Számalakzatok Sorozatok 3. feladatcsomag

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számalakzatok Sorozatok 3. feladatcsomag"

Átírás

1 Számalakzatok Sorozatok 3. feladatcsomag Életkor: Fogalmak, eljárások: év négyzetszámok háromszögszámok teljes indukció különbségi sorozatok Az ókori görögök szívesen játszottak a pozitív egész számokkal, gyakran jelenítették meg azokat kavicsokkal kirakott geometriai alakzatokkal. Ezeknek a játszadozásoknak sokat köszönhet a matematika tudománya. Az ókori görög matematikusok számelméleti eredményei mai is alapul szolgálnak jelentős matematikai alkalmazásoknak. A feladatok listája 1. Négyzetszámok (kreativitás, fantázia, bizonyítási igény). Háromszögszámok (kreativitás, fantázia, bizonyítási igény, térszemlélet) 3. Középponti sokszögszámok (kreativitás, fantázia, bizonyítási igény, térszemlélet) Módszertani tanácsok A játék a számokkal mindig érdekes lehet a gyerekeknek, segíthet a matematika iránti érdeklődés felkeltésében. A feladatok megmozgathatják a gyerekek fantáziáját, elmondhatják egyéni ötleteiket. Lehetőleg csináljuk meg a kavicsmodelleket, használjunk nagyjából egyforma kavicsokat vagy golyókat, társasjátékkészletekben található, kavicsokat helyettesítő Fejlesztő matematika (5 1. évf.) 1

2 eszközöket, esetleg régi pénzérméket. A konkrét tevékenység tapasztalatai segítenek a sejtések megfogalmazásához, a térszemlélet fejlesztéséhez. Fontos, hogy a gyerekek belássák, néhány esetből még nem következik a sejtés igazsága tetszőleges számra. A konkrét konstrukciók ötleteket adnak az általános eset bizonyításához is. A sorozatok iskolai témakörét történeti érdekességekkel is kiegészítheti ez a feladatcsomag. Megoldások, megjegyzések 1. Négyzetszámok A sejtés az lehet, hogy az n -et szimbolizáló alakzatból a következő négyzetszám, az (n + 1) úgy keletkezik, hogy a megfelelő páratlan számú pöttyel egészítjük ki. Például a 4-szer 4-eshez jobbról teszünk 4-et, alulra is négyet, de még kell a sarokba is, tehát = 9 kavics kell, hogy Fejlesztő matematika (5 1. évf.)

3 megkapjuk az 5-ször 5-ös négyzetet. A 9 az 1-től számítva éppen az 5. páratlan szám. Ha az n-edik négyzetből indulunk ki, akkor ugyanígy gondolkodva n + n + 1 = n + 1-et kell hozzáadni, hogy megkapjuk az (n + 1)-ediket. Valóban: (n + 1) = n + n + 1 az n tetszőleges pozitív egész értékére. Ezzel egyenértékű az az észrevétel is, hogy a négyzetszámok különbségsorozata a páratlan számok sorozata (n 1) = n Az előző kavicsos gondolatmenet alapján adódik a teljes indukciós bizonyítás az n tetszőleges pozitív egész értékére. 1 = 1 Ha (n 1) = n, akkor (n 1) + (n + 1) = n + n + 1 = (n + 1). Megjegyzés: Péter Rózsa ( ) matematikaprofesszor az ELTE Természettudományi Karán halmazelmélet és matematikai logika témában tartott előadást matematikatanár-jelölteknek. Azt ajánlotta a leendő tanároknak, hogy ezzel a példával vezessék be az iskolában a teljes indukciós bizonyítási módszert. Hiszen a fenti kavicsos konstrukcióból kézzel bemutatható a lényeg: a négyzetszámok sorozatában (1- gyel kezdve) öröklődik az a tulajdonság, hogy a megfelelő páratlan szám hozzáadásával nyerjük bármelyik négyzetszámból a rákövetkezőt.. Háromszögszámok 1. Eléggé ismert, hogy az n-edik háromszögszám (azaz az első n darab pozitív egész összege), ha n tetszőleges pozitív egész szám: n$ ^n+ 1h (Itt utalhatunk a kis Gauss -legendára is.). Sejthetjük, hogy két egymást követő háromszögszám öszszege négyzetszám. ^ n 1h$ n n$ n+ 1 n$ n 1+ n+ 1 n$ n + ^ h = ^ h = = n Fejlesztő matematika (5 1. évf.) 3

4 3. Az egyes sorokban levő számok összege 1, 4, 9,..., éppen a négyzetszámok sorozatát kapjuk. Ennek belátásához alkalmazzunk kavicsmodellt! Vizsgáljuk meg először a. sort: Négyzetalakba szétrakjuk a középső két kavicsot: A 3. sor esetében: Ebből: Az n-edik sorában írt számok összege, ha n tetszőleges pozitív egész szám: n + (n 1) + (n ) = n$ ^n+ 1h ^n 1 h$ n = + = n Észrevehetjük, hogy ezt igazoltuk az előző feladatban is. 3. Középponti sokszögszámok 1. A megoldást néhány további alakzat pontjainak konkrét összeszámolásával kezdhetjük. Növelhetünk úgy, hogy a sarkoktól indulva az előző alakzathoz viszonyítva oldalanként eggyel több kavicsot teszünk ki, tehát a második ábrát 4-szer -vel, a harmadik ábrát 4-szer 3-mal egészítjük ki. Így a következő alakzatban már 4-szer 4-gyel lesz több, vagyis 41 következik. Az általánosításhoz érdemes a különbségsorozatok segítségével gondolkodni: Az első egy darab kavicsból álló alakzatot tekintsük 0 oldalú négyzetnek! Az n pozitív egész egységnyi oldalú négyzetben a kavicsok száma: n$ ^n+ 1h $ 4+ 3$ 4+ f + n $ 4 = 1+ 4$ = n + n+ 1 4 Fejlesztő matematika (5 1. évf.)

5 . A következőhöz a központból nagyítva valamelyik saroktól kezdve oldalanként eggyel több kavicsot rakunk le, tehát 6-szor 4-gyel, azaz 4-gyel növelünk, keletkezik 61. Képezzük a különbségsorozatokat: Tetszőleges n pozitív egységnyi oldalú hatszög kirakásához: n$ ^n+ 1h 1+ 6$ = 1+ 3n$ ^n+ 1h = 3n + 3n Az előbbiek általánosításával könnyen eljuthatunk oda, hogy tetszőleges n pozitív egységnyi oldalú középponti k-szögszám: k n $ ^ n + 1h 1 k n $ + k = $ + $ n Szisztematikus összeszámolással megállapíthatjuk, hogy a 0, 1,, 3,, n oldalú szabályos hatszög-alakzat sorozatunkban a számok összege 1, 8, 7, 64,, (n + 1) 3 Fejlesztő matematika (5 1. évf.) 5

6 Talán érdekesebb geometriai indoklást is találhatunk: Térbeli kavicsmodellünket széthúzhatjuk úgy, hogy a kavicsok egy rácskocka egy-egy rácspontjába kerüljenek. Ha ezt a kockát az egyik testátlójára merőleges síkba vetítjük, akkor a rácspontok vetületei egy központi szabályos hatszögszám-alakzat pontjait alkotják, és minden pontba épp annyi rácspont vetülete esik, amennyi a kiindulásul vett alakzat pontjaiban írt szám. Az n-edik hatszögalakzatban a számok összege tehát megegyezik az n egységnyi oldalú rácskockában található rácspontok számával. Az pedig: (n + 1) 3. A sorozat második eleme kockarácsban: A sorozat harmadik eleme kockarácsban: A témával kapcsolatban további feladatok találhatók: Pálfalvi Józsefné: Barátkozzunk a számokkal! Typotex Kft., Budapest, Fejlesztő matematika (5 1. évf.)

7 Sorozatok Találékonyság Négyzetszámok Azok a görög kavicsok Az ókori görögök szívesen játszottak a pozitív egész számokkal, gyakran jelenítették meg azokat kavicsokkal kirakott geometriai alakzatokkal. Ezeknek a játszadozásoknak sokat köszönhet a matematika tudománya. Az ókori görög matematikusok számelméleti eredményei mai is alapul szolgálnak jelentős matematikai alkalmazásoknak év Az egyik legismertebb számalakzat a négyzetszámok megjelenítése. A következő kavicsmodellek segítségével többféle módon újra és újra eljuthatunk a négyzetszámokhoz. Építsük fel egymás után az első néhány négyzetszámnak megfelelő kavicsalakzatot az alábbi ábrák segítségével. 1. Milyen sejtést fogalmazhatunk meg a látottak alapján? Hogyan keletkezhet az n -et szimbolizáló alakzatból a következő négyzetszám, az (n + 1)? Igaz-e a sejtésünk az n tetszőleges pozitív egész értékére?. Mivel egyenlő a következő összeg az n tetszőleges pozitív egész értékére? (n 1) Fejlesztő matematika (5 1. évf.) 7

8 Sorozatok Találékonyság 3.3. Háromszögszámok év Kedvelt kavicsmodell az úgynevezett háromszögszámok megjelenítése: 1. Határozzuk meg az n-edik háromszögszámot, ha n tetszőleges pozitív egész szám. (Kezdjük 1-gyel!). Két háromszögszámból könnyen kirakhatunk egy négyzetszámot, például így: Próbáljuk folytatni! Milyen szabályszerűséget sejthetünk ennek alapján? Sejtésünket igazoljuk n tetszőleges pozitív egész számra! 8 Fejlesztő matematika (5 1. évf.)

9 Sorozatok Találékonyság Vizsgáljuk a következő kirakásokat! év Adjuk össze az egyes sorokban levő számokat! Mit tapasztalunk? Készítsük el a számalakzatunk kavicsodelljét, úgy, hogy az egyes számok által kijelölt mezőre annyi kavicsot építünk, amennyi az ott álló szám értéke. Az egymásra helyezett kavicsok ügyes síkba terítésével szemléltethetjük sejtésünk igazságát. Állapítsuk meg a fenti számalakzat n-edik sorában írt számok összegét, ha n tetszőleges pozitív egész szám. Fejlesztő matematika (5 1. évf.) 9

10 Sorozatok Találékonyság Középponti sokszögszámok év 1. Ezeket a középponti négyzeteket a kezdő pontból mint a négyzetek középpontjából nagyítva nyerjük, 0, 1,, 3, egységnyi hosszúságú oldalakkal. a) Állapítsuk meg, hány kavics kell a következő négyzet kirakásához! b) Állapítsuk meg, hány kavics kell a tetszőleges n egységnyi oldalú négyzet kirakásához!. Középponti hatszögszámok a) Állapítsuk meg, hány kavics kell a következő hatszög kirakásához! b) Állapítsuk meg, hány kavics kell a tetszőleges n egységnyi oldalú hatszög kirakásához! 10 Fejlesztő matematika (5 1. évf.)

11 Sorozatok Találékonyság Adjunk meg további központi sokszögszámokat, készítsük el kavicsmodelljeiket! Határozzuk meg például a központi nyolcszögszámot! 4. A középponti hatszögszámok kavicsmodelljében a kavicsok helyére számokat írtunk, kívülről befelé haladva növekedve az ábra szerint. a) Határozzuk meg az így kapott alakzatsorozat első néhány tagjában a számok összegét! b) Készítsünk térbeli kavicsmodellt! c) Állapítsuk meg a sorozat n-edik elemében a számok öszszegét! év Fejlesztő matematika (5 1. évf.) 11

12 Az Ön jegyzetei, kérdései*: * Kérdéseit juttassa el a RAABE Kiadóhoz! 1 Fejlesztő matematika (5 1. évf.)

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Szapora négyzetek Sorozatok 4. feladatcsomag

Szapora négyzetek Sorozatok 4. feladatcsomag Sorozatok 3.4 Szapora négyzetek Sorozatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 sorozat tengelyes szimmetria összeszámlálás különböző szempontok szerint átdarabolás derékszögű elforgatás

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április 11. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HETEDIK OSZTÁLY - Javítási útmutató 1. Ki lehet-e tölteni a következő táblázat mezőit pozitív egész számokkal úgy, hogy

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

MATEMATIKA C 5. évfolyam 1. modul DOMINÓ

MATEMATIKA C 5. évfolyam 1. modul DOMINÓ MATEMATIKA C 5. évfolyam 1. modul DOMINÓ Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 1. MODUL: DOMINÓ TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló ÖTÖDIK OSZTÁLY 1. Többet eszel, mint én! mondta méltatlankodva Hernyó Álteknőcnek. Nem is igaz! válaszolta felháborodva Álteknőc. Mindketten

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY III. forduló MEGOLDÁSOK 1. Gondoltam egy négyjegyű számot. Az első két számjegy 3, az utolsó kettőé pedig 7, és a középső két számjegyből alkotott szám osztható 4-gyel. Melyik számra gondolhattam? Határozd meg az összes lehetőséget!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután

Részletesebben

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly

A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly A Katedra Matematikaverseny 2013/2014-es döntőjének feladatsorai Összeállította: Károlyi Károly 5. osztály 1. A MATEK szó minden betűjének megfeleltetünk egy-egy számjegyet a következők szerint: M + A

Részletesebben

Variációk egy logikai feladat kapcsán

Variációk egy logikai feladat kapcsán XXIII/1. sz., 016. márc. Variációk egy logikai feladat kapcsán Tuzson Zoltán Egy IQ tesztben a következő feladvánnyal találkoztam: (1) Milyen szám talál a kérdőjel helyére? Indokold meg a válaszodat! Hosszabb-rövidebb

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 év pentominók adott tulajdonságú alakzatok építése szimmetrikus alakzatok egybevágó alakzatok

Részletesebben

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Életkor: Fogalmak, eljárások: 15 18 év összeszámolási módszerek (permutáció, variáció, kombináció) sorozatok rekurzív megadása

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

Számolási eljárások 12. feladatcsomag

Számolási eljárások 12. feladatcsomag Számolási eljárások 3.12 Alapfeladat Számolási eljárások 12. feladatcsomag számok bontásának gyakorlása 20-as számkörben összeadás, kivonás gyakorlása 20-as számkörben A feladatok listája 1. Mennyi van

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

2.2 Logisztorik (Gindilla Orsolya) szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet

2.2 Logisztorik (Gindilla Orsolya) szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2

Részletesebben

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA

Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA. Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA Fejlesztı neve: VINCZÉNÉ CSETE GABRIELLA Tanóra / modul címe: ALKALMAZZUK A SZIMMETRIÁT! SÍK- ÉS TÉRBELI TENGELYESEN TÜKRÖS ALAKZATOK ELİÁLLÍTÁSA 1. Az óra tartalma A tanulási téma bemutatása; A téma és

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.

Az Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x. Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin

Részletesebben

X Kerülőutak 1.3. Kerülőutak. 3. feladatcsomag

X Kerülőutak 1.3. Kerülőutak. 3. feladatcsomag KOMPLE FELADATOK Kerülőutak 1.3 Alapfeladat Kerülőutak 3. feladatcsomag összefüggések felismertetése műveletek tulajdonságaiban és műveletek közti kapcsolatokban összefüggés-felismerést segítő kerülőutak

Részletesebben

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁS ÉS PONTOZÁSI ÚTMUTATÓ 5. osztály Jelölje a 20-as és az 50-es közötti számokat a és b, a 20-as és a 80-as közöttieket c és d, az 50-es és a 80- as közöttieket pedig e és f. Ekkor tudjuk, hogy a+ b= 130, c+ d = 100 és e+ f =

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8.

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8. Pálmay Lóránt Matematikai Tehetségkutató Verseny 2016. január 8. Fontos információk: Az alábbi feladatok megoldására 90 perced van. A feladatokat tetszőleges sorrendben oldhatod meg. A megoldásokat indokold,

Részletesebben

konvergensek-e. Amennyiben igen, számítsa ki határértéküket!

konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 1. Határértékek 1. Állapítsa meg az alábbi sorozatokról, hogy van-e határértékük, konvergensek-e. Amennyiben igen, számítsa ki határértéküket! 2 2...2 2 (n db gyökjel), lim a) lim n b) lim n (sin(1)) n,

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

PENTOMINO. Az elnevezés Solomon W. Golomb matematikus nevéhez fűződik.

PENTOMINO. Az elnevezés Solomon W. Golomb matematikus nevéhez fűződik. Tanárként egyre gyakrabban szembesülhetünk azzal a ténnyel, hogy a tanulókat egyre nehezebb lekötni az órán. Könnyen kimondják az ítéletet egyegy óráról, hogy "unalmas", ha csak a tananyagot szeretnénk

Részletesebben

Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag

Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag Síkbeli és térbeli alakzatok 1.5 Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag Életkor: Fogalmak, eljárások: 11 14 elnevezések a háromszögekben háromszögek belső szögösszege háromszögek

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

Rejtélyes rejtvényes Koordináta-rendszer 2. feladatcsomag

Rejtélyes rejtvényes Koordináta-rendszer 2. feladatcsomag Rejtélyes rejtvényes Koordináta-rendszer 2. feladatcsomag Életkor: Fogalmak, eljárások: 11 17 év számintervallumok ábrázolása tájékozódás a derékszögű koordináta-rendszerben, helymeghatározás, adott tulajdonságú

Részletesebben

Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok

Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok Pitagorasz tételhez elıkészítı problémafelvetı, motiváló feladatok 1.Területre vonatkozó feladat: Egy négyzet alakú halastó négy sarkán egy-egy fa áll. Kétszer akkorára akarják növelni a halastó területét

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Tartalomjegyzék TARTALOMJEGYZÉK SZÁMOK B MENNYISÉGEK, BECSLÉS, MÉRÉS. A SZÁMOK témakörének sz akmódszertani alapjai

Tartalomjegyzék TARTALOMJEGYZÉK SZÁMOK B MENNYISÉGEK, BECSLÉS, MÉRÉS. A SZÁMOK témakörének sz akmódszertani alapjai Tartalomjegyzék A SZÁMOK Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma 2013. június A SZÁMOK témakörének sz akmódszertani alapjai (C. Neményi Eszter) 1 Számláld

Részletesebben

Egybevágóság, hasonlóság

Egybevágóság, hasonlóság Egybevágóság, hasonlóság 3.4 Alapfeladat Egybevágóság, hasonlóság 4. feladatcsomag a tükörszimmetria minél többféle tapasztalása; globális látványként megkülönböztetése egyéb szimmetriáktól a vizsgálódás

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2

Részletesebben

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály

XV. évfolyam Megyei döntő február 20. MEGOLDÁSOK - 3. osztály 1. feladat: XV. évfolyam Megyei döntő - 2016. február 20. MEGOLDÁSOK - 3. osztály Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Örök visszatérés Periodikus sorozatok Sorozatok 2. feladatcsomag

Örök visszatérés Periodikus sorozatok Sorozatok 2. feladatcsomag Örök visszatérés Periodikus sorozatok Sorozatok 2. feladatcsomag Életkor: Fogalmak, eljárások: 13 16 év szabályfelismerés, szabályalkotás oszthatóság, maradékosztályok racionális és irracionális számok

Részletesebben

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Matematika C 3. évfolyam. Tanagramok. 2. modul. Készítette: Köves Gabriella

Matematika C 3. évfolyam. Tanagramok. 2. modul. Készítette: Köves Gabriella Matematika C 3. évfolyam Tanagramok 2. modul Készítette: Köves Gabriella Matematika C 3. évfolyam 2. modul tanagramok 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály A tudatos észlelés, a megfigyelés

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag

Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag KOMPLEX ELADATOK Válogatott témák válogatott megoldások 3.6 Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag Életkor: ogalmak, eljárások: 10 14

Részletesebben

Megoldások 11. osztály

Megoldások 11. osztály XXV. Nemzetközi Magyar Matematikaverseny Budapest, 016. március 1115. Megoldások 11. osztály 1. feladat Egy háromszög három oldalának mér száma, a, b, c ebben a sorrendben egy mértani sorozat három egymást

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás)

Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) Megáll a józan ész! ( vagy csak az ész? ) Ágotai László (Kisújszállás) A foglalkozáson olyan bizonyításokkal, okoskodásokkal foglalkozunk, amelyekből kapott eredmények a józan eszünknek és az eddigi matematikai

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? 15 darab ilyen szám van. 5 = 5+0+0 = 4+1+0 = 3+2+0 = 3+1+1=2+2+1 A keresett számok: 500, 401, 410, 104, 140, 302, 320,203,

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

Sorozatok határértéke VÉGTELEN SOROK

Sorozatok határértéke VÉGTELEN SOROK Sorozatok határértéke VÉGTELEN SOROK Végtelen valós számsor: Definíció: Az a n sorozat tagjaiból képzett a 1 + a 2 + + a n + végtelen összeget végtelen valós számsornak, röviden sornak nevezzük. Sor részletösszegei:

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

SZTE TTIK Bolyai Intézet

SZTE TTIK Bolyai Intézet Néhány érdekes végtelen összegről Dr. Németh József SZTE TTIK Bolyai Intézet Analízis Tanszék http://www.math.u-szeged.hu/ nemethj Háttéranyag: Németh József: Előadások a végtelen sorokról (Polygon, Szeged,

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

MATEMATIKA-TUDOMÁNYI ROVAT

MATEMATIKA-TUDOMÁNYI ROVAT MATEMATIKA-TUDOMÁNYI ROVAT Rovatvezető: Dr. Szántai Tamás Rovatszerkesztők: Bottyán Zsolt 51 Kun Mária XX. HAJÓS GYÖRGY MATEMATIKA VERSENY (1998. április 15-17.) Kun Mária egyetemi tanársegéd Zrínyi Miklós

Részletesebben

Hogyan óvjuk meg értékes festményeinket?

Hogyan óvjuk meg értékes festményeinket? Hogyan óvjuk meg értékes festményeinket? Hajnal Péter Bolyai Intézet, SZTE, Szeged 2013. április Bevezető példa I. Feladat Adott egy konvex nyolcszög. Bevezető példa I. Feladat Adott egy konvex nyolcszög.

Részletesebben

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló

MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló MEGOLDÁSOK Pontszerző Matematikaverseny 2016/2017 tanév 3. forduló 1. feladat Péter egy építőjátékot kapott ajándékba. A játékban piros és kék színű golyók vannak, amelyekhez mágneses pálcikákat rögzítettek.

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő Második nap Javítási útmutató HARMADIK OSZTÁLY. Négy barát, András, Gábor, Dávid és Csaba egy négyemeletes ház négy különböző emeletén lakik.

Részletesebben

Matematika. 5. 8. évfolyam

Matematika. 5. 8. évfolyam Matematika 5. 8. évfolyam 5. 6. évfolyam Éves órakeret: 148 Heti óraszám: 4 Témakörök Óraszámok Gondolkodási és megismerési módszerek folyamatos Számtan, algebra 65 Összefüggések, függvények, sorozatok

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

MATEMATIKA 1-2.osztály

MATEMATIKA 1-2.osztály MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani

Részletesebben

Feuerbach kör tanítása dinamikus programok segítségével

Feuerbach kör tanítása dinamikus programok segítségével Feuerbach kör tanítása dinamikus programok segítségével Buzogány Ágota IV. Matematika-Angol Fejezetek a matematika tanításából Kovács Zoltán 2004-12-10 2 A Feuerbach körnek többféle elnevezése is van,

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM)

A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny első forduló MATEMATIKA II. KATEGÓRIA (GIMNÁZIUM) Javítási értékelési útmutató 1. Melyek azok a pozitív p és q prímek, amelyekre a számok mindegyike

Részletesebben

SZÁMKERESZTREJTVÉNYEK

SZÁMKERESZTREJTVÉNYEK Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83

Részletesebben

MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK

MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK MATEMATIKA C 6. évfolyam 3. modul LERAKÓS, TOLOGATÓS JÁTÉKOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 3. MODUL: LERAKÓS, TOLOGATÓS JÁTÉKOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

Színezések Fonyó Lajos, Keszthely

Színezések Fonyó Lajos, Keszthely Színezések Fonyó Lajos, Keszthely 1. A sík pontjait kiszínezzük két színnel. Bizonyítsuk be, hogy tetszőleges d R + esetén lesz két egymástól d távolságra levő pont, amelyek azonos színűek. I. megoldás:

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

4. modul Poliéderek felszíne, térfogata

4. modul Poliéderek felszíne, térfogata Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben