Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Síklapú testek. Gúlák, hasábok Metszésük egyenessel, síkkal"

Átírás

1 Síklapú testek Gúlák, hasábok Metszésük egyenessel, síkkal Az előadás átdolgozott részleteket tartalmaz a következőkből: Gubis Katalin: Ábrázoló geometria Vlasta Szirovicza: Descriptive geometry

2 Síklapú testek Sokszöglapok által határolt testek. Mi csak gúlákkal és hasábokkal foglalkozunk. Gúla Egy síkbeli sokszög csúcsait egy olyan ponttal kötjük össze, amely nem illeszkedik a sokszög síkjára. Az így keletkezett gúlának az említett sokszög az alapsokszöge, a többi lapjai az oldallapok. Hasáb Egy síkbeli sokszöget a térben eltolva hasábot kapunk. A sokszög kiinduló helyzete az alaplap, a végső helyzete a fedőlap, melyeket az oldallapok kötnek össze.

3 Hasáb Az alap- és fedőlap távolságát a hasáb magasságának nevezzük. Ha az alap- és fedőlapokat összekötő oldalélek merőlegesek az alapsíkra, akkor a hasáb egyenes, különben ferde hasábról beszélünk. Négyzet alapú egyenes hasáb Négyzet alapú ferde hasáb

4 Gúla Az oldalélek közös kezdőpontjának az alapsíktól mért távolsága a gúla magassága. Ha a magasság talppontja éppen az alaplap középpontja, akkor a gúla egyenes, különben ferde gúláról beszélünk. Négyzet alapú egyenes gúla Négyzet alapú ferde gúla

5 Gúla (hasáb) metszése egyenessel Szerkesztés: Ha az alaplap konvex, akkor egy egyenesnek és egy gúlának (hasábnak) csak két közös pontja lehet. Ha az alaplap konkáv, akkor kettőnél több metszéspont is lehet. A metszéspontokat úgy határozzuk meg, hogy az egyenes egyik vetítősíkjával belemetszünk a gúlába (hasábba). Miután az egyenes és a metszet ugyanabban a síkban vannak, a közös pontok kijelölhetők. Ezek a pontok általában valamelyik lap belsejében keletkeznek, de ritkán előfordulhat az is hogy az egyenes az egyik oldalélen metszi el a testet. Láthatóság (ha a test belsejébe egyik képen sem látunk bele): A két metszéspont között az egyenes a test belsejében halad, így az a szakasz nem látszik. Ha az egyenes és a test közös pontja látható lapon van, akkor maga a metszéspont is látszik, illetve ebből indulva az egyenes testen kívüli része is. Ha az egyenes és a test közös pontja takart lapon van, akkor a metszéspont nem látszik, illetve ebből indulva az egyenes testen kívüli része egy darabig biztosan nem látszik.

6 Gúla metszése egyenessel = e 1 2 Az egyenes 2. vetítősíkja a gúlát elmetszi. Ekkor a 2. képen ezek a metszéspontok láthatók, Az 1. képeik rendezőkkel jelölhetők ki. A kapott pontokat a lapok bejárásának megfelelően összekötjük. A megrajzolt metszet és az e közös pontjai: 1 és 2. Rendezőkkel az 1 és 2 kijelölhető. 2 e 1 1: az ABM lapon van. 2: a CDM lapon van.

7 Egyenes hasáb metszése egyenessel e 1 2 Az egyenes hasáb oldallapjai 1. vetítősíkok. A keresett a metszéspontok az 1. képen láthatók, a 2. képeik rendezőkkel jelölhetők ki. 1: az ABFE lapon van. 2: a BCGF lapon van. e 1 2

8 Gúla (hasáb) metszése vetítő helyzetű síkkal Miért jó vetítő helyzetű síkkal metszeni? Mert jól látható, hogy a test mely élei metszik át a síkot. Ezek a pontok az egyik képen azonnal kijelölhetők, a másik képen rendezővel határozhatók meg. A kapott pontokat a test csatlakozó lapjait bejárva kell összekötnünk, így rajzolódik ki a sokszög a test felületén. (Nem léphetünk a test belsejébe.) Mi a különbség a síkkal és a síklappal történő metszés között? Ha síkkal metszünk, akkor a síkot minden irányban kellően nagynak képzeljük el, hogy a testet ketté tudja vágni. Ebben az esetben gyakran a test egyik felét (általában a kisebbet) eltávolítjuk. Ha síklappal metszünk, akkor a metszet pontjait ugyanúgy határozzuk meg, mintha a teljes síkkal metszenénk. De a lap általában elég kicsi, nem tudja kettévágni a testet, csak belevág, ezért a metszetnek csak az a része keletkezik, amely a lap belsejében van.

9 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík párhuzamos az alaplappal. (most K 1 -gyel párhuzamos) Ebben az esetben a metszet az alaplaphoz hasonló sokszög lesz. A 2. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, az 1. képük rendezőkkel kijelölhető. A kapott pontokat a lapok bejárásának megfelelően összekötjük. A' G' D' Végül a láthatóság egyik szempontja lehet az, hogy csak a gúla sík fölötti részét ábrázoljuk. B' C'

10 Gúla metszése vetítő helyzetű síkkal Az előbbi szerkesztés elvégzése után a láthatóság másik szempontja lehet az, hogy csak a gúla alsó részét ábrázoljuk. x 1,2 A'' B'' F'' C'' E'' D'' F' E' A' D' B' C'

11 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' A' F' E' A metsző sík merőleges a K 2 -re. A metszet NEM lesz hasonló az alapsokszöghöz. A 2. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, az 1. képük rendezőkkel kijelölhető. A kapott pontokat a lapok bejárásának megfelelően összekötjük. Végül a láthatóság egyik szempontja lehet az, hogy csak a gúla sík fölötti részét ábrázoljuk. G' D' B' C'

12 Gúla metszése vetítő helyzetű síkkal Az előbbi szerkesztés elvégzése után a láthatóság másik szempontja lehet az, hogy csak a gúla alsó részét ábrázoljuk. x 1,2 A'' B'' F'' C'' E'' D'' F' E' A' D' B' C'

13 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík merőleges a K 1 -re. Az 1. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, most két oldalél, és két alapél metszi a síkot. Az 2. képük rendezőkkel kijelölhető. Figyelem! Az alapélek a 2. képen éppen az x 1,2 -n látszanak. A 2. képen a kapott pontokat a lapok bejárásának megfelelően összekötjük. (A metszet egyik oldala az x 1,2 -re rajzolódik) A' G' D' A láthatóságot most úgy tüntettük fel, hogy a gúla sík előtti (kisebb) részét eltávolítottuk. B' C'

14 G'' Gúla metszése vetítő helyzetű síkkal x 1,2 A'' B'' F'' C'' E'' D'' F' E' A metsző sík merőleges a K 1 -re. Az 1. képen láthatók azok a pontok, melyekben a gúla élei metszik a síkot, most is két oldalél, és két alapél metszi a síkot. Az 2. képük rendezőkkel kijelölhető. Figyelem! Az alapélek a 2. képen éppen az x 1,2 -n látszanak. A kapott pontokat a lapok bejárásának megfelelően összekötjük. (A metszet egyik oldala az x 1,2 -re rajzolódik) A' G' D' A láthatóságot most úgy tüntettük fel, hogy a gúla sík mögötti (kisebb) részét eltávolítottuk. B' C'

15 1 x '' 2 x '' 4 x '' 3 x '' Ferde hasáb síkmetszete D 1 '' D 2 '' D 4 '' D 3 '' x 1,2 1'' 2'' 3'' 4'' 4' D 4 ' 1' a sík által takart hasáb-rész 3' D 3 ' 4 x ' D 1 ' 1 x ' 2' 3 x ' D 2 ' 2 x '

16 1 x '' 2 x '' 4 x '' 3 x '' Ferde hasáb síkmetszete A metsző sík párhuzamos az alap- és fedőlap síkjával, ezért a metszet egybevágó az alap-és fedőlappal. D 1 '' D 2 '' D 3 '' D 4 '' x 1,2 1'' 2'' 3'' 4'' 4' D 4 ' 1' a sík által takart hasáb-rész D 1 ' 3' 1 x ' 4 x ' D 3 ' 2' 3 x ' D 2 ' 2 x '

17 B' Gúla metszése vetítő helyzetű síklappal Az XYZ lap merőleges a K 2 -re. Mivel a metsző sík 2. vetítősík, a gúla oldaléleinek a síkkal alkotott közös pontjai a 2. képen látszanak, az 1. képeik rendezővel jelölhetők ki. Előfordulhat, hogy a kapott metszéspontok a lapon kívülre kerülnek! (Most három pont a lapon kívülre került, de midet megszerkesztjük!) x 1,2 A'' B'' D'' D' C'' Ha a síklap elég nagy volna, akkor a teljes metszet keletkezne. DE, most a metszetből csak az a rész keletkezik, amely az XYZ lap belsejében van! A' C'

18 Gúla metszése vetítő helyzetű síklappal A metszetből csak az a rész keletkezik, amely az XYZ lap belsejében van. (A lapon kívül eső részt most pontozott vonallal jelöltem.) AZ XYZ lap takarja az AB, BC és CD éleket középső részét.

19 Gúla (hasáb) metszése általános helyzetű síkkal Mi a teendő, ha általános helyzetű síkkal kell metszenünk? Célszerű egy transzformációval elérni, hogy a sík vetítősík legyen. Ezt a transzformációt CSAK A SÍK határozza meg, a sík egy első fővonalára merőlegesen kell kijelölni az x 1,4 tengelyt. Ekkor a transzformált képen a metszéspontokat ki lehet jelölni, és rendezőkkel, visszafelé történő transzformációval kapjuk a szükséges pontokat. Csak így oldható meg a feladat? Nem, transzformáció nélkül is lehet. Ekkor a test oldaléleivel, mint egyenesekkel, kell a síkot metszeni fedő egyenesek alkalmazásával. De ebben az esetben a szerkesztésnél használt segédvonalak miatt mindkét képen sok zavaró vonal keletkezhet. Nem kell transzformálni, ha egyenes hasábot metszünk általános helyzetű síkkal. Ekkor a test élei vetítőegyenesek, így az egyik képen a szükséges metszéspontok már látszanak, a másik képen a síkra való illesztéssel jelölhetők ki. Illetve a test oldallapjai vetítősíkok, így látszanak azok a pontok is, melyekben a síklap élei elmetszik azokat.

20 Egyenes hasáb metszése általános helyzetű síklappal X Y Z e Az egyenes hasáb oldallapjai a K 1 képsíkra merőlegesek. Az 1. képen láthatók, ahogy az XY és XZ élek átmetszik a hasáb lapjait. Ezeket a pontok: 1, 2, 3, 4. A 2. képen rendezőkkel jelölhetők ki. Az 1.képen látszik, hogy a CG él belemetsz a háromszöglapba. Ez a pont legyen az 5. X Y Z e Az 5 pont 2. képét a síkra történő illesztéssel kapjuk. Az e segédegyenes a 3 és 5 pontokat köti össze a síkon. Rendezőkkel meghatározható az e. A 2. képen e és a C G metszi egymást az 5 pontban.

21 Egyenes hasáb metszése általános helyzetű síklappal Láthatóság Az 1. képen a lap hasábon kívüli része biztosan látszik, az 14 és 23 szakaszok a hasáb belsejében vannak, így nem látszanak. A 2. képen az 1-es és 2-es pontok látható lapon vannak, így az 12X háromszög látszik, amely az AE él közepét takarja. A 3-es és 5-ös pontok látszanak, de a 4- es pont nem látszik. Emiatt a 35 szakasz látható lapon van, az 54 szakasz pedig hátsó lapon. A 4-es pont környékén a hasáb takarja a lapot, a 35-ös szakasz környékén a lap takarja a hasábot.

22 g g e Gúla metszése általános helyzetű síklappal Ebben az esetben egyik képen sem látjuk közvetlenül a lap és a gúla oldaléleinek metszéspontjait. Egy lehetséges megoldás, ha az MA, MB, MC, MD élek síkkal alkotott közös pontjait megszerkesztjük. A szerkesztést célszerű az 1. képről indítani, mivel az MA és MC élek egymás folytatásának látszanak, így közös lesz a fedőegyenesük, e. e Ehhez hasonlóan az MB és MD élek is egymás folytatásának látszanak, így közös lesz a fedőegyenesük, g. Ezen a felvételen kivételesen két rendező egybeesett.

23 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.

24 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.

25 Gúla metszése általános helyzetű síklappal

26 Gúla metszése általános helyzetű síklappal Ebben az esetben egyik képen sem látjuk közvetlenül a lap és a gúla oldaléleinek metszéspontjait. f Egy másik lehetséges megoldás, ha transzformációval olyan képet állítunk elő, ahonnan a metszéspontokat leolvashatjuk. f A transzformációt mindig a sík fogja kijelölni, azaz azt kell elérni, hogy a sík vetítősíknak látszódjon. x 14 x 14 merőleges a sík egy első fővonalára.

27 Gúla metszése síklappal Végrehajtjuk a transzformációt. Az 1 IV, 2 IV, 3 IV pontok egy egyenesre esnek. A gúláról nem kapunk speciális képet. 2 IV 3 IV 1 IV

28 Gúla metszése általános helyzetű síklappal A IV. képen a keresett metszéspontok leolvashatók, az 1. képen rendezőkkel kijelölhetők. A kapott pontokat az 1. képen összekötve megkapjuk a metszetet. Most két pont a lap belsejében, két pont pedig azon kívül van. Rendezőkkel a 2. kép is meghatározható.

29 Gúla metszése általános helyzetű síklappal A kapott pontokat a lapok bejárásának megfelelően összekötjük. Ezekből a szakaszokból csak azok a részek keletkeznek, melyek az 123 háromszög belsejében vannak. A láthatóságuk pedig attól függ, hogy a gúla megfelelő lapja látható-e az adott képen vagy sem.

30 Ferde hasáb normálmetszete C Normálmetszet: A metsző sík a hasáb oldaléleire merőleges. n 2. A B x 1,2 Transzfromációval elérjük, hogy a IV. képen a sík vetítősík legyen, majd a hasáb éleivel elmetszük azt. n 1. A C A kapott A, B, C pontokat az 1. és 2. képen rendezőkkel jelölhetjük ki. B. x 1, 4 A IV B IV. C IV n 4

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

Kiindulás 01. Ábrázoló geometria "testépítés" transzformáció segítségével. n 2 " x 1,2. n 1 '

Kiindulás 01. Ábrázoló geometria testépítés transzformáció segítségével. n 2  x 1,2. n 1 ' Kiindulás 01 A négyszög alapú szabályos hasáb x 1,2 AB szakas második képe 02 A négyszög alapú szabályos hasáb Transzformáció 1. 03 A négyszög alapú szabályos hasáb 2. Négyzet alaplap élbe transzformálása,

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

Ábrázoló geometria 1.

Ábrázoló geometria 1. Ábrázoló geometria 1. keresztféléves gyakorlat 2014 tavasz Készítette: (A hiányzó feladatok megoldásai előadáson hangzottak el.) Ábrázoló geometria I. 2013-2014. tanév 2. félév 1. rajzfeladat Tusrajz,

Részletesebben

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2

10. Tétel Háromszög. Elnevezések: Háromszög Kerülete: a + b + c Területe: (a * m a )/2; (b * m b )/2; (c * m c )/2 10. Tétel Háromszög Tulajdonságok: - Háromszögnek nevezzük a sokszöget, ha 3 oldala, 3 csúcsa és 3 szöge van - A háromszög belső szögeinek összege 180 o - A háromszög külső szögeinek összege 360 o - A

Részletesebben

pontokat kapjuk. Tekintsük például az x tengelyt. Ezen ismerjük az O, E

pontokat kapjuk. Tekintsük például az x tengelyt. Ezen ismerjük az O, E Az axonometria előadások és gyakorlatok vázlata Bevezetés Az axonometrikus ábrázolás feladata, hogy a térbeli alakzatok szemléletes képét gyorsan és egyszerűen állítsuk elő. Egy alakzat szemléletes képe

Részletesebben

Ábrázoló geometria kezdőknek

Ábrázoló geometria kezdőknek BANCSIK ZSOLT LAJOS SÁNDOR JUHÁSZ IMRE Ábrázoló geometria kezdőknek mobidiák könyvtár Bancsik Zsolt, Lajos Sándor, Juhász Imre Ábrázoló geometria kezdőknek mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY

EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen

1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen 10. osztály 1. Legyen egy háromszög három oldalának a hossza a, b, c. Bizonyítsuk be, hogy ( a + b + c) 3 4 ab + bc + ca Mikor állhat fenn egyenlőség? Kántor Sándorné, Debrecen A feladatban szereplő kettős

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

Háromszögek, négyszögek, sokszögek 9. évfolyam

Háromszögek, négyszögek, sokszögek 9. évfolyam Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 5. FELADATLAP Síkbeli egyenesek 5.1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az

Részletesebben

VII.2. RAJZOLGATUNK. A feladatsor jellemzői

VII.2. RAJZOLGATUNK. A feladatsor jellemzői VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA

GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA 2015 A jegyzet bírálója: Dr. Juhász Imre egyetemi tanár A jegyzetet szerkesztette, gépelte, rajzolta: Dr. Geiger János PhD 3 TARTALOMJEGYZÉK ELŐSZÓ... 9 BEVEZETÉS... 11

Részletesebben

GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY

GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY - GEIGER JÁNOS ÁBRÁZOLÓ GEOMETRIA FELADATGYÜJTEMÉNY 2012. Bíráló: Dr. Juhász Imre egyetemi tanár TARTALOMJEGYZÉK ELŐSZÓ I. Alapelemek ábrázolása, illeszkedése, metszése 3. 16. Alapelemek ábrázolása I.1.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010.

Nagy András. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 2010. Nagy András Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 010. Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály 1) Döntsd el, hogy a P pont illeszkedik-e az e egyenesre

Részletesebben

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z

1. Középpontos tükrözés, középpontos szimmetria 146/1. a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z. b) 0; H; I; N; O; S; X; Z 146/1 147/2 1. Középpontos tükrözés, középpontos szimmetria a) 0; 3; 8; A;B;C; D; E;H; I; M; O; T; U; V; W; X; Y;Z b) 0; H; I; N; O; S; X; Z c) 0; O; H; I; X; Z a) kőr dáma b) pikk jumbo; kőr dáma.; káró

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal-

Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Fazekas Gabriella IV. matematika-informatika Interaktív geometriai rendszerek használata középiskolában -Pont körre vonatkozó hatványa, hatványvonal- Jelen tanulmány a fent megjelölt fogalmak egy lehetséges

Részletesebben

XX. Nemzetközi Magyar Matematika Verseny

XX. Nemzetközi Magyar Matematika Verseny XX. Nemzetközi Magyar Matematika Verseny Bonyhád, 011. március 11 15. 10. osztály 1. feladat: Legyen egy háromszög három oldalának a hossza a, b és c. Bizonyítsuk be, hogy 3 (a+b+c) ab+bc+ca 4 Mikor állhat

Részletesebben

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21.

Geometria I. Szilágyi Ibolya. Matematika és Informatika Intézet EKF, Eger április 21. Geometria I. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006. április 21. Szilágyi Ibolya (EKF) Geometria 2006. április 21. 1 / 77 Outline Szimmetrikus alakzatok, speciális

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

10. évfolyam, negyedik epochafüzet

10. évfolyam, negyedik epochafüzet 10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...

Részletesebben

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS

EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK TENGELYES TÜKRÖZÉS GEOMETRIA 1. Az A, B, C egy egyenes pontjai (ebben a sorrendben), AB szakasz 5 cm, BC szakasz 17 cm. F 1 az AB szakasz, F 2 a BC szakasz felezőpontja. Mekkora az F 1 F 2 szakasz? 2. Az AB és CD szakaszok

Részletesebben

Tárgyak műszaki ábrázolása. Metszeti ábrázolás

Tárgyak műszaki ábrázolása. Metszeti ábrázolás Tárgyak műszaki ábrázolása Metszeti ábrázolás Ábrázolás metszetekkel A belső üregek, furatok, stb. szemléletes bemutatására a metszeti ábrázolás szolgál A metszeti ábrázolás elve Az üreges tárgyat egy

Részletesebben

Axonometria és perspektíva. Szemléltető céllal készülő ábrák

Axonometria és perspektíva. Szemléltető céllal készülő ábrák Axonometria és perspektíva Szemléltető céllal készülő ábrák Axonometria Jelentése: tengelyek mentén való mérés (axis: tengely, metrum: mérték) Az axonometria a koordinátarendszer tengelyein mért távolságok,

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

ÁBRÁZOLÓ GEOMETRIA 2.

ÁBRÁZOLÓ GEOMETRIA 2. ÁBRÁZOLÓ GEOMETRIA 2. 3. rajz 3. feladat (2013/14. tavasz) Ábrázolja egy 3,60 m szintkülönbség áthidalására szolgáló, orsótér nélküli, 2,00 m átmérőjű csavarhengeren belüli csigalépcső (jobbra csavarodó,

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

Matek_00_cimn_imp:Matek_00_cimn_imp_jav 1/12/10 2:10 PM Page 1 M A T E M A T I K A

Matek_00_cimn_imp:Matek_00_cimn_imp_jav 1/12/10 2:10 PM Page 1 M A T E M A T I K A M A T E M A T I K A A K A D É M I A I K É Z I K Ö N Y V E K F I Z I K A Fôszerkesztô Holics Lásló S P O R T, É L E T M Ó D, E G É S Z S É G Fôszerkesztô Szatmári Zoltán F I L O Z Ó F I A Fôszerkesztô Boros

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló

Részletesebben

5. előadás. Skaláris szorzás

5. előadás. Skaláris szorzás 5. előadás Skaláris szorzás Bevezetés Két vektor hajlásszöge: a vektorokkal párhuzamos és egyirányú, egy pontból induló félegyenesek konvex szöge. φ Bevezetés Definíció: Két vektor skaláris szorzata abszolút

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi

Részletesebben

Tartalomjegyzék Hiba! A könyvjelző nem létezik. Hiba! A könyvjelző nem létezik.

Tartalomjegyzék Hiba! A könyvjelző nem létezik. Hiba! A könyvjelző nem létezik. Tartalomjegyzék Tartalomjegyzék... 1 Előszó... 4 1. A műszaki kommunikáció alapjai... 5 1.1. A szabványosítás szerepe... 5 1.2. Nemzetközi és európai szabványosítás... 5 1.3. Nemzeti szabványosítás...

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat!

a b a b x y a b c d e f PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! 1 PSZT/PSZSZT 1.) Az ábrán e, f egyenesek párhuzamosak. Számítsd ki a hiányzó adatokat! a b a b x y a a b x b y 17 25 13 10 5 7 3 6 7 10 2 4 2 3 9 5 2.) Az ábrán lévő paralelogramma oldalai a) AB=26 cm,

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET

MATEMATIKAI KOMPETENCIATERÜLET MATEMATIKAI KOMPETENCIATERÜLET testhálózatok Eszközök a térszemléket fejlesztéséhez 6 12. évfolyam Készítette: Pusztai Attila Lektorálta: Makara Ágnes A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Á B R Á Z O L Ó G E O M E T R I A TENB 011 segédlet a PTE PMMK építőmérnök hallgatói részére Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely április 8. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2013. április 8. A 9-10. osztályosok feladatainak javítókulcsa 1. Jelöljük x-szel az adott hónapban megkezdett 100 kb-s csomagok számát. Az első szolgáltatónál

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött)

Területi primitívek: Zárt görbék által határolt területek (pl. kör, ellipszis, poligon) b) Minden belső pont kirajzolásával (kitöltött) Grafikus primitívek kitöltése Téglalap kitöltése Poligon kitöltése Kör, ellipszis kitöltése Kitöltés mintával Grafikus primitívek kitöltése Területi primitívek: Zárt görbék által határolt területek (pl.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső

Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök. Szalóki Dezső Térgeometriai taneszközök síkba összenyomható és zsinóros térbeli modellek (9 10. évfolyam) Tanári eszközök Szalóki Dezső matematika, fizika, ábrázoló-geometria és biológia szakos vezetőtanár Lektorálta:

Részletesebben

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET)

KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) KOSZTOLÁNYI MIKE MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10 14 ÉVESEKNEK MEGOLDÁSOK (II. KÖTET) Kosztolányi József - Mike János MATEMATIKA ÖSSZEFOGLALÓ FELADATGYÛJTEMÉNY 10-14 ÉVESEKNEK MEGOLDÁSOK **

Részletesebben

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM ÁBRÁZOLÓ GEOMETRIA Csavarvonal, csavarfelületek Összeállította: Dr. Geiger János Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM 2014 TARTALOM 1. A munkafüzet célja, területei, elsajátítható kompetenciák...

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

8. Geometria = =

8. Geometria = = 8. Geometria I. Nulladik ZH-ban láttuk: 1. Egy négyzet átlójának hossza 4 + 2. Mennyi a négyzet oldalhossza? (A) 1 + 2 2 (B) 4 + 2 (C) 2 2 + 2 (D) 2 + 2 (E) 2 2 + 1 Egy a oldalú négyzet átlója a 2. Ezt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás

Géprajz - gépelemek. AXO OMETRIKUS ábrázolás Géprajz - gépelemek AXO OMETRIKUS ábrázolás Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Egyszerű testek látszati képe Ábrázolási módok: 1. Vetületi 2. Perspektivikus

Részletesebben

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2013. május 7. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 01. május 7. KÖZÉPSZINT 1) Az A és B halmazokról tudjuk, hogy B\ A 1; ; 4; 7. Elemeinek felsorolásával adja meg az A halmazt! A ; 5; 6; 8; 9 I. AB 1; ; ; 4; 5; 6; 7; 8; 9 és ) Egy

Részletesebben

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria

A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak

Részletesebben

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai

Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Geometriai példatár 2 Metrikus feladatok Baboss, Csaba, Nyugat-magyarországi Egyetem Geoinformatikai Kar Szabó, Gábor, Nyugat-Magyarországi Egyetem Geoinformatikai Kar Geometriai példatár 2: Metrikus feladatok

Részletesebben

Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM

Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM Dr. Hant Lá szló, Há romi Ferenc: Á brázoló geometria feladatok SZÉCHENYI ISTVÁ N EGYETEM 1 Tá voktatá si tagozat 1994 Ö sszeállította: Dr. Hant Lá szló fő iskolai docens Há romi Ferenc fő iskolai adjunkus

Részletesebben

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek

Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Fejezetek az abszolút geometriából 6. Merőleges és párhuzamos egyenesek Ebben a fejezetben megadottnak feltételezzük az abszolút tér egy síkját és tételeink mindig ebben a síkban értendők. T1 (merőleges

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Síkbeli alakzatok. Szakaszok, szögek GEOMETRIA Alapszerkesztések Alapszerkesztések Alapszerkesztések.

Síkbeli alakzatok. Szakaszok, szögek GEOMETRIA Alapszerkesztések Alapszerkesztések Alapszerkesztések. Síkbeli alakzatok Szakaszok, szögek 13. Alapszerkesztések. 133. Alapszerkesztések. 134. Alapszerkesztések. a b 135. Ha x és y az egyes szakaszok hossza, akkor x + y = a és x - y = b. Így x = + ; a b y

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Egy feladat megoldása Geogebra segítségével

Egy feladat megoldása Geogebra segítségével Egy feladat megoldása Geogebra segítségével A következőkben a Geogebra dinamikus geometriai szerkesztőprogram egy felhasználási lehetőségéről lesz szó, mindez bemutatva egy feladat megoldása során. A Geogebra

Részletesebben

18. Kerületi szög, középponti szög, látószög

18. Kerületi szög, középponti szög, látószög 18. Kerületi szög, középponti szög, látószög Középponti szög fogalma: A körben a középponti szög csúcsa a kör középpontja, két szára a kör két sugara, illetve azok félegyenese. Egy középponti szög (ω)

Részletesebben

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András

Feladatok a májusi emelt szintű matematika érettségi példáihoz Hraskó András Feladatok a 2010. májusi emelt szintű matematika érettségi példáihoz Hraskó András 1. Halmazok, halmazműveletek, halmazok számossága, halmazműveletek és logikai műveletek kapcsolata. HA.1.1. Adott a síkon

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD

, D(-1; 1). A B csúcs koordinátáit az y = + -. A trapéz BD Kör és egyenes kölcsönös helyzete Kör érintôje 7 9 A húr hossza: egység 9 A ( ) ponton átmenô legrövidebb húr merôleges a K szakaszra, ahol K az adott kör középpontja, feltéve, hogy a kör belsejében van

Részletesebben

Izsák Imre Gyula természettudományos verseny

Izsák Imre Gyula természettudományos verseny 199 Jelölje m a, m b, m c egy háromszög magasságait, ρ a háromszög beírt körének a sugarát. Igazoljuk, hogy ma + mb + mc 9ρ Mikor áll fenn az egyenlség? Osszuk fel egy tetszleges ABCD konvex négyszög AB,

Részletesebben

Szög. A Wikipédiából, a szabad enciklopédiából:

Szög. A Wikipédiából, a szabad enciklopédiából: Szög A Wikipédiából, a szabad enciklopédiából: http://hu.wikipedia.org/wiki/szög A sík egy pontjából kiinduló két félegyenes a síkot két tartományra osztja. Az egyik tartomány és a két félegyenes szöget

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2

3 m ; a víz sodráé sec. Bizonyítsuk be, hogy a legnagyobb szöge 120 0 -os! α =. 4cos 2 3... Egyenes szíjhatás esetén milyen hosszú szíj szükséges 50 cmes és 6 cm-es sugarú tárcsák összekapcsolásához, ha a tárcsák tengelyeinek távolsága 335 cm? 3... Csónakkal akarunk a folyó túlsó partjára

Részletesebben

I. A testek ábrázolása, jellemzése

I. A testek ábrázolása, jellemzése 10 MATEMATIKA A 9. ÉVFOLYAM Tanári útmutató I. A testek ábrázolása, jellemzése Bevezetés Módszertani megjegyzés: Ennek a modulnak a fő célja a térelemek megismerése, megtapasztalása térszemléletet fejlesztő

Részletesebben

Geometriai transzformációk

Geometriai transzformációk Geometriai transzformációk 11 elemi geometriafeladat 10. és DG Matektábor 2016. október 6. Röviden a transzformációkról Tengelyes tükrözés 10. és ( DG Matektábor) Geometriai transzformációk 2016. október

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

8. előadás. Kúpszeletek

8. előadás. Kúpszeletek 8. előadás Kúpszeletek Kör A k kört egyértelműen meghatározza C(a,b) középpontja és r sugara. A P pont pontosan akkor van k-n, ha CP=r. Vektoregyenlet: p-c = r. Koordinátás egyenlet: (X-a)2 + (Y-b)2 =

Részletesebben

TE IS LáTOd, AMIT Én LáTOk?

TE IS LáTOd, AMIT Én LáTOk? MATEMATIKAI KOMPETENCIATERÜLET TE IS LáTOd, AMIT Én LáTOk? TÉRSZEMLÉLET FEJLESZTÉS 5 12. ÉVFOLYAM I. RÉSZ módszertani ajánlások FELADATlapok A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program

Részletesebben