Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag"

Átírás

1 Síkbeli és térbeli alakzatok 1.5 Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag Életkor: Fogalmak, eljárások: elnevezések a háromszögekben háromszögek belső szögösszege háromszögek típusai magasság berajzolása háromszögben tájékozódás a koordináta-rendszerben Feladatcsomagunk a speciális háromszögekkel és jellegzetes tulajdonságaikkal foglalkozik. Feldolgozását a témakört lezáró, összefoglaló órákon, illetve ismétlésként javasoljuk. A feladatok listája 1. A legegyszerűbb sokszög (emlékezet, összehasonlítás, összefüggés-keresés) 2. Háromszögtípusok (rendszerezés, összefüggés-keresés, megfigyelés) 3. Tulajdonsággyűjtő (rendszerezés, megfigyelés) 4. Milyen ez a háromszög? (összefüggések meglátása, képzelet, tájékozódás a síkban) Módszertani tanácsok A feladatlapok oldalszéli ikonjain munkaformaként az egyéni munkát jelöltük meg, de ha nem összefoglalásként, ismétlésként tűzzük ki a feladatokat, akkor a frontális munkaszervezés, a megoldások közös megbeszélése lehet a célravezető. Fejlesztő matematika (5 12. f.) 1

2 Síkbeli és térbeli alakzatok 1.5 Nagyon fontos, hogy a gyerekek rendszerezni tudják a megszerzett ismereteket, és a definíciók, szabályszerűségek vizuális formában is rögzüljenek a fejükben. Ezért teremtsük meg a lehetőségét annak, hogy minél több alkalommal rajzolhassák le a különböző alakzatokat, geometriai szituációkat! Ügyeljünk arra, hogy ne mindig azonos helyzetben álljanak a speciális alakzatok! (Például a szabályos háromszögnek ne legyen minden ábrázolásakor a papírlap szélel párhuzamos oldala!) Megoldások, megjegyzések 1. A legegyszerűbb sokszög Minden háromszögben a belső szögek összege különböző háromszög fedezhető fel az ábrán. 2. Háromszögtípusok egyenlő szárú háromszög X X X egyenlő oldalú háromszög X derékszögű háromszög X X hegyesszögű háromszög X X tompaszögű háromszög X X 2 Fejlesztő matematika (5 12. f.)

3 Síkbeli és térbeli alakzatok 1.5 Az 5. számú háromszögnek nincsenek egyenlő hosszú oldalai, az egy általános háromszög. 2. a) egyenlő szárú háromszög, egyenlő oldalú háromszög, általános háromszög b) hegyesszögű háromszög, derékszögű háromszög, tompaszögű háromszög 3. A hamis B igaz C igaz hamis E hamis F igaz G igaz H hamis 3. Tulajdonsággyűjtő a) Ez egy szabályos háromszög. Jellegzetes tulajdonságai: mindhárom oldala egyenlő, mindhárom szöge egyenlő. b) Ez egy egyenlő szárú háromszög. Jellegzetes tulajdonságai: két oldala (szára) egyenlő hosszú, az alapon fekvő két szöge egyenlő nagyságú. c) Ez egy derékszögű, egyenlő szárú háromszög. Jellegzetes tulajdonságai: az egyik szöge derékszög, másik két szöge egyenlő (mindkettő 45c-os), a derékszögű csúcsban találkozó két oldala (befogók) egyenlő hosszú. d) Ez egy derékszögű háromszög. Jellegzetes tulajdonságai: van egy derékszöge. e) Ez egy általános tompaszögű háromszög. Jellegzetes tulajdonságai: van egy 90c-nál nagyobb szöge, szögei különböző nagyságúak, oldalai különböző hosszúságúak. f) Ez egy általános hegyesszögű háromszög. Jellegzetes tulajdonságai: minden szöge 90c-nál kisebb, szögei különböző nagyságúak, oldalai különböző hosszúságúak. 4. Milyen ez a háromszög? 1. a) Ez egy egyenlő oldalú (szabályos) háromszög. b) Ez egy egyenlő szárú háromszög. c) Ez egy tompaszögű háromszög. d) Ez egy derékszögű háromszög. e) Ez egy egyenlő szárú háromszög. f) Ez egy általános hegyesszögű háromszög. Fontos megjegyeznünk, hogy az a) e) esetekben az adatok nem határozzák meg egyértelműen magát a háromszöget. Fejlesztő matematika (5 12. f.) 3

4 Síkbeli és térbeli alakzatok 1.5 Előfordulhat tehát, hogy minden gyerek helyes ábrát készített, még ha azok nem is egybevágók. Az f) feladatnál a három oldal egyértelműen meghatározza a háromszöget. 2. a) Két egybevágó, egyenlő szárú, derékszögű háromszöget kapunk. b) A hosszabbik átlót behúzva két egybevágó, tompaszögű, egyenlő szárú háromszöget, a rövidebbik átlót behúzva két egybevágó hegyesszögű, egyenlő szárú háromszöget kapunk. c) Két egybevágó általános háromszöget kapunk. A rövidebbik átlót behúzva ezek hegyesszögűek, a hosszabbik átlót behúzva tompaszögűek. d) Egy általános hegyesszögű és egy általános tompaszögű háromszöget kapunk Fejlesztő matematika (5 12. f.)

5 Síkbeli és térbeli alakzatok Emlékezet A legegyszerűbb sokszög 1. Emlékszel, milyen jelöléseket használunk egy háromszögben? Jelöld az ábrán a hiányzó csúcsokat (A; C), az oldalakat (a, b, c), a szögeket (,,, ) a magasságokat (m a, m b, m c )! A háromszög oldalaira olykor más kifejezést is használunk. Ha egy háromszögnek valamilyen okból kiválasztjuk egy oldalát (például mert a papíron vízszintes helyzetű), akkor azt gyakran alapnak hívjuk, míg a másik két oldalt szárnak. 2. A háromszög szögei között fontos törvényszerűség fedezhető fel. Emlékszel rá? Ha nem, az alábbi ábrát megvizsgálva biztosan eszedbe jut. Minden háromszögben a belső szögek összege... Fejlesztő matematika (5 12. f.) 5

6 Síkbeli és térbeli alakzatok Emlékezet Jóska bácsi tizedek óta készít intarziákat szekrényajtókra, ágytámlákra. Egy szekrényajtóra a következő mintát készítette. Hányféle különböző háromszöget látsz ezen a bútorlapon? Színezd azonos színnel az egybevágó (egyforma) háromszögeket! Mindegyik típusból iderajzoltunk egyet. Színezd ezeket is a megfelelő színnel! 6 Fejlesztő matematika (5 12. f.)

7 Síkbeli és térbeli alakzatok Rendszerezés Háromszögtípusok 1. Jelöld a táblázatban, hogy a következő háromszögek milyen tulajdonságúak! egyenlő szárú háromszög egyenlő oldalú háromszög derékszögű háromszög hegyesszögű háromszög tompaszögű háromszög Van olyan háromszög a fentiek között, amelyiknek nincsenek egyenlő hosszú oldalai? Melyik az?... Jegyezd meg a következőket: Az olyan háromszöget, amelynek minden oldala különböző hosszúságú és derékszöge sincsen, általános háromszögnek hívjuk. (Egy általános háromszög szögei között sincsenek egyenlők.) Az egyenlő oldalú háromszöget szabályos háromszögnek is nevezzük. Fejlesztő matematika (5 12. f.) 7

8 Síkbeli és térbeli alakzatok Rendszerezés Foglald össze, hogy a háromszögeket milyen családokba sorolhatjuk a) oldalhosszúságaik alapján: b) legnagyobb szögük alapján: öntsd el az alábbi állításokról, hogy igazak-e! A Egy háromszögben bármelyik két szög összege nagyobb a harmadiknál. B Egy háromszögben bármely két oldal hosszának összege nagyobb a harmadik oldal hosszánál. C A hegyesszögű háromszög minden belső szöge hegyesszög. A tompaszögű háromszög minden belső szöge tompaszög. E A derékszögű háromszög belső szögei között tompaszöget is találhatunk. F Az egyenlő szárú háromszög tengelyesen tükrös (szimmetrikus). G Az egyenlő szárú háromszög tompaszögű is lehet. H A szabályos háromszög tompaszögű is lehet. I H 8 Fejlesztő matematika (5 12. f.)

9 Síkbeli és térbeli alakzatok Rendszerezés Tulajdonsággyűjtő Állapítsd meg, milyen háromszögek ezek. Gyűjtsd össze a rájuk jellemző speciális tulajdonságokat! a) Ez egy Jellegzetes tulajdonságai: b) Ez egy Jellegzetes tulajdonságai: c) Ez egy Jellegzetes tulajdonságai: Fejlesztő matematika (5 12. f.) 9

10 Síkbeli és térbeli alakzatok Rendszerezés 1.5 d) Ez egy Jellegzetes tulajdonságai: e) Ez egy Jellegzetes tulajdonságai: f) Ez egy Jellegzetes tulajdonságai: 10 Fejlesztő matematika (5 12. f.)

11 Síkbeli és térbeli alakzatok Összefüggések meglátása Milyen ez a háromszög? 1. Ha már jól tudod, hogy a háromszögeknek milyen fajtái vannak, akkor néhány adatból kitalálhatod, milyen háromszögről van szó. Próbálj az adatok alapján válaszolni! Ellenőrzésképpen készíts vázlatábrát is! a) = = = 60c Vázlatrajz: Ez egy b) a = b = 4 cm Vázlatrajz: Ez egy c) = 110c Vázlatrajz: Ez egy Fejlesztő matematika (5 12. f.) 11

12 Síkbeli és térbeli alakzatok Összefüggések meglátása 1.5 d) = 90 c, = 65c Vázlatrajz: Ez egy e) = 75 c, = 75c Vázlatrajz: Ez egy f) a = 7 cm, b = 4 cm, c = 5 cm Vázlatrajz: Ez egy Rajzold be az alábbi négyszögek egyik átlóját, majd határozd meg, milyen háromszögek keletkeznek így! 12 Fejlesztő matematika (5 12. f.)

13 Síkbeli és térbeli alakzatok Összefüggések meglátása Ábrázold a derékszögű koordináta-rendszerben az alábbi, csúcsaival megadott háromszögeket! Mérd meg a szögeiket, és állapítsd meg, milyenfajta háromszögek ezek! Rajzold be a magasságaikat! a) A(4,5; 5,5) B(3; 1) C(6; 0) b) A(0,5; 4) B(2,5; 0,5) C(2,5; 5) c) A(9,5; 3,5) B(7,5; 7) C(5,5; 3,5) d) A(3; 7,5) B(8; 9,5) C(1; 7,5) Fejlesztő matematika (5 12. f.) 13

14 Síkbeli és térbeli alakzatok 1.5 Az Ön jegyzetei, kérdései*: * Kérdéseit juttassa el a RAABE Kiadóhoz! 14 Fejlesztő matematika (5 12. f.)

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam TANULÓI MUNKAFÜZET 2. FÉLÉV A kiadvány KHF/4356-14/2008. engedélyszámon 2008.11.25. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag

A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag A pentominók matematikája Síkbeli és térbeli alakzatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 18 év pentominók adott tulajdonságú alakzatok építése szimmetrikus alakzatok egybevágó alakzatok

Részletesebben

Általános információk

Általános információk Általános információk A hűtőket és mélyhűtőket elsősorban mélyhűtött termékek tárolására használjuk. A nem előrecsomagolt termékeket, külön erre a célra gyártott tárolóedényekbe kell tárolni. Minden csemegepult

Részletesebben

7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal

7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal 7. Fogazatok megmunkálása határozott élgeometriájú szerszámokkal A fogazatok kapcsolódása 7.1 Alapfogalmak Fogaskerék hajtások csoportosítása Egyenes külső Egyenes belső Külső kúpfogazat Fogasléc Fogasív

Részletesebben

MATEMATIKA. 5 8. évfolyam

MATEMATIKA. 5 8. évfolyam MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

Forgásfelületek származtatása és ábrázolása

Forgásfelületek származtatása és ábrázolása Forgásfelületek származtatása és ábrázolása Ha egy rögzített egyenes körül egy tetszőleges görbét forgatunk, akkor a görbe úgynevezett forgásfelületet ír le; a rögzített egyenes, amely körül a görbe forog,

Részletesebben

H Sorozatok számokkal 2.4. 4. feladatcsomag

H Sorozatok számokkal 2.4. 4. feladatcsomag Sorozatok számokkal 2.4 Alapfeladat Sorozatok számokkal 4. feladatcsomag egyenletesen növekvő számsorozatban véges sok tag összegének kiszámítása mértani sorozatok képzése A feladatok listája 1. Mennyit

Részletesebben

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA I. RÉSZLETES KÖVETELMÉNYEK A Gépészeti alapismeretek szakmai előkészítő tantárgy érettségi vizsga részletes vizsgakövetelményeinek kidolgozása a műszaki szakterület

Részletesebben

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási

Részletesebben

Előirányzott kötelezettségvállalások: az 1., 2., 3. évre a költségvetésben az adott évre elrendelt kötelezettségvállalások. Jelmagyarázat: Előirányzott kötelezettségvállalások (EKÖ) Kötelezettségvállalási

Részletesebben

SZTEREO (3D-S) FOTÓLABOR AZ INFORMATIKATEREMBEN

SZTEREO (3D-S) FOTÓLABOR AZ INFORMATIKATEREMBEN SZTEREO (3D-S) FOTÓLABOR AZ INFORMATIKATEREMBEN BESZÁMOLÓ A PROJEKT VÉGREHAJTÁSÁRÓL Az elvégzett tevékenységek, azok dokumentumai és tapasztalatai az alábbiakban foglalhatók össze: 1. A sztereofotózás

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet

Részletesebben

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged

Kombinatorika az általános iskolában Ábrahám Gábor, Szeged Kombinatorika az általános iskolában Ábrahám Gábor, Szeged A kombinatorika másfajta gondolkodást és így a tanár részéről a többi témakörtől eltérő óravezetést igényel. Sok esetben tapasztalhatjuk, hogy

Részletesebben

1. A VILLAMOSENERGIA-TERMELÉS ÉS ÁTVITEL JELENTŐSÉGE

1. A VILLAMOSENERGIA-TERMELÉS ÉS ÁTVITEL JELENTŐSÉGE Villamos művek 1. A VILLAMOSENERIA-TERMELÉS ÉS ÁTVITEL JELENTŐSÉE Napjainkban életünk minden területén nélkülözhetetlenné vált a villamos energia felhasználása. Jelentősége mindenki számára akkor válik

Részletesebben

A szőlőtermesztés és borkészítés számviteli sajátosságai

A szőlőtermesztés és borkészítés számviteli sajátosságai A szőlőtermesztés és borkészítés számviteli sajátosságai KÁNTOR Béla, TÓTH Zsuzsanna Miskolci Egyetem, Gazdaságtudományi Kar, Miskolc kantorbp@gmail.com, toth.zsuzsanna12@gmail.com A borkészítésnek Magyarországon

Részletesebben

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!

13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x

Részletesebben

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:

Részletesebben

Halmazelmélet. 2. fejezet 2-1

Halmazelmélet. 2. fejezet 2-1 2. fejezet Halmazelmélet D 2.1 Két halmazt akkor és csak akkor tekintünk egyenl nek, ha elemeik ugyanazok. A halmazt, melynek nincs eleme, üres halmaznak nevezzük. Jele:. D 2.2 Az A halmazt a B halmaz

Részletesebben

Matematika. 1-4. évfolyam. tantárgy 2013.

Matematika. 1-4. évfolyam. tantárgy 2013. Matematika tantárgy 1-4. évfolyam 2013. Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási,

Részletesebben

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád

Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád Dr. Katz Sándor: Lehet vagy nem? Lehet vagy nem? Konstrukciók és lehetetlenségi bizonyítások Dr. Katz Sándor, Bonyhád A kreativitás fejlesztésének legközvetlenebb módja a konstrukciós feladatok megoldása.

Részletesebben

MATEMATIKA A és B variáció

MATEMATIKA A és B variáció MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy

Részletesebben

GYULAI ALAPFOKÚ KÖZOKTATÁSI INTÉZMÉNY DÜRER ALBERT ÁLTALÁNOS ISKOLA TAGINTÉZMÉNYE HELYI TANTERV 1

GYULAI ALAPFOKÚ KÖZOKTATÁSI INTÉZMÉNY DÜRER ALBERT ÁLTALÁNOS ISKOLA TAGINTÉZMÉNYE HELYI TANTERV 1 1. félévi óraszá m 2. félévi óraszá Éves m óraszá m 1. félévi óraszám 2. félévi óraszám Éves óraszám 1. félévi óraszá 2. félévi m óraszá Éves m óraszá m 1. félévi óraszá 2. félévi m óraszá Éves m óraszá

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal

Részletesebben

Tanmenetjavaslat 5. osztály

Tanmenetjavaslat 5. osztály Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2. alapján 9-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy

Részletesebben

K Ü L Ö N Ö S K Ö Z Z É T É T E L I L I S T A Király Iván Körzeti Általános Iskola Farád OM azonosító: 030 579 Cím: 9321 Farád, Győri u. 27. Tel.: 96/279/137 Fax: 96/535-017 E-mail: altiskfarad@gmail.com

Részletesebben

Tanításkísérő szeminárium

Tanításkísérő szeminárium Tanításkísérő szeminárium Szerzők: Török Judit és Vásárhelyi Éva Szerkesztette: Fried Katalin Lektor: Székely Péter TÁMOP-4.1.2.B.2-13/1-2013-0007 Országos koordinációval a pedagógusképzés megújításáért

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

A tűzjelző rendszerek és a hőés füstelvezető rendszerek kapcsolódási pontjai. 2015. október 27. - Budapest

A tűzjelző rendszerek és a hőés füstelvezető rendszerek kapcsolódási pontjai. 2015. október 27. - Budapest A tűzjelző rendszerek és a hőés füstelvezető rendszerek kapcsolódási pontjai 2015. október 27. - Budapest HŐ- ÉS FÜSTELVEZETÉS (RWA) ALAPOK - A védett helyiségbe jutó, vagy ott keletkező hő és füst szabadba

Részletesebben

8. Babzsák 14x12 cm, 16 dkg Fejlesztés: Mozgáskultúra, ritmikai

8. Babzsák 14x12 cm, 16 dkg Fejlesztés: Mozgáskultúra, ritmikai 1. 10 db-os nagy ORFF ritmuskészlet Fejlesztés: Generatív, kreatív zenei képességek, tevékenységek, ritmuskészség e Rövid leírás: ritmushangszerek természetes anyagokból 2. 8 db-os ORFF ritmuskészlet Fejlesztés:

Részletesebben

Honda Maris Pay & Go. Adatvédelemre és Sütikre vonatkozó szabályzat

Honda Maris Pay & Go. Adatvédelemre és Sütikre vonatkozó szabályzat Honda Maris Pay & Go Adatvédelemre és Sütikre vonatkozó szabályzat A Honda megbecsüli a személyes adatok őszinte és felelős felhasználásának fontosságát. Jelen Adatvédelemre és Sütikre vonatkozó szabályzat

Részletesebben

Tanmenetjavaslat Matematika 3. évfolyam Készítette: Csekné Szabó Katalin, 2015

Tanmenetjavaslat Matematika 3. évfolyam Készítette: Csekné Szabó Katalin, 2015 Tanmenetjavaslat Matematika 3. évfolyam Készítette: Csekné Szabó Katalin, 2015 Hónap Szept. 1. Év eleji ismétlés 2. Számok 100-as számkörben Szervezési feladatok - ismerkedés a kel, füzetvezetéssel és

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

A két csapatra osztás leggyakoribb megvalósításai: Lyukas teli (vagy sima vagy nem lyukas)

A két csapatra osztás leggyakoribb megvalósításai: Lyukas teli (vagy sima vagy nem lyukas) Eredeti forrás: Pintér Klára: Játsszunk Dienes Zoltán Pál logikai készletével! http://www.jgypk.u-szeged.hu/methodus/pinter-klara-jatsszunk-logikat-logikai-keszlettel/ A logikai készlet lapjaival kapcsolatos

Részletesebben

HÉTVÉGI HÁZI FELADAT SZABÁLYAI, ISKOLAI DOLGOZATOK

HÉTVÉGI HÁZI FELADAT SZABÁLYAI, ISKOLAI DOLGOZATOK HÉTVÉGI HÁZI FELADAT SZABÁLYAI, ISKOLAI DOLGOZATOK SZABÁLYAI AZ ISKOLAI BESZÁMOLTATÁS, AZ ISMERETEK SZÁMONKÉRÉSÉNEK KÖVETELMÉNYEI ÉS FORMÁI 1 Magyar nyelv és irodalom Írásbeli beszámoltatások Rendszeres,

Részletesebben

Igazságügyi szakértők jogi oktatása

Igazságügyi szakértők jogi oktatása KÖZIGAZGATÁSI ÉS IGAZSÁGÜGYI MINISZTÉRIUM Igazságügyi szakértők jogi oktatása Tisztelt Érdeklődő! Az igazságügyi szakértői tevékenységről szóló 2005. évi XLVII. törvény (a továbbiakban: Szaktv.) 18. (1)

Részletesebben

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA 5 8. ALAPELVEK, CÉLOK MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

MATEMATIKA KOMPETENCIATERÜLET A

MATEMATIKA KOMPETENCIATERÜLET A MATEMATIKA KOMPETENCIATERÜLET A Matematika 7. évfolyam TANULÓI MUNKAFÜZET 2. félév A kiadvány KHF/4002-17/2008 engedélyszámon 2008. 08. 18. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő

Részletesebben

OKTATÁSI ALAPISMERETEK

OKTATÁSI ALAPISMERETEK Oktatási alapismeretek emelt szint 1411 ÉRETTSÉGI VIZSGA 2015. május 19. OKTATÁSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben

A figurális számokról (I.)

A figurális számokról (I.) A figurális számokról (I.) Tuzson Zoltán, Székelyudvarhely A figurális számok felfedezését a pitagoreusoknak tulajdonítják, mert k a számokat kavicsokkal, magokkal szemléltették. Sok esetben így jelképezték

Részletesebben

közti kapcsolatok, Ellenőrzés, Játék 21. modul

közti kapcsolatok, Ellenőrzés, Játék 21. modul Matematika A 4. évfolyam MŰVELETi tulajdonságok, a műveletek közti kapcsolatok, Ellenőrzés, Játék 21. modul Készítette: KONRÁD ÁGNES matematika A 4. ÉVFOLYAM 21. modul Műveleti tulajdonságok, a műveletek

Részletesebben

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Matematika A 1. évfolyam. páros, páratlan. 22. modul. Készítették: Szabóné Vajna Kinga Harzáné Kälbli Éva Molnár Éva

Matematika A 1. évfolyam. páros, páratlan. 22. modul. Készítették: Szabóné Vajna Kinga Harzáné Kälbli Éva Molnár Éva Matematika A 1. évfolyam páros, páratlan 22. modul Készítették: Szabóné Vajna Kinga Harzáné Kälbli Éva Molnár Éva matematika A 1. ÉVFOLYAM 22. modul Páros, páratlan modulleírás A modul célja Időkeret Ajánlott

Részletesebben

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II.

KÖVETELMÉNYEK 2015/2016. 2. félév. Informatika II. 2015/2016. 2. félév Tantárgy neve Informatika II. Tantárgy kódja TAB1110 Meghirdetés féléve 4. Kreditpont 1 Heti kontakt óraszám (gyak.) 0 + 1 Előfeltétel (tantárgyi kód) TAB1109 Tantárgyfelelős neve és

Részletesebben

HELYI ÖNKORMÁNYZATOK EURÓPAI CHARTÁJA

HELYI ÖNKORMÁNYZATOK EURÓPAI CHARTÁJA 1 A Helyi Önkormányzatok Európai Chartájáról szóló, 1985. október 15-én, Strasbourgban kelt egyezmény HELYI ÖNKORMÁNYZATOK EURÓPAI CHARTÁJA PREAMBULUM Az Európa Tanácsnak a jelen Chartát aláíró tagállamai

Részletesebben

Matematika. 5-8. évfolyam

Matematika. 5-8. évfolyam Matematika 5-8. évfolyam Matematika 5-8. évfolyam 1. Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és

Részletesebben

Matematika tanmenet/4. osztály

Matematika tanmenet/4. osztály Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti

Részletesebben

ANYAGTÓL A SZERKEZETIG

ANYAGTÓL A SZERKEZETIG ANYAGTÓL A SZERKEZETIG ÉPÜLETFIZIKAI ALKALMAZÁSOK a SCHWENK ÜVEGGYAPOT TERMÉKEKHEZ KÉSZÍTETTE : a V-SYS Kft. SZERKESZTETTE : Dr.Várfalvi János PhD. SZERZŐK: Dr.Várfalvi János PhD. ifj. Várfalvi János 2010.

Részletesebben

Települési szilárd hulladékok vizsgálata. Mintavétel.

Települési szilárd hulladékok vizsgálata. Mintavétel. Kiadás kelte MAGYAR SZABVÁNY MSZ 21976-1 Települési szilárd hulladékok vizsgálata. Mintavétel. Investigation of municipal wastes, Sampling Hivatkozási szám: MSZ 21976-1:2005 MAGYAR SZABVÁNYÜGYI TESTÜLET

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 17 XVII A HATÁROZATLAN INTEGRÁL 1 PRImITÍV FÜGGVÉNY, ALApINTEGRÁLOk A (nagy) F függvényt a (kis) f függvény primitív függvényének nevezzük valamely nyílt intervallumon, ha itt

Részletesebben

Logisztika A. 4. témakör

Logisztika A. 4. témakör Logisztika A tantárgy 4. témakör A logisztikai rendszer tervezésének módszere, moduljai II. MISKOLCI EGYETEM Anyagmozgatási és Logisztikai Tanszék 1 5. Termelési logisztika tervezése Anyagáramlás tervezése:

Részletesebben

Pedagógiai program. IX. kötet

Pedagógiai program. IX. kötet 1 Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai Módszertani Intézmény Pedagógiai program IX. kötet Értelmi fogyatékos tanulók 9-10. évfolyam

Részletesebben

Számunkra fontos az Ön véleménye, köszönjük az együttműködését!

Számunkra fontos az Ön véleménye, köszönjük az együttműködését! Tisztelt Partnerünk! Az elmúlt három évben jelentős változások zajlottak le az érmeforgalmazás területén. A nemesfémek árának emelkedése, a forint árfolyamának gyengülése, illetve hullámzása, az ÁFA növekedése

Részletesebben

I. Pedagógus teljesítményének értékelése

I. Pedagógus teljesítményének értékelése Petőfi Sándor Általános és Alapfokú Művészeti Iskola, Pedagógiai Szakszolgálat A Minőségirányítási Program előírt kötelező mellékletei Csenger 2007. március 28. Kazamér Tibor A Minőségirányítási Program

Részletesebben

33 582 04 1000 00 00 Festő, mázoló és tapétázó 4 Festő, mázoló és tapétázó 4 33 582 04 0100 31 02 Tapétázó Festő, mázoló és tapétázó 4 2/42

33 582 04 1000 00 00 Festő, mázoló és tapétázó 4 Festő, mázoló és tapétázó 4 33 582 04 0100 31 02 Tapétázó Festő, mázoló és tapétázó 4 2/42 A /200 (II. 2.) SzMM rendelettel módosított 1/200 (II. 1.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

3. Nevezetes ponthalmazok a síkban és a térben

3. Nevezetes ponthalmazok a síkban és a térben 3. Nevezetes ponthalmazok a síkban és a térben 1. 1. Alapfogalmak 2. Nevezetes sík- és térbeli alakzatok, definícióik 3. Thalész-tétel 4. Gyakorlati alkalmazás Pont: alapfogalom, nem definiáljuk Egyenes:

Részletesebben

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag

Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Darts: surranó nyilak, gondolkodtató problémák Kombinatorika 6. feladatcsomag Életkor: Fogalmak, eljárások: 15 18 év összeszámolási módszerek (permutáció, variáció, kombináció) sorozatok rekurzív megadása

Részletesebben

Intézményi helyzetelemzések módszertani leírása, eljárásrendje, Bevezetési útmutatók a Szakképzési Önértékelési Modell (SZÖM) alkalmazásához - 1/94 -

Intézményi helyzetelemzések módszertani leírása, eljárásrendje, Bevezetési útmutatók a Szakképzési Önértékelési Modell (SZÖM) alkalmazásához - 1/94 - Intézményi helyzetelemzések módszertani leírása, eljárásrendje, eszközei Bevezetési útmutatók a Szakképzési Önértékelési Modell (SZÖM) alkalmazásához - 1/94 - TARTALOMJEGYZÉK Általános bevezető. 3 I. rész:

Részletesebben

F Ü G G E L É K E K 1. K Ö R N Y E Z E TI N E V E L É SI PR O G R A M O SZ TÁ L Y K IR Á N D U L Á SO K TE R V E 3.

F Ü G G E L É K E K 1. K Ö R N Y E Z E TI N E V E L É SI PR O G R A M O SZ TÁ L Y K IR Á N D U L Á SO K TE R V E 3. F Ü G G E L É K E K 1. K Ö R N Y E Z E TI N E V E L É SI PR O G R A M O SZ TÁ L Y K IR Á N D U L Á SO K TE R V E 2. A TA N U L Ó K É R TÉ K E L É SÉ N E K K R ITÉ R IU M R E N D SZ E R E 3. Ó R A TE R

Részletesebben

Egyéb előterjesztés Békés Város Képviselő-testülete 2012. augusztus 30-i ülésére

Egyéb előterjesztés Békés Város Képviselő-testülete 2012. augusztus 30-i ülésére Tárgy: Békési Kommunális és Szolgáltató Kft. 2012. évi üzleti tervének jóváhagyása Sorszám: IV/12 Előkészítette: Ilyés Péter ügyvezető Békési Kommunális és Szolgáltató Kft. Véleményező bizottság: Pénzügyi

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 14. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 14. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Kémia

Részletesebben

A SPECIÁLIS SZAKISKOLA ÉS KÉSZSÉGFEJLESZTŐ SPECIÁLIS SZAKISKOLA HELYI TANTERV

A SPECIÁLIS SZAKISKOLA ÉS KÉSZSÉGFEJLESZTŐ SPECIÁLIS SZAKISKOLA HELYI TANTERV OM azonosító: 038551 Bárczi Gusztáv Óvoda, Általános Iskola, Speciális Szakiskola, Diákotthon Módszertani Központ és Nevelési Tanácsadó A SPECIÁLIS SZAKISKOLA ÉS KÉSZSÉGFEJLESZTŐ SPECIÁLIS SZAKISKOLA HELYI

Részletesebben

Sztereogramok szerkesztése

Sztereogramok szerkesztése Sztereogramok szerkesztése A látás becsapható, annak köszönhetően, hogy az emberi agy absztrahál, elhanyagol, asszociál, és a gyorsaságot tartja szem előtt. Látási illúziók akkor keletkeznek, ha a látvány

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Helyi tanterv. az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet. Biológia az általános iskolák 7 8.

Helyi tanterv. az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet. Biológia az általános iskolák 7 8. Helyi tanterv az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet Biológia az általános iskolák 7 8. évfolyama számára A változat (1,5+1,5) alapján A biológia tantárgy tanításának céljai

Részletesebben

MŰSZAKI ÁBRÁZOLÁS II.

MŰSZAKI ÁBRÁZOLÁS II. MŰSZAKI ÁBRÁZOLÁS II. A projekt címe: Egységesített Jármű- és mobilgépek képzés- és tananyagfejlesztés A megvalósítás érdekében létrehozott konzorcium résztvevői: KECSKEMÉTI FŐISKOLA BUDAPESTI MŰSZAKI

Részletesebben

Helyi tanterv a Mozaik kiadó ajánlása alapján. az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1

Helyi tanterv a Mozaik kiadó ajánlása alapján. az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1 BIOLÓGIA 7-8. Helyi tanterv a Mozaik kiadó ajánlása alapján az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1 Biológia az általános iskolák 7 8. évfolyama számára A biológia

Részletesebben

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Miskolci Egyetem. Gépészmérnöki és Informatikai Kar. Elektrotechnikai-Elektronikai Tanszék. Villamosmérnöki szak. Villamos energetikai szakirány

Miskolci Egyetem. Gépészmérnöki és Informatikai Kar. Elektrotechnikai-Elektronikai Tanszék. Villamosmérnöki szak. Villamos energetikai szakirány Miskolci Egyetem Gépészmérnöki és Informatikai Kar Elektrotechnikai-Elektronikai Tanszék Villamosmérnöki szak Villamos energetikai szakirány Miskolc-Észak 120/20 kv-os alállomásban teljesítménynövekedés

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM SPORTEGYESÜLETE Alapítva: 1973. 9026 Győr, Egyetem tér 1.

SZÉCHENYI ISTVÁN EGYETEM SPORTEGYESÜLETE Alapítva: 1973. 9026 Győr, Egyetem tér 1. SZÉCHENYI ISTVÁN EGYETEM SPORTEGYESÜLETE Alapítva: 1973. 9026 Győr, Egyetem tér 1. 9007 Győr, Pf. 701 Tel: 96/503 456 Fax: 96/613 670 E-mail: szese@sze.hu Számlaszám: Magyar Külkereskedelmi Bank Rt. 10300002-33222154-00003285

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1 (A) változatához. Biológia az általános iskolák 7-8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1 (A) változatához. Biológia az általános iskolák 7-8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.08.1 (A) változatához Biológia az általános iskolák 7-8. évfolyama számára A változat A biológia tantárgy tanításának céljai és

Részletesebben

Perigal négyzete. oldalhosszúságú négyzetet. A három négyzetet úgy

Perigal négyzete. oldalhosszúságú négyzetet. A három négyzetet úgy Perigal négyzete Tuzson Zoltán tanár, Székelyudvarhely Henry Perigal (101-19) matematikus 17-an egy nagyon szemléletes izonyítást mutatott e a Pitagorasz-tételre. Een két kise négyzetet átdaraol egy nagyoá,

Részletesebben

A GESZ ellátási körébe tartozó szakfeladatok

A GESZ ellátási körébe tartozó szakfeladatok SZÁMVITELI POLITIKA 2. SZÁMÚ MELLÉKLETE BUDAPEST FŐVÁROS XIII. KERÜLETI ÖNKORMÁNYZAT GAZDASÁGI ELLÁTÓ SZERVEZET 1139. BUDAPEST, HAJDÚ UTCA 29. A GESZ ellátási körébe tartozó szakfeladatok Készült: 2011.

Részletesebben

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,

Részletesebben

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA C 8. évfolyam 10. modul ÁTLAGOS?

MATEMATIKA C 8. évfolyam 10. modul ÁTLAGOS? MATEMATIKA C 8. évfolyam 10. modul ÁTLAGOS? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 10. MODUL: ÁTLAGOS? TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

AZ ADAPTEM MÓDSZER. Az EQUAL ANCORA projekt keretében kifejlesztett és kipróbált eszköz (2005-2007) Gandia Városi Tanács

AZ ADAPTEM MÓDSZER. Az EQUAL ANCORA projekt keretében kifejlesztett és kipróbált eszköz (2005-2007) Gandia Városi Tanács AZ ADAPTEM MÓDSZER Az EQUAL ANCORA projekt keretében kifejlesztett és kipróbált eszköz (2005-2007) Gandia Városi Tanács 1. MI AZ ADAPTEM? Az ADAPTEM egy olyan Tanácsadási Szolgáltatás cégek részére, mely

Részletesebben

Lerakó 7. modul készítette: köves GaBrIeLLa

Lerakó 7. modul készítette: köves GaBrIeLLa Lerakó 7. modul Készítette: KÖVES GABRIELLA 2 Lerakó A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos észlelés, a megfigyelés és a figyelem fejlesztése Párban, kis csoportban

Részletesebben

A TÁMOP-3.1.4/08/2 2008-0072 Kompetencia alapú oktatás egyenlı hozzáférés Innovatív intézményekben pályázat innovációi

A TÁMOP-3.1.4/08/2 2008-0072 Kompetencia alapú oktatás egyenlı hozzáférés Innovatív intézményekben pályázat innovációi Kompetencia alapú oktatás Nyíregyházán A TÁMOP-3.1.4/08/2 2008-0072 Kompetencia alapú oktatás egyenlı hozzáférés Innovatív intézményekben pályázat innovációi Móricz Zsigmond Általános Iskola Nyíregyháza,

Részletesebben

FÖLDRAJZ. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. (240 perc)

FÖLDRAJZ. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. (240 perc) PRÓBAÉRETTSÉGI 2004. május FÖLDRAJZ EMELT SZINT (240 perc) Az írásbeli dolgozat megoldásához 240 perc áll rendelkezésére. El ször figyelmesen olvassa el a feladatokban megfogalmazott kérdéseket, majd gondolja

Részletesebben

INFORMATIKA HELYI TANTERV

INFORMATIKA HELYI TANTERV INFORMATIKA HELYI TANTERV Az alsó tagozatos informatikai fejlesztés során törekedni kell a témához kapcsolódó korosztálynak megfelelő használatára, az informatikai eszközök működésének bemutatására, megértésére

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

www.austrotherm.hu 1

www.austrotherm.hu 1 1 Hol a minőség mostanában? Anyagok, szerkezetek, követelmények a hőszigetelésben 2 Az életnek Minőség nélkül se értéke, se célja! Robert M.Pirsig: A zen meg a motorkerékpár-ápolás művészete 3 3 Hol a

Részletesebben

Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva.

Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT. Készítette: Szigeti Zsolt. Felkészítő tanár: Báthori Éva. Ady Endre Líceum Nagyvárad XII.C. Matematika Informatika szak ÉRINTVE A GÖRBÉT Készítette: Szigeti Zsolt Felkészítő tanár: Báthori Éva 2010 október Dolgozatom témája a különböző függvények, illetve mértani

Részletesebben

DUNAÚJVÁROS MEGYEI JOGÚ VÁROS

DUNAÚJVÁROS MEGYEI JOGÚ VÁROS T T 1 T A N Á C S A D Ó É S T E R V E ZŐ KFT. DUNAÚJVÁROS MEGYEI JOGÚ VÁROS TELEPÜLÉSRENDEZÉSI ESZKÖZÖK FELÜLVIZSGÁLATA H E L Y I É P Í T É S I S Z A B Á L Y Z A T DUNAÚJVÁROS MEGYEI JOGÚ VÁROS KÖZGYŰLÉSÉNEK..(.)

Részletesebben

Óravázlat. A szakmai karrierépítés feltételei és lehetőségei Szakmai feladatok

Óravázlat. A szakmai karrierépítés feltételei és lehetőségei Szakmai feladatok Osztály: Tantárgy: 9. évfolyam matematika Óravázlat Téma: Résztémák: Időigény: Munkaforma: Kiemelt készségek, képességek: A szakmai karrierépítés feltételei és lehetőségei Szakmai feladatok Logikai feladatok

Részletesebben

Monostorpályi Község Önkormányzatának gyermekjóléti és gyermekvédelmi feladatai ellátásának 2015. évi átfogó értékelése.

Monostorpályi Község Önkormányzatának gyermekjóléti és gyermekvédelmi feladatai ellátásának 2015. évi átfogó értékelése. Monostorpályi Község Önkormányzatának gyermekjóléti és gyermekvédelmi feladatai ellátásának 2015. évi átfogó értékelése. Előterjesztés a 2016. május 27. -i Képviselő Testületi ülésre. Előterjesztő: Juhász

Részletesebben

Célok és feladatok Az iskolának, mint nevelő intézménynek kifejezett feladata, hogy feltárja a műveltség erkölcsi és vallási dimenzióit.

Célok és feladatok Az iskolának, mint nevelő intézménynek kifejezett feladata, hogy feltárja a műveltség erkölcsi és vallási dimenzióit. VIZUÁLIS KULTÚRA A vizuális nevelés legfőbb célja, hogy hozzásegítse a tanulókat a látható világ jelenségeinek, a vizuális művészeti alkotásoknak árnyaltabb értelmezéséhez és megítéléséhez, környezetünk

Részletesebben

S Z E L L E M I T U L A J D O N - K E Z E L É S I

S Z E L L E M I T U L A J D O N - K E Z E L É S I A S Z E G E D I T U D O M Á N Y E G Y E T E M S Z E L L E M I T U L A J D O N - K E Z E L É S I S Z A B Á L Y Z A T A Szeged, 2014. november 03. A Szegedi Tudományegyetem Szellemitulajdon-kezelési Szabályzata

Részletesebben

Találatgaranciás Lottóvariációk gy jteménye

Találatgaranciás Lottóvariációk gy jteménye Szerencsetippek Sorozat Találatgaranciás Lottóvariációk gy jteménye 352 Találatgaranciás Ötöslottó kulcs 0-1 fixes játékokhoz 10-492 n 384 Találatgaranciás Hatoslottó kulcs 0-2 fixes játékokhoz 10-496

Részletesebben

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve

Részletesebben

(A típus) MSZ EN 61008-1

(A típus) MSZ EN 61008-1 (A típus) DB106619 DB123865 DB123854 MSZ EN 61008-1 Tanúsítványok PB107413-40 KEMA KEUR tanúsítvány, csak a 2P/ 25 A - 63 A rendelési számokra b -véd kapcsolók kett s bekötés csatlakozással a következ

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA

VALÓSZÍNŰSÉG, STATISZTIKA 0893. MODUL VALÓSZÍNŰSÉG, STATISZTIKA Felmérés Készítette: Pintér Klára Matematika A 8. évfolyam 0892. modul: Valószínűség, statisztika Felmérés 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

54 582 01 0000 00 00 Épületgépész technikus Épületgépész technikus 31 582 09 0010 31 01 Energiahasznosító berendezés szerelője

54 582 01 0000 00 00 Épületgépész technikus Épületgépész technikus 31 582 09 0010 31 01 Energiahasznosító berendezés szerelője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben