test belsejébe egyik képen sem látunk bele): A két metszéspont között az egyenes a test belsejében halad, így az a szakasz nem látszik. Ha az egyenes és a test közös pontja látható lapon van, akkor maga a metszéspont is látszik, illetve ebből indulva az egyenes testen kívüli része is. Ha az egyenes és a test közös pontja takart lapon van, akkor a metszéspont nem látszik, illetve ebből indulva az egyenes testen kívüli része egy darabig biztosan nem látszik.
6 Gúla metszése egyenessel = e 1 2 Az egyenes 2. vetítősíkja a gúlát elmetszi. Ekkor a 2. képen ezek a metszéspontok láthatók, Az 1. képeik rendezőkkel jelölhetők ki. A kapott pontokat a lapok bejárásának megfelelően összekötjük. A megrajzolt metszet és az e közös pontjai: 1 és 2. Rendezőkkel az 1 és 2 kijelölhető. 2 e 1 1: az ABM lapon van. 2: a CDM lapon van.
7 Egyenes hasáb metszése egyenessel e 1 2 Az egyenes hasáb oldallapjai 1. vetítősíkok. A keresett a metszéspontok az 1. képen láthatók, a 2. képeik rendezőkkel jelölhetők ki. 1: az ABFE lapon van. 2: a BCGF lapon van. e 1 2
8 Gúla (hasáb) metszése vetítő helyzetű síkkal Miért jó vetítő helyzetű síkkal metszeni? Mert jól látható, hogy a test mely élei metszik át a síkot. Ezek a pontok az egyik képen azonnal kijelölhetők, a másik képen rendezővel határozhatók meg. A kapott pontokat a test csatlakozó lapjait bejárva kell összekötnünk, így rajzolódik ki a sokszög a test felületén. (Nem léphetünk a test belsejébe.) Mi a különbség a síkkal és a síklappal történő metszés között? Ha síkkal metszünk, akkor a síkot minden irányban kellően nagynak képzeljük el, hogy a testet ketté tudja vágni. Ebben az esetben gyakran a test egyik felét (általában a kisebbet) eltávolítjuk. Ha síklappal metszünk, akkor a metszet pontjait ugyanúgy határozzuk meg, mintha a teljes síkkal metszenénk. De a lap általában elég kicsi, nem tudja kettévágni a testet, csak belevág, ezért a metszetnek csak az a része keletkezik, amely a lap belsejében van.
9 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík párhuzamos az alaplappal. (most K 1 -gyel párhuzamos) Ebben az esetben a metszet az alaplaphoz hasonló sokszög lesz. A 2. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, az 1. képük rendezőkkel kijelölhető. A kapott pontokat a lapok bejárásának megfelelően összekötjük. A' G' D' Végül a láthatóság egyik szempontja lehet az, hogy csak a gúla sík fölötti részét ábrázoljuk. B' C'
10 Gúla metszése vetítő helyzetű síkkal Az előbbi szerkesztés elvégzése után a láthatóság másik szempontja lehet az, hogy csak a gúla alsó részét ábrázoljuk. x 1,2 A'' B'' F'' C'' E'' D'' F' E' A' D' B' C'
11 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' A' F' E' A metsző sík merőleges a K 2 -re. A metszet NEM lesz hasonló az alapsokszöghöz. A 2. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, az 1. képük rendezőkkel kijelölhető. A kapott pontokat a lapok bejárásának megfelelően összekötjük. Végül a láthatóság egyik szempontja lehet az, hogy csak a gúla sík fölötti részét ábrázoljuk. G' D' B' C'
12 Gúla metszése vetítő helyzetű síkkal Az előbbi szerkesztés elvégzése után a láthatóság másik szempontja lehet az, hogy csak a gúla alsó részét ábrázoljuk. x 1,2 A'' B'' F'' C'' E'' D'' F' E' A' D' B' C'
13 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík merőleges a K 1 -re. Az 1. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, most két oldalél, és két alapél metszi a síkot. Az 2. képük rendezőkkel kijelölhető. Figyelem! Az alapélek a 2. képen éppen az x 1,2 -n látszanak. A 2. képen a kapott pontokat a lapok bejárásának megfelelően összekötjük. (A metszet egyik oldala az x 1,2 -re rajzolódik) A' G' D' A láthatóságot most úgy tüntettük fel, hogy a gúla sík előtti (kisebb) részét eltávolítottuk. B' C'
14 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík merőleges a K 1 -re. Az 1. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, most is két oldalél, és két alapél metszi a síkot. Az 2. képük rendezőkkel kijelölhető. Figyelem! Az alapélek a 2. képen éppen az x 1,2 -n látszanak. A kapott pontokat a lapok bejárásának megfelelően összekötjük. (A metszet egyik oldala az x 1,2 -re rajzolódik) A' G' D' A láthatóságot most úgy tüntettük fel, hogy a gúla sík mögötti (kisebb) részét eltávolítottuk. B' C'
15 1 x '' 2 x '' 4 x '' 3 x '' Ferde hasáb síkmetszete D 1 '' D 2 '' D 4 '' D 3 '' x 1,2 1'' 2'' 3'' 4'' 4' D 4 ' 1' a sík által takart hasáb-rész 3' D 3 ' 4 x ' D 1 ' 1 x ' 2' 3 x ' D 2 ' 2 x '
16 1 x '' 2 x '' 4 x '' 3 x '' Ferde hasáb síkmetszete A metsző sík párhuzamos az alap- és fedőlap síkjával, ezért a metszet egybevágó az alap-és fedőlappal. D 1 '' D 2 '' D 3 '' D 4 '' x 1,2 1'' 2'' 3'' 4'' 4' D 4 ' 1' a sík által takart hasáb-rész D 1 ' 3' 1 x ' 4 x ' D 3 ' 2' 3 x ' D 2 ' 2 x '
17 B' Gúla metszése vetítő helyzetű síklappal Az XYZ lap merőleges a K 2 -re. Mivel a metsző sík 2. vetítősík, a gúla oldaléleinek a síkkal alkotott közös pontjai a 2. képen látszanak, az 1. képeik rendezővel jelölhetők ki. Előfordulhat, hogy a kapott metszéspontok a lapon kívülre kerülnek! (Most három pont a lapon kívülre került, de midet megszerkesztjük!) x 1,2 A'' B'' D'' D' C'' Ha a síklap elég nagy volna, akkor a teljes metszet keletkezne. DE, most a metszetből csak az a rész keletkezik, amely az XYZ lap belsejében van! A' C'
18 Gúla metszése vetítő helyzetű síklappal A metszetből csak az a rész keletkezik, amely az XYZ lap belsejében van. (A lapon kívül eső részt most pontozott vonallal jelöltem.) AZ XYZ lap takarja az AB, BC és CD éleket középső részét.
19 Gúla (hasáb) metszése általános helyzetű síkkal Mi a teendő, ha általános helyzetű síkkal kell metszenünk? Célszerű egy transzformációval elérni, hogy a sík vetítősík legyen. Ezt a transzformációt CSAK A SÍK határozza meg, a sík egy első fővonalára merőlegesen kell kijelölni az x 1,4 tengelyt. Ekkor a transzformált képen a metszéspontokat ki lehet jelölni, és rendezőkkel, visszafelé történő transzformációval kapjuk a szükséges pontokat. Csak így oldható meg a feladat? Nem, transzformáció nélkül is lehet. Ekkor a test oldaléleivel, mint egyenesekkel, kell a síkot metszeni fedő egyenesek alkalmazásával. De ebben az esetben a szerkesztésnél használt segédvonalak miatt mindkét képen sok zavaró vonal keletkezhet. Nem kell transzformálni, ha egyenes hasábot metszünk általános helyzetű síkkal. Ekkor a test élei vetítőegyenesek, így az egyik képen a szükséges metszéspontok már látszanak, a másik képen a síkra való illesztéssel jelölhetők ki. Illetve a test oldallapjai vetítősíkok, így látszanak azok a pontok is, melyekben a síklap élei elmetszik azokat.
20 Egyenes hasáb metszése általános helyzetű síklappal X Y Z e Az egyenes hasáb oldallapjai a K 1 képsíkra merőlegesek. Az 1. képen láthatók, ahogy az XY és XZ élek átmetszik a hasáb lapjait. Ezeket a pontok: 1, 2, 3, 4. A 2. képen rendezőkkel jelölhetők ki. Az 1.képen látszik, hogy a CG él belemetsz a háromszöglapba. Ez a pont legyen az 5. X Y Z e Az 5 pont 2. képét a síkra történő illesztéssel kapjuk. Az e segédegyenes a 3 és 5 pontokat köti össze a síkon. Rendezőkkel meghatározható az e. A 2. képen e és a C G metszi egymást az 5 pontban.
21 Egyenes hasáb metszése általános helyzetű síklappal Láthatóság Az 1. képen a lap hasábon kívüli része biztosan látszik, az 14 és 23 szakaszok a hasáb belsejében vannak, így nem látszanak. A 2. képen az 1-es és 2-es pontok látható lapon vannak, így az 12X háromszög látszik, amely az AE él közepét takarja. A 3-es és 5-ös pontok látszanak, de a 4- es pont nem látszik. Emiatt a 35 szakasz látható lapon van, az 54 szakasz pedig hátsó lapon. A 4-es pont környékén a hasáb takarja a lapot, a 35-ös szakasz környékén a lap takarja a hasábot.
22 g g e Gúla metszése általános helyzetű síklappal Ebben az esetben egyik képen sem látjuk közvetlenül a lap és a gúla oldaléleinek metszéspontjait. Egy lehetséges megoldás, ha az MA, MB, MC, MD élek síkkal alkotott közös pontjait megszerkesztjük. A szerkesztést célszerű az 1. képről indítani, mivel az MA és MC élek egymás folytatásának látszanak, így közös lesz a fedőegyenesük, e. e Ehhez hasonlóan az MB és MD élek is egymás folytatásának látszanak, így közös lesz a fedőegyenesük, g. Ezen a felvételen kivételesen két rendező egybeesett.
23 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.
24 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.
25 Gúla metszése általános helyzetű síklappal
26 Gúla metszése általános helyzetű síklappal Ebben az esetben egyik képen sem látjuk közvetlenül a lap és a gúla oldaléleinek metszéspontjait. f Egy másik lehetséges megoldás, ha transzformációval olyan képet állítunk elő, ahonnan a metszéspontokat leolvashatjuk. f A transzformációt mindig a sík fogja kijelölni, azaz azt kell elérni, hogy a sík vetítősíknak látszódjon. x 14 x 14 merőleges a sík egy első fővonalára.
27 Gúla metszése síklappal Végrehajtjuk a transzformációt. Az 1 IV, 2 IV, 3 IV pontok egy egyenesre esnek. A gúláról nem kapunk speciális képet. 2 IV 3 IV 1 IV
28 Gúla metszése általános helyzetű síklappal A IV. képen a keresett metszéspontok leolvashatók, az 1. képen rendezőkkel kijelölhetők. A kapott pontokat az 1. képen összekötve megkapjuk a metszetet. Most két pont a lap belsejében, két pont pedig azon kívül van. Rendezőkkel a 2. kép is meghatározható.
29 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.
30 Ferde hasáb normálmetszete C Normálmetszet: A metsző sík a hasáb oldaléleire merőleges. n 2. A B x 1,2 Transzfromációval elérjük, hogy a IV. képen a sík vetítősík legyen, majd a hasáb éleivel elmetszük azt. n 1. A C A kapott A, B, C pontokat az 1. és 2. képen rendezőkkel jelölhetjük ki. B. x 1, 4 A IV B IV. C IV n 4
Bevezetés. Párhuzamos vetítés és tulajdonságai
Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való
Kiindulás 01. Ábrázoló geometria "testépítés" transzformáció segítségével. n 2 " x 1,2. n 1 '
Kiindulás 01 A négyszög alapú szabályos hasáb x 1,2 AB szakas második képe 02 A négyszög alapú szabályos hasáb Transzformáció 1. 03 A négyszög alapú szabályos hasáb 2. Négyzet alaplap élbe transzformálása,
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
Ábrázoló geometria 1.
Ábrázoló geometria 1. keresztféléves gyakorlat 2014 tavasz Készítette: (A hiányzó feladatok megoldásai előadáson hangzottak el.) Ábrázoló geometria I. 2013-2014. tanév 2. félév 1. rajzfeladat Tusrajz,
10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2
10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A
pontokat kapjuk. Tekintsük például az x tengelyt. Ezen ismerjük az O, E
Az axonometria előadások és gyakorlatok vázlata Bevezetés Az axonometrikus ábrázolás feladata, hogy a térbeli alakzatok szemléletes képét gyorsan és egyszerűen állítsuk elő. Egy alakzat szemléletes képe
Ábrázoló geometria kezdőknek
BANCSIK ZSOLT LAJOS SÁNDOR JUHÁSZ IMRE Ábrázoló geometria kezdőknek mobidiák könyvtár Bancsik Zsolt, Lajos Sándor, Juhász Imre Ábrázoló geometria kezdőknek mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István
Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen
10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős
VII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)
Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két
Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg
Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az
VII.2. RAJZOLGATUNK. A feladatsor jellemzői
VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA 2015 A jegyzet bírálója: Dr. Juhász Imre egyetemi tanár A jegyzetet szerkesztette, gépelte, rajzolta: Dr. Geiger János PhD 3 TARTALOMJEGYZÉK ELŐSZÓ... 9 BEVEZETÉS... 11
GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY
- GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY 2012. Bíráló: Dr. Juhász Imre egyetemi tanár TARTALOMJEGYZÉK ELŐSZÓ I. Alapelemek ábrázolása, illeszkedése, metszése 3. 16. Alapelemek ábrázolása I.1.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.
Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre
1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z
146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-
Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat
Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.
Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális
Láthatósági kérdések
Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok
10. évfolyam, negyedik epochafüzet
10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...
EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS
GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok
Tárgyak műszaki ábrázolása. Metszeti ábrázolás
Tárgyak műszaki ábrázolása Metszeti ábrázolás Ábrázolás metszetekkel A belső üregek, furatok, stb. szemléletes bemutatására a metszeti ábrázolás szolgál A metszeti ábrázolás elve Az üreges tárgyat egy
Axonometria és perspektíva. Szemléltető céllal készülő ábrák
Axonometria és perspektíva Szemléltető céllal készülő ábrák Axonometria Jelentése: tengelyek mentén való mérés (axis: tengely, metrum: mérték) Az axonometria a koordinátarendszer tengelyein mért távolságok,
(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.
Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria
ÁBRÁZOLÓ GEOMETRIA 2.
ÁBRÁZOLÓ GEOMETRIA 2. 3. rajz 3. feladat (2013/14. tavasz) Ábrázolja egy 3,60 m szintkülönbség áthidalására szolgáló, orsótér nélküli, 2,00 m átmérőjű csavarhengeren belüli csigalépcső (jobbra csavarodó,
Érettségi feladatok Koordinátageometria_rendszerezve / 5
Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!
A hiperbolikus síkgeometria Poincaré-féle körmodellje
A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési
Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!
1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH
Érettségi feladatok: Koordináta-geometria 1/5
Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból
Matek_00_cimn_imp:Matek_00_cimn_imp_jav 1/12/10 2:10 PM Page 1 M A T E M A T I K A
M A T E M A T I K A A K A D É M I A I K É Z I K Ö N Y V E K F I Z I K A Fôszerkesztô Holics Lásló S P O R T, É L E T M Ó D, E G É S Z S É G Fôszerkesztô Szatmári Zoltán F I L O Z Ó F I A Fôszerkesztô Boros
x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?
. Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs
Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag
Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló
5. előadás. Skaláris szorzás
5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút
Geometriai példatár 2.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi
Tartalomjegyzék Hiba! A könyvjelző nem létezik. Hiba! A könyvjelző nem létezik.
Tartalomjegyzék Tartalomjegyzék... 1 Előszó... 4 1. A műszaki kommunikáció alapjai... 5 1.1. A szabványosítás szerepe... 5 1.2. Nemzetközi és európai szabványosítás... 5 1.3. Nemzeti szabványosítás...
GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a
GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:
Villamos gépek tantárgy tételei
10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja
a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!
1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,
MATEMATIKAI KOMPETENCIATERÜLET
MATEMATIKAI KOMPETENCIATERÜLET testhálózatok Eszközök a térszemléket fejlesztéséhez 6 12. évfolyam Készítette: Pusztai Attila Lektorálta: Makara Ágnes A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási
TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése
EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Á B R Á Z O L Ó G E O M E T R I A TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01
Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.
Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt
Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa
Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál
1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)
Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4
Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső
Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)
KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **
ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM
ÁBRÁZOLÓ GEOMETRIA Csavarvonal, csavarfelületek Összeállította: Dr. Geiger János Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM 2014 TARTALOM 1. A munkafüzet célja, területei, elsajátítható kompetenciák...
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
8. Geometria = =
8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Géprajz - gépelemek. AXO OMETRIKUS ábrázolás
Géprajz - gépelemek AXO OMETRIKUS ábrázolás Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Egyszerű testek látszati képe Ábrázolási módok: 1. Vetületi 2. Perspektivikus
MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy
A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria
GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak
Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai
Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"
Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
Geometriai példatár 2.
Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok
Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM
Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM 1 Tá voktatá si tagozat 1994 Ö sszeállította: Dr. Hant Lá szló fő iskolai docens Há romi Ferenc fő iskolai adjunkus
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek
Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges
Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.
Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
MATEMATIKA C 12. évfolyam 4. modul Még egyszer!
MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
Minden feladat teljes megoldása 7 pont
Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Síkbeli alakzatok. Szakaszok, szögek GEOMETRIA Alapszerkesztések Alapszerkesztések Alapszerkesztések.
Síkbeli alakzatok Szakaszok, szögek 13. Alapszerkesztések. 133. Alapszerkesztések. 134. Alapszerkesztések. a b 135. Ha x és y az egyes szakaszok hossza, akkor x + y = a és x - y = b. Így x = + ; a b y
Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben
XVIII. Nemzetközi Magyar Matematika Verseny
9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.
A szabályos sokszögek közelítő szerkesztéséhez
1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon
Egy feladat megoldása Geogebra segítségével
Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra
18. Kerületi szög, középponti szög, látószög
18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)
Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András
Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon
Hatvány, gyök, normálalak
Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő
, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD
Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van
Izsák Imre Gyula természettudományos verseny
199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,
Szög. A Wikipédiából, a szabad enciklopédiából:
Szög A Wikipédiából, a szabad enciklopédiából: http://hu.wikipedia.org/wiki/szög A sík egy pontjából kiinduló két félegyenes a síkot két tartományra osztja. Az egyik tartomány és a két félegyenes szöget
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2
3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára
I. A testek ábrázolása, jellemzése
10 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. A testek ábrázolása, jellemzése Bevezetés Módszertani megjegyzés: Ennek a modulnak a fő célja a térelemek megismerése, megtapasztalása térszemléletet fejlesztő
Geometriai transzformációk
Geometriai transzformációk 11 elemi geometriafeladat 10. és DG Matektábor 2016. október 6. Röviden a transzformációkról Tengelyes tükrözés 10. és ( DG Matektábor) Geometriai transzformációk 2016. október
Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika
Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki
8. előadás. Kúpszeletek
8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =
TE IS LáTOd, AMIT Én LáTOk?
MATEMATIKAI KOMPETENCIATERÜLET TE IS LáTOd, AMIT Én LáTOk? TÉRSZEMLÉLET FEJLESZTÉS 5 12. ÉVFOLYAM I. RÉSZ módszertani ajánlások FELADATlapok A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program