Óravázlat. A szakmai karrierépítés feltételei és lehetőségei Szakmai feladatok
|
|
- Marcell Vörös
- 8 évvel ezelőtt
- Látták:
Átírás
1 Osztály: Tantárgy: 9. évfolyam matematika Óravázlat Téma: Résztémák: Időigény: Munkaforma: Kiemelt készségek, képességek: A szakmai karrierépítés feltételei és lehetőségei Szakmai feladatok Logikai feladatok Arány-arányosság Geometria terület-kerület számítása Pitagorasz-tétel és alkalmazása 3 óra frontális osztálymunka heterogén csoportmunka a megoldás megtervezésének képessége összefüggések feltárása bizonyítási igény algoritmikus gondolkodási mód kreativitás A tanítási órát előkészítő tevékenység: a szükséges eszközök és tartalmak előkészítése 1
2 Fő témák és résztémák A tanítási órára való ráhangolódás A feladat ismertetése után önálló munka A feladat megvitatása 1. feladat Mekkora a kár? Lucky Luck egy chicagoi üzletben 60 dollár értékű árut vásárol. 100 dollárossal fizet, de az üzletben nincs elég aprópénz, ezért átküldik a kifutófiút a bankba, felváltani a pénzt. Ezután visszaadnak a vevőnek 40 dollárt. Másnap kétségbeesetten jön a bank pénztárosa, s mutatja, hogy a 100 dolláros hamis. A boltos kénytelen egy valódit adni helyette a pénztárosnak. Persze Lucky Luck már régen eltűnt Mennyi a boltos kára? 140 dollár, mert 100-ad adott a pénztárosnak 40-et a vevőnek? Vagy 200 dollár, mert még 60 dollár értékű árut is adott? Szerinted? megbeszélés vita érvelés Róka Sándor: Furfangos logisztori problémamegoldás sejtések megfogalmazása sebes- gondolkodási ség bizonyítási igény A tanulók gondolatmenetének követése Megoldás: A boltos kára 100 dollár, mert ha azt nem kellet volna kifizetnie, semmi kára nem volna 2
3 szövegértés mértékegység átváltás területszámítás logikai következtetések Előkészület a csoportmunkára Véletlenszerűen 4 fős heterogén csoportok kialakítása kártyák segítségével az alaprajzok kiosztása A feladat egymás közti felosztásának kontrollálása Az átváltások, számlálások, logikai következtetések, feladatszöveg értelmezésének, mértékegységek használatának figyelemmel kísérése 2. feladat Az alábbi alaprajzú lakást örökölted, melyen a vastagabb falak 30 cm, a vékonyabb falak 10 cm szélességűek. Az ablakok 90, 120 és 150 cm szélesek és 1,5 m magasak. A belmagasság 24 dm. a) Számold ki az ábrán nem jelölt falak hosszúságát! b) Add meg a közlekedő és a belőle jobbra nyíló helyiség összterületét! c) Hány négyzetméteres a lakásod (falak nélkül)? d) Hány liter festék kell a nappali és a szoba kifestéséhez (beleértve a plafon festését is), ha tudjuk, hogy 15 liter diszperzites festék 50 négyzetméter kifestéséhez elegendő? e) Lehet-e a fürdőszobában jelölt kád hossza 2 méter, ha még a mosógép is melléfér? f) Ha egy hajópadló 0,2x1 m, hány darabra van szükségünk a nappali és a szoba burkolásához? heterogén csoportmunka megbeszélés vita érvelés feladatlap alaprajz számológép kreativitás lényegkiemelés ötletgazdagság összefüggések feltárása függvényszerű gondolkodás készségének rész-egész viszony 3
4 Az ellenőrzés lehetőség teremtése a csoportok közötti megbeszélésre, vitára Ha a feladatmegoldás túl hosszúra nyúlik, az e) és f) példákat házi felada MEGOLDÁS a) A keresett falhosszak a megadott területek segítségével kiszámolhatók. csoportmunka kreativitás a megoldás megtervezésének képessége ítéletalkotás, mint gondolkodási művelet Hibalehetőség: az a) feladatnál a terület falvastagság nélkül, a tiszta területre vonatkozik; a b) feladatnál a küszöb hozzáadása ne maradjon le; a d) feladatban b) A keresett összterület: 1 + 0,3 + 4,5 = 5,8 m 2. c) ,5 + 6, ,9 = 43,6 m 2. d) 25, liter festékre van bizonyítási igény 4
5 adatok gyűjtése adatok feldolgozása vonjuk le az ablakok és ajtók területét a terméklista kiosztása a feladat ismertetése a csoportok munkájának kontrollálása feladatmegosztás figyelemmel kísérése szükségünk. e) Nem férhet be egy ekkora kád. f) 135 darabra lesz szükségünk. 3. feladat A sátoros osztálykiránduláson kétszer főztök bográcsban. Vásárolj be hozzá az alábbi adatok alapján! (ld. melléklet) Bográcsgulyás (4 főre) 50 dkg marhahús, ¼ kg hagyma, ½ dl olaj, 3 dkg pirospaprika, 1 paradicsom, 2 paprika, 50 dkg burgonya, víz Paprikás krumpli (4 főre) 60 dkg krumpli, 10 dkg hagyma, 3 dkg pirospaprika, ½ dl olaj, 4 pár virsli a) Mennyit költesz minimum? b) Minimum mennyivel nő az összeg, ha 2 reggelivel is kell számolnod, fejenként 2 zsemle/kifli, 10 dkg felvágott és ½ l tej/kakaó? c) Mennyivel változik a fenti összeg, ha van két vegetáriánus osztálytársad heterogén csoportmunka megbeszélés vita érvelés feladatlapok számológép adatlapok következtetési sémák konstrukciós képesség problémamegoldás számolás készségek ítéletalkotás, mint gondolkodási művelet algoritmikus gondolkodási mód kreativitás a megoldás megtervezésének 5
6 Az a) feladatban hibalehetőség: az olajat és a pirospaprikát elég egyszer megvenni! A d) feladat tág válaszlehetőséget rejt, minél több különbözőt kell megvitatni, pl. keveset vásárol, több zsebpénz marad, vagy mindet elkölti Közös választással bevásárolhatnak más recepthez is. is? d) Vásárolj magadnak a vonatútra reggelinek és ebédnek valót 2000 Ftból! Hogyan osztod be a pénzt? MEGOLDÁS a) Az adatokat 4 főre adtuk meg, ez az osztálylétszámnak megfelelően módosítható. Bográcsgulyás = 1388 Ft, de az olajat és a pirospaprikát elég egyszer beleszámolni, így 549 Ft 4 főre és 839 Ft a pluszköltség. Paprikás krumpli A pirospaprikát és az olajat ide már nem is számolva: = 481 Ft. b) x gyerek esetén x. ( ) = 145x c) 60 forinttal nő. d) Legyen mindenkinél enni- és innivaló és valami nasi is! heterogén csoportmunka megbeszélés vita érvelés feladatlapok számológép adatlapok kreativitás lényegkiemelés ötletgazdagság összefüggések feltárása függvényszerű gondolkodás készségének rész-egész viszony 6
7 4. feladat Pitagorasz tételének alkalmazása egyenes arányosság logikai következtetés Páros munkaként a pár egyike az egyik csiga, a páros másik tagja pedig a másik csiga menetidejét számolja ki, és a végén összehasonlítják a kapott eredményeket, majd válaszolnak a feladat kérdéseire. Egy reggel két csigát beledobtak egy 30 m mély gödörbe. Két különböző útvonalon indultak el kifelé. Az egyik, a meredekebb úton nappal 2 métert tudott feljebb mászni, éjszaka azonban 1 métert visszacsúszott. A következő nappal 3 métert haladt felfelé, míg éjjel 2 métert visszacsúszott. a) Hány nap alatt ér fel a meredekebb úton induló csiga? b) Hány nappal előbb/később ér fel a másik, ha tudjuk, hogy a gödör teteje 140 m széles? c) Melyik a gyorsabb csiga? páros munka megbeszélés vita érvelés Raymond M. Smullyan: Alice Rejtvényországb an, Typotex Kiadó, kreativitás a megoldás megtervezésének képessége lényegkiemelés összefüggések feltárása rugalmasság ötletgazdagság hajlékonyság geometriai alak- Hibalehetőség: a csiga 48, nem 50 nap alatt van kint a gödörből, mert a 48. napon már nem csúszik éjjel vissza 4. FELADAT MEGOLDÁS a) A meredekebb úton haladó csiga naponta 1 métert halad felfelé. A 49. reggel 48 méter magasról indul, 2 métert mászik felfelé, és kint van a gödörből. 7
8 zatok felismerése, és a róluk tanultak alkalmazása út-idő összefüggések ismerete Ugyanez a gondolatmenet érvényesül a másik csiga útjánál is A derékszögű háromszögek felismerése, a Pitagorasz-tétel helyes használata b) Tudjuk, hogy a gödör teteje 140 m széles, mely három részre bontható: A jobb szélső szakasz 40 m (pitagoraszi számhármas), a középső 50 m, míg a bal szélső = 50 m széles. A Pitagorasz-tétellel már meghatározhatjuk a másik emelkedő hosszát: ( ) = 3400 = ,3m. Ez a csiga szintén 1 métert halad felfele naponta, az 57. reggel tehát 56 méter magasról indul, felmászik 3 m-t, és kint van. Igazából elég 2,3 m-t, és már a tetején van. Tehát 8 nappal később ér a tetejére. megbeszélés problémamegoldás számolás készségek ítéletalkotás, mint gondolkodási művelet algoritmikus gondolkodási mód kreativitás a megoldás megtervezésének vita c) Általában véve nincs gyorsabb, de ha pl. mindkettő 50 méteres szakaszt tenne meg, akkor az első (2 fel, 1 le) 49, míg a második (3 fel, 2 le) 48 nap alatt végezne. Az utolsó érvelés 8
9 nap ugyanis már nincs lecsúszás, így az utóbbi több utat tesz meg aznap. kreativitás információ összegyűjtése és feldolgozása logikai készség táblázatkezelés A feladat ismertetése, a megoldáshoz szükséges segédlépések megadása: A lenti bal oldali táblázatban a találatot jelöljük - val. Jelöljük mindenképp a nemtalálatot is, pl. x-szel! az információalkotás menetének és a helyes következtetéseknek a kontrollálása 5. feladat Egy érettségi előtt álló osztály öt legjobb tanulójáról a megadott információk alapján állapítsd meg, hogy félévkor melyiküknek milyen tárgyból volt az egyetlen négyese, illetve azt, hogy melyikük milyen szakra és mely városba adja be a jelentkezését! Luca akinek nem énekből volt az egyetlen négyese Szegeden szeretne egyetemista lenni, de nem jogász szakra fog jelentkezni. Nem Kornél fog Esztergomba jelentkezni tanítónak. Aki közgazdász szeretne lenni ötük közül nem Zoltán az, akinek fizikából lett az egyetlen négyese, nem a szegedi egyetemre adja be a jelentkezési lapját. Biológiából ötös volt félévkor Gásheterogén csoportmunka megbeszélés vita érvelés Logika, IQ PRESS Lapkiadó Kft., havilap problémamegoldás számolás készségek ítéletalkotás, mint gondolkodási művelet algoritmikus gondolkodási mód kreativitás a megoldás megtervezésének 9
10 az ellenőrzés a vitára lehetőség teremtése pár is és magyar szakra, illetve Pécsre jelentkező két osztálytársa is. Testnevelésből volt négyese annak, aki a fővárosban szeretne egyetemista lenni. Gáspár is és Pécsre jelentkező osztálytársa is megkapta a félévi ötöst énekből, ellentétben azzal az osztálytársukkal, aki filozófia szakra fog jelentkezni. MEGOLDÁS feladatlapok íróeszközök kreativitás lényegkiemelés összefüggések feltárása csoportmunka ötletgazdagság 7. FELADAT 10
11 Grafikonelemzés szövegalkotás sebesség és átlagsebesség-számítás a feladat ismertetése a grafikonok kiosztása a csoporton belüli munkamegosztás kontrollálása a grafikonon való eligazodás segítése 6. feladat Az alábbi grafikon egy személyautó Alabárból Balabárba vezető útját ábrázolja. A függőleges tengely az autó Alabártól való távolságát, míg a vízszintes az indulástól eltelt időt ábrázolja. a) Írj az ábrához szöveges feladatot! b) Mekkora az autó hasznos (célirányba haladó) átlagsebessége az út végén? c) Mekkora a tényleges átlagsebessége az út végén? d) 50 km/h átlagsebességgel mennyi idő alatt érhetünk Balabárba? ablakmódszer heterogén csoportmunka megbeszélés vita érvelés ablakos feladatlap íróeszközök számolás készségek ítéletalkotás, mint gondolkodási művelet algoritmikus gondolkodási mód MEGOLDÁS kreativitás a) Édesapám elindult Alabárból a Nagyihoz. Menet közben hívta fel édesanyám mobilon, hogy otthon felejtette a nagyinak szánt csomag egyik felét, de már elindultak vele egy másik kocsival, a 75-ös kilométerkőnél lévő benzinkútnál várja be a a megoldás megtervezésének képessége 11
12 az ellenőrzés lehetőség teremtése a különböző szövegek felolvasására és megvitatására másik kocsit. Apám lassított, majd visszafordult, a benzinkúthoz érve megállt és fél órát várt az otthon felejtett holmikra. Aztán újra elindult, gyorsan, hátha kicsit behozhatja a késést, majd Balabárhoz érve lassítania kellett, míg meg nem érkezett nagyihoz. b) 5 óra alatt megtett 225 km-t, tehát az átlagsebesség 45 km/h. c) 5 óra alatt 325 km-t tett meg, tehát 65 km/h volt tényleges átlagsebessége. d) 225 km-t 50 km/h-s átlagsebességgel 4,5 óra alatt teszünk meg. heterogén csoportmunka megbeszélés vita érvelés összefüggések feltárása bizonyítási igény algoritmikus gondolkodási mód kreativitás A matematika érdekességeiről prezentációk megtekintése 12
13 13
14 osztály: dátum: A tanítási órát megvalósító pedagógus aláírása: Hospitálók: osztály: dátum: A tanítási órát megvalósító pedagógus aláírása: Hospitálók: 14
15 Mellékletek 15
16 16
17 Tanuló Tantárgy Szak Város 17
18 18
Matematika javítókulcs
2003 ORSZÁGOS KOMPETENCIAMÉRÉS Matematika javítókulcs 6. évfolyam Kiss Árpád Országos Közoktatási Szolgáltató Intézmény - Értékelési Központ ÁLTALÁNOS TUDNIVALÓK A 2003-as tavaszi felmérés célja a tanulók
MATEMATIKA 1-12. ÉVFOLYAM
MATEMATIKA 1-12. ÉVFOLYAM SZERZŐK: Veppert Károlyné, Ádám Imréné, Heibl Sándorné, Rimainé Sz. Julianna, Kelemen Ildikó, Antalfiné Kutyifa Zsuzsanna, Grószné Havasi Rózsa 1 1-2. ÉVFOLYAM Gondolkodási, megismerési
Munkaforma. plénum, csoportmunka. /4 fő/ munka. /4 fő/ egyéni. pármunka
Készült: Baranyi Hajnalka pályamunkája alapján Kerettantervi modul / témakör: Egészséges táplálkozás Lorántffy Zsuzsanna Szakközépiskola, Szakiskola és Kollégium, A tanóra témája: Az egészséges táplálkozás
V.2. GRAFIKONOK. A feladatsor jellemzői
V.2. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,
ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam
ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési
3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege
Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat
A felmérési egység kódja:
A felmérési egység lajstromszáma: 0108 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Aterköz//50/Rea//Ált Agrár közös szakképesítés-csoportban, a célzott,
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
MATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
MATEMATIKA A és B variáció
MATEMATIKA A és B variáció A Híd 2. programban olyan fiatalok vesznek részt, akik legalább elégséges érdemjegyet kaptak matematikából a hatodik évfolyam végén. Ezzel együtt az adatok azt mutatják, hogy
Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
Szent István Tanulmányi Verseny Matematika 3.osztály
SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet
4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
Név:. Dátum: 2013... 01a-1
Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..
III.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
b) Adjunk meg 1-1 olyan ellenálláspárt, amely párhuzamos ill. soros kapcsolásnál minden szempontból helyettesíti az eredeti kapcsolást!
2006/I/I.1. * Ideális gázzal 31,4 J hőt közlünk. A gáz állandó, 1,4 10 4 Pa nyomáson tágul 0,3 liter térfogatról 0,8 liter térfogatúra. a) Mennyi munkát végzett a gáz? b) Mekkora a gáz belső energiájának
Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti
Matematika 9. nyelvi előkészítő évfolyam Témakörök Gondolkodási és megismerési módszerek Számtan, algebra Összefüggések, függvények, sorozatok Geometria, mérés Statisztika, valószínűség Év végi összefoglaló
A TANTÁRGYTÖMBÖSÍTETT OKTATÁS BEVEZETÉSÉNEK KIDOLGOZÁSA
TÁOP 3.1.4-08/2-2009-0176 Kompetencia alapú oktatás, egyenlı hozzáférés megteremtése a pétervásárai Tamási Áron Általános Iskolában PEDAGÓGUSOK FEJLESZTÉSI INNOVÁCIÓS TEVÉKENYSÉGÉNEK TÁOGATÁSA A TANTÁRGYTÖBÖSÍTETT
KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9.
KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9. ÉVFOLYAM TANÁRI KÉZIKÖNYV MAT9_TK.indd 1 2009.11.05. 13:40:27 A kiadvány a
Tanulói munkafüzet. FIZIKA 9. évfolyam 2015. egyetemi docens
Tanulói munkafüzet FIZIKA 9. évfolyam 2015. Összeállította: Scitovszky Szilvia Lektorálta: Dr. Kornis János egyetemi docens Tartalomjegyzék 1. Az egyenletes mozgás vizsgálata... 3 2. Az egyenes vonalú
ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK. 37. modul
Matematika A 3. évfolyam ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK 37. modul Készítette: KONRÁD ÁGNES matematika A 3. ÉVFOLYAM 37. modul ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ
A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 8/9. tanévi FIZIKA Országos Közéiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam
HELYI TANTERV MATEMATIKA tanításához Szakközépiskola 9-12. évfolyam Készült az EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet alapján. Érvényesség kezdete: 2013.09.01. Utoljára indítható:.. Dunaújváros,
Óravázlat TÉMAHÉT CSILLAGÁSZAT
Óravázlat TÉMAHÉT CSILLAGÁSZAT Témakör: Törtek Tantárgy: Matematika Óra témája, tananyag: Szöveges feladatok TT, M Dátum: 2010.január 19. Fejlesztési célok: Összefüggések felismerése. Becslési kialakítása.
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN
06. MODUL TÖRTEK Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN 06. Törtek Szorzás törttel, osztás törttel Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott
A három narancs spanyol népmese
BOLDOG KARÁCSONYT! Veronika meséi A három narancs spanyol népmese Sok-sok évvel ezel tt élt egy faluban egy öregasszony, akinek három feln tt fia volt. Éppen házasulandó korban, de sajnos nem találtak
Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag
Síkbeli és térbeli alakzatok 1.5 Háromszögcsaládok Síkbeli és térbeli alakzatok 5. feladatcsomag Életkor: Fogalmak, eljárások: 11 14 elnevezések a háromszögekben háromszögek belső szögösszege háromszögek
Pedagógiai program. IX. kötet
1 Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai Módszertani Intézmény Pedagógiai program IX. kötet Értelmi fogyatékos tanulók 9-10. évfolyam
9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
6. évfolyam MATEMATIKA
28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára
Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási
Érettségi és felvételi tudnivalók a 2015/2016. tanévben
Érettségi és felvételi tudnivalók a 2015/2016. tanévben Érettségi vizsga 1. Jelentkezési határidő: 2016. február 15. Érettségi vizsgatárgyak: magyar nyelv és irodalom, történelem, matematika, idegen nyelv,
Általános Szerződési és Felhasználási feltételek
Általános Szerződési és Felhasználási feltételek Érvényes: 2016. május 25-től Kérjük, amennyiben vásárlója, illetve aktív felhasználója kíván lenni Webáruházunknak, figyelmesen olvassa el az Általános
EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
Kőszegi Irén MATEMATIKA. 9. évfolyam
-- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...
TIMSS 2011. Tanári kérdőív Matematika. online. 8. évfolyam. Azonosító címke
Azonosító címke TIMSS 2011 Tanári kérdőív Matematika online 8. évfolyam Oktatási Hivatal Közoktatási Mérési és Értékelési Osztály 1054 Budapest, Báthory u. 10. IEA, 2011 Tanári kérdőív Az Önök iskolája
ELLENŐRZÉSI JELENTÉS
ELLENŐRZÉSI JELENTÉS Az Európai Uniós pályázatok vizsgálata A vizsgálatot végezte: Az ellenőrzött szervezeti egység: Fővárosi Bíróság Belső Ellenőrzési Osztály Fővárosi Bíróság Gazdasági Hivatala Hivatkozási
C Í M K E É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS 2007 JAVÍTÓKULCS MATEMATIKA. Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont
8. Í M K E É V F O L Y A M TANULÓI AZONOSÍTÓ: ORSZÁGOS KOMPETENIAMÉRÉS 2007 JAVÍTÓKULS MATEMATIKA Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont ÁLTALÁNOS TUDNIVALÓK Ön a 2007-es Országos
13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!
A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x
MOBIL KERTI KEMENCE HASZNÁLATI ÚTMUTATÓ
MOBIL KERTI KEMENCE HASZNÁLATI ÚTMUTATÓ VÁLL-KER KFT 6900 Makó, Návay Lajos tér 8. e-mail: vall-ker@vall-ker.hu; bemutatoterem@vall-ker.hu Tel : +36 62 511 040 Fax: +36 62 212 806 Mobil: +36 30 3757434
JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül
LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 3. évfolyam Diák mérőlapok A kiadvány KHF/3992-8/2008. engedélyszámon 2008.08.8. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.
Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?
10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban
MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika
2.3. A rendez pályaudvarok és rendez állomások vonat-összeállítási tervének kidolgozása...35 2.3.1. A vonatközlekedési terv modellje...37 2.3.2.
TARTALOMJEGYZÉK BEVEZETÉS...5 1. ÁRU ÉS KOCSIÁRAMLATOK TERVEZÉSE...6 1.1. A vonatközlekedési terv fogalma, jelent sége és kidolgozásának fontosabb elvei...6 1.2. A kocsiáramlatok és osztályozásuk...7 1.2.1.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Aquanil Hungary Kft. MŰSZAKI ADATLAP AQUANIL VÍZZÁRÓ CEMENTESZTRICH C-25
Email: MŰSZAKI ADATLAP AQUANIL VÍZZÁRÓ CEMENTESZTRICH C-25 Az áru megnevezése: Felhasználásra kész, gyárilag előkevert, cement bázisú, adalékanyagot és nagy szakító szilárdságú műanyag szálakat tartalmazó,
Szakmai Hírlevél. SzocioNet Dél-Dunántúli Regionális Módszertani Humán Szolgáltató Központ. 2010. április X. évfolyam 1. szám
Szakmai Hírlevél 2010/I. Szakmai Hírlevél SzocioNet Dél-Dunántúli Regionális Módszertani Humán Szolgáltató Központ 2010. április X. évfolyam 1. szám Tartalom FÓKUSZBAN: Az otthonközeli ellátás...3 HÍREK,
MATEMATIKA 5 8. ALAPELVEK, CÉLOK
MATEMATIKA 5 8. ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.
Slovenská komisia Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság
Slovenská komisia Fyzikálnej olympiády 50. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 50. évfolyam Az B kategória 1. fordulójának feladatai 1. A spulni mozgása
Görögországi beszámoló. 1. nap
1. nap Az első napunk utazással telt. Délután 5 órakor találkoztunk a Liszt Ferenc Repülőtéren, a gépünk pedig 18:45- kor indult Thessaloniki felé. Este 22:30-kor (görög időszámítás szerint) szálltunk
SEGÉDLET A TANÓRÁK MEGTARTÁSÁHOZ
SEGÉDLET A TANÓRÁK MEGTARTÁSÁHOZ óratervek, útmutatók, feladatok és megoldások Felső tagozat, 5-6. osztály Pénzügyi tervezés, megtakarítás Kedves Pedagógus! Ön a Magyarországon 2016-ban második alkalommal
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek
MATEMATIKA C 9. évfolyam
MATEMATIKA C 9. évfolyam 6. modul GONDOLKODOM, TEHÁT VAGYOK Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 6. MODUL: GONDOLKODOM, TEHÁT VAGYOK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret
MATEMATIKA. 5 8. évfolyam
MATEMATIKA 5 8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni
Matematika. 5-8. évfolyam
Matematika 5-8. évfolyam Matematika 5-8. évfolyam 1. Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és
Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2.
1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 9-12./3.3.2.2. alapján 9-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy
AJÁNLÓ... 1 1. évfolyam... 2. Számtan, algebra... 24
AJÁNLÓ A számítógéppel támogatott oktatás megszünteti a tantárgyak közti éles határokat, integrálni képes szinte valamennyi taneszközt, így az információk több érzékszervünkön jutnak el hozzánk, a képességfejlesztés
KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Ü Ú ű ö ö ö Ú ű Ú ö ö Ú Ü ö ű ű ö ö ö Ü ö ö Ü ö ö Ú ö Ú ö Ü Ú ö Ú ö Ü Ú Ú Ú ö ö ö Ú ö ű ö ö ö Ó ö ö ö ö ö ö ű ö ö Ö ö ű ű ö Ó ö ö Ú ö ö Ú Ó ÓÚ ö ö ö ö Ó Ú ű Ú ö ö ö ö ö ö ö ű ö ö ö ö ö ö ö ö ö ö ö ö ű
ő ö ü ö ű ö Ó ű ő ő ő ő ú Ó ő ő ö ő ö Ó Ó ő Ó ő Ó ö ő ö Ó ő ő ő ö ő ö ő ö Ó ö ő ű ő ö Ó ö Ó Ó Ó Ó ö ő ö ő ü ö Ó Ó ő ü ő ö Ó ő ö ő ö ő ő ö Ö ö ö ő ő ő ö ő ö ő Ó ő ö ő ő ő ö ő ő ő ö ő ő Ó ö ő ő ü ő ö ü ő
ü ü ő ő ü ő ü ő ü Ü ü Ő ő Ú ü ő Ü ü Ú Ó ű Ú Ó Ú Ó Ú ő Ú Ó Ó Ú Ó ű Ú Ó Ú Ó ő Ö Ú Ó Ó Ú Ó Ó ő Ö Ú Ó Ú Ó Ő Ő Ö ő ő Ő Ü Ó Ü ü Ő Ó ő ő ő ő Ó Ü ü ű ő Ó ő Ü ü ő ő ü Ú Ó Ő Ó ő Ő ű ő ü Ú Ú Ö Ö ő ő ő Ö Ő Ő ő ő ű
ű ű ű ű ű Ü ű ű Ü Ő
ű ű ű Ú ű ű ű ű ű Ü ű ű Ü Ő Ö Ó ű ű ű Ö Ö ű ű Ö Ü ű ű ű Ó ű ű Ö ű Ö Ú Ú ű ű Ú ű ű ű ű ű ű Ö ű ű Ö ű ű ű ű ű ű ű ű ű ű ű Ü Ü ű ű ű Ú ű ű Ö Ö Ü Ó ű Ú Ó Ó ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü Ü ű Ü ű ű ű ű ű ű Ó ű
Tárgy: A Borsod-Abaúj-Zemplén Megyei Kórház és Egyetemi Oktató Kórház élelmezési üzemének működtetésére vonatkozó Vállalkozási szerződés jóváhagyása
Borsod-Abaúj-Zemplén Megyei Önkormányzat Közgyűlésétől, Miskolc 94/2004. (IX. 16.) Kgy. számú határozat Tárgy: A Borsod-Abaúj-Zemplén Megyei Kórház és Egyetemi Oktató Kórház élelmezési üzemének működtetésére
ú ú ú ű ú ú ú ú ú ú ú ű ú ú ű ű ű ú ú ú ú Ó ú ú ú ú Ü Ü Ü ú ű ű ú ú ú ú ú ű ű ú ú ű ú ű ú ú ű ú Ö Ö Ú Ü Ö ű ű ú ű ű ű ú ű ű ú ű ú ű ú ú ú ú ú ú ú ú ú ű ú ű ú ű ű Ú ú ű ú ú ú Ó ú ú ú ú ű ű ű ú ú ú ú ű ű
3. gyakorlat. 1/7. oldal file: T:\Gyak-ArchiCAD19\EpInf3_gyak_19_doc\Gyak3_Ar.doc Utolsó módosítás: 2015.09.17. 22:57:26
3. gyakorlat Kótázás, kitöltés (sraffozás), helyiségek használata, szintek kezelése: Olvassuk be a korábban elmentett Nyaraló nevű rajzunkat. Készítsük el az alaprajz kótáit. Ezt az alsó vízszintes kótasorral
Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy
Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és
(de progit ne hagyd ki ) www.jatektan.hu/jatektan/ 2013/009/Folds.html )
Hajtogatósdikhoz mindenféle Arányosság (lineáris és négyzetes), mintakövető építkezés, logikai feladványok próbálgatással, ráérzéssel, gondolkodással, stb. (8 év felettieknek sorban, amíg el nem vesztik
Gyakorlat 2016. márc-ápr
Gyakorlat 2016. márc-ápr HÁROM NAPOS Táplálkozási napló Neve: Neve: HÁROM NAPOS Táplálkozási napló FONTOS!!! A napló két hétköznapi (NEM EGYMÁST KÖVETŐ NAP!!!) és egy hétvégi napot tartalmazzon, különben
KÉRDÉSSOR. a 190/2009. Korm. rendelet a főépítészi tevékenységről szerinti főépítészi vizsga Építészeti különös követelményeihez
KÉRDÉSSOR a 190/2009. Korm. rendelet a főépítészi tevékenységről szerinti főépítészi vizsga Építészeti különös követelményeihez (okl. településmérnökök számára) a jelű válaszok tesztkérdés helyes válaszai,
Csapatnév:.. Iskola:. FIZIKA Oldjátok meg a következő feladatokat! Írjátok le a számolás menetét is!
FIZIKA Oldjátok meg a következő feladatokat! Írjátok le a számolás menetét is! 1., A tengeralattjáró a víz felszíne alatt úszik 30 m-rel. Mekkora a tömege annak a vízoszlopnak, amely a 80 dm 2 területű
34 541 01 Édesipari termékgyártó
S Z I N T V I Z S G A M E G O L D Á S a Magyar Agrár-, Élelmiszergazdasági és Vidékfejlesztési Kamara hatáskörébe tartozó szakképesítésekhez, a 41/2013. (V. 28.) VM rendelettel kiadott szakmai és vizsgáztatási
Javítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2011 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2011-es Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében.
Javítókulcs MateM atika
6. évfolyam Javítókulcs MateM atika Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2012 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2012-es Országos kompetenciamérés matematikafeladatainak
DOMSZKY ZOLTÁN. Rendhagyó matek II.
DOMSZKY ZOLTÁN Rendhagyó matek II. Ajánlom ezt a könyvet illetve sorozatot mind közül is legkedvesebb tanáraimnak, Molnár Györgynének, aki korrekt szigorúságával a középiskolában alapozta meg szeretetemet
Egyéb Szolgáltatások Szerződési Feltételei
Egyéb Szolgáltatások Szerződési Feltételei Tartalomjegyzék 1. BEVEZETÉS 3 2. MOBIL VÁSÁRLÁS 4 3. FELVONÓ TÁVFELÜGYELET 19 4. PC SECURITY 27 5. KÉSZÜLÉKBIZTOSÍTÁS 28 6. VODAFONE MINI BÁZIS 29 7. ADATŐR
A megváltozott munkaképességű személyek foglalkoztatási helyzete
VÉDETT SZERVEZETEK ORSZÁGOS SZÖVETSÉGE A megváltozott munkaképességű személyek foglalkoztatási helyzete Felmérés az Országos Foglalkoztatási Közalapítvány támogatásával Készítette: Balogh Zoltán, Dr. Czeglédi
Kitöltési útmutató a Magánfőző párlat adójegy megrendelése című NAV_J27 elektronikus nyomtatványhoz
Kitöltési útmutató a Magánfőző párlat adójegy megrendelése című NAV_J27 elektronikus nyomtatványhoz Tartalomjegyzék Bevezetés és jogszabályi háttér Főlap (nyomtatvány A-F része) Pótlap (nyilatkozatok)
Nemzetépítő vártán - vitázzunk vagy száz szón, ahogyan most Magfalván, úgy volt régen Szárszón
Nemzetépítő vártán - vitázzunk vagy száz szón, ahogyan most Magfalván, úgy volt régen Szárszón 2015-07-31.-én és 08-1.-én és 2.-án! Nem a rendszert kell megdönteni, hanem ki kell szervezni alóla a társadalmat.
A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. I.
Oktatási Hivatal A 11/1. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából I. kategória A dolgozatok elkészítéséhez minden segédeszköz használható.
PYTAGORIÁDA Súťažné úlohy okresného kola maďarský preklad 35. ročník, školský rok 2013/2014 KATEGÓRIA P 3
KATEGÓRIA P 3 1. Misi két csomag rágógumiért 4 eurót fizetne. Írjátok le, hogy hány eurót fog Misi fizetni, ha mindhárom testvérének egy-egy csomag, saját magának pedig két csomag rágógumit vett! 2. Írjátok
Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február
Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET
COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET 5. osztály 2015/2016. tanév Készítette: Tóth Mária 1 Tananyagbeosztás Évi óraszám: 144 óra Heti óraszám: 4 óra Témakörök:
AJÁNLATTÉTELI FELHÍVÁSA ÉS DOKUMENTÁCIÓJA
Gyomaendrőd Város Önkormányzat 5500 Gyomaendrőd, Selyem út 124. AJÁNLATTÉTELI FELHÍVÁSA ÉS DOKUMENTÁCIÓJA Iskolai közétkeztetés színvonalának fejlesztése tárgyú a Kbt. 122./A. szerinti hirdetmény közzététele
Everlink Parkoló rendszer Felhasználói és Üzemeltetési útmutató
Everlink Parkoló rendszer Felhasználói és Üzemeltetési útmutató Kiemelt magyarországi disztribútor: LDSZ Vagyonvédelmi Kft. I. fejezet Általános ismertető Az EverLink a mai követelményeket maximálisan
Matematikaóra-tervezet
Matematikaóra-tervezet "Mondd el és elfelejtem; Mutasd meg és megjegyzem; Engedd, hogy csináljam és megértem." (Kung Fu-Ce) Készítette: Horváth Judit Osztály: 3. osztály (év vége) Tantárgy: matematika
MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára
MEGOLDÓKULCS MATEMATIKA PRÓBAFELVÉTELI a 8. évfolyamosok számára 2012. december 17. 10:00 óra NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tollal dolgozz! Zsebszámológépet nem asználatsz. A feladatokat tetszés szerinti
Tanmenetjavaslat 5. osztály
Tanmenetjavaslat 5. osztály 1. A természetes számok A tanmenetjavaslatokban dőlt betűvel szedtük a tananyag legjellemzőbb részét (amelyet a naplóba írunk). Kisebb betűvel jelezzük a folyamatos ismétléssel
2. Halmazelmélet (megoldások)
(megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek
MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG?
MATEMATIKA C 8. évfolyam 6. modul ATTÓL FÜGG? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 6. MODUL: ATTÓL FÜGG? TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
1. BEVEZETÉS. - a műtrágyák jellemzői - a gép konstrukciója; - a gép szakszerű beállítása és üzemeltetése.
. BEVEZETÉS A korszerű termesztéstechnológia a vegyszerek minimalizálását és azok hatékony felhasználását célozza. E kérdéskörben a növényvédelem mellett kulcsszerepe van a tudományosan megalapozott, harmonikus
Indiai titkaim 5 - nagy kupac csomag
2010 szeptember 05. Flag 0 Értékelés kiválasztása Még nincs értékelve Értéke: 1/5 Értéke: 2/5 Mérték Értéke: 3/5 Értéke: 4/5 Értéke: 5/5 Eljött a nagy nap. 1993. december 13-a, Luca napja. Indulás Indiába
Erkölcstan óraterv. Idő Az óra menete Nevelési-oktatási stratégia Megjegyzések. Módszerek Munkaformák Eszközök
A pedagógusok neve: T. R., K. M., B. D., B. S. Tantárgy: Erkölcstan Osztály: 2.a A hely előkészítése, ahol a foglalkozást tervezik: csoportasztalok Erkölcstan óraterv Az óra témája: Reggel, este szabályok.