Néhány egyszerű tétel kontytetőre ekintsük z ábr szerinti szimmeikus kontytetőt! ábr Az ABC Δ területe: ABC' m,v; ( ) z ABC Δ területe: ABC m ; ( ) z ABC* Δ területe: ABC* m ( 3 ) Az ábr szerint: m,v cos ; m ( 4 ) m sin m ( 5 ) Most ( ) és ( 4 ) - gyel:
m cos,v ABC ; mjd ( ) és ( 5 ) - tel: m ABC sin ovábbá ( ) és ( 6 ) - tl: ABC' ABC ; cos mjd ( 3 ) és ( 7 ) - tel: ABC* ABC sin ( 6 ) ( 7 ) ( 8 ) ( 9 ) A ( 8 ) képlet lpján z étel: A konty - síkidom ( háromszög ) tényleges területe egyenlő konty - síkidom felülnézeti képe területének és hjlásszöge koszinuszánk hánydosávl A ( 9 ) képlet lpján étel: A konty - síkidom ( háromszög ) tényleges területe egyenlő konty - síkidom oldlnézeti képe területének és hjlásszöge szinuszánk hánydosávl Most számítsuk ki konytető felszínét, zz z összetevő síkidomok terület - összegét! A felszín, z ábr jelöléseivel: A ( 0 ) ABC BB CC ( 9 ) szerint is: ABC* ABC m sin sin Most CC E Δ - ből: ( ) m tg, ( ) mjd ( ) és ( ) - vel: tg tg ABC sin tg cos Innen ( 0 ) első tgj: ( 3 )
3 tg ABC ( 4 ) tg cos Ezután htározzuk meg péz lkú tetősíkidomok területét! BB CC b m b mb m,v mb b m,v ( 5 ) Ismét z ábr lpján: m b ; ( 6 ) cos mjd ( ) - vel is: m tg tg m,v m tg90 m ctg ; ( 7 ) tg tg tg most ( 5 ), ( 6 ), ( 7 ) képletekkel: tg BB CC b cos tg ( 8 ) Innen ( 0 ) második tgj: tg b tg BB CC b cos tg cos ( 9 ) tg cos Most ( 0 ), ( 4 ) és ( 9 ) - cel: tg b tg A tg cos cos tg cos tg b ( 0 ) tg cos cos cos Mivel ( 8 ) és ( 3 ) szerint: tg ABC', ( ) tg és mivel teljes tető felülnézeti vetületi területe vet b, ( ) ezért ( 0 ), ( ) és ( ) - vel szimmeikus kontytető felszíne: vet A ABC' cos cos ( 3 ) cos Már ez is lehetne végeredmény, de szemléletesség még fokozhtó Ennek érdekében áendezzük ( 3 ) - t:
4 cos cos ( 4 ) ABC' vet ABC' A A ( 4 ) összefüggés megjegyzését elősegítheti ábr is ábr Ezek lpján kézenfekvő fentieket áltlánosító lábbi 3 étel: Az α i hjlásszögű tetősíkokból álló tető A felszínét úgy htározzuk meg, hogy képezzük z egyes tetőrészek vet,i lprjzi területének és hjlásszögük koszinuszánk hánydosát, és vesszük ezek összegét Képlettel: n vet, vet, vet,i vet,n vet,i A cos cos cos cos cos i n i i Megjegyzések: M A 3 étel lklmzásához elő kell állítni szerkesztés vgy számítás útján tető felülnézeti képén z dott tetőhjlásokhoz tozó vetületi síkidomokt, ill ezek területét A szimmeikus kontytető fenti esetében számítássl oldottuk meg ezt feldtot M Az α és β hjlású tetősíkok metszésvonlánk helyzetét példánkbn felülnézeti képen z ábrán láthtó δ szöggel jellemeztük
5 Ennek ngyságár z ábr és ( 7 ) szerint: m,v tg tg tg ( 5 ) Azonos tetőhjlások esetén β = α, így tg δ =, miből δ = 45, derékszögű ereszsrok esetében, mint fent is Más szvkkl: zonos hjlású tetősíkok metszésvonlánk felülnézeti képe szögfelező helyzetű Ez z állítás áltlánosbbn is igz M3 Az ábr segítségével nyomon követhetjük konty - háromszög lkulását, h z α hjlásszög derékszöghöz t A függőleges helyzetbe fordult konty - háromszög / oromfli háromszög területe ( 3 ) képlettel dódik M4 A ( 0 ) képletből kiolvshtó, hogy z egyező hjlásszögű tetősíkokból álló szimmeikus kontytető felszíne megegyezik z ugynzon lprjzr állított szimmeikus nyeregtető felszínével M5 A ( 0 ) képletből z is kiolvshtó, hogy α = 90 esetén β hjlású nyeregtető felszínébe z oromflk területe is beleszámítn Minthogy ez zvrt okozht pl: z oromfli háromszögeket nem, vgy nem ugynzzl z nyggl fedik, ill burkolják, mint nyeregrészt, stb, így célszerű lehet tetőfelszín számításához z 0 < α < 90 kikötést tenni Most térjünk vissz kontytetőt lkotó síkidomokhoz ld ábr! A DCC D péz z elölnézeti képen jelenik meg; ennek területe, z ábr jelöléseivel: e t b m ( 6 ) A BCC B péz területe: t b m b ( 7 ) Felhsználv, hogy z ábr szerint is m sin, m ( 8 ) b ( 7 ) és ( 8 ) - cl: t b m ; ( 9 ) sin mjd ( 6 ) és ( 9 ) összehsonlításávl: e ( 30 ) sin A ( 30 ) képlet lpján
6 4 étel: A kontytető péz lkú tető - síkidománk területét megkpjuk, h péz elölnézeti képének területét osztjuk sját hjlásszöge szinuszávl A fentiek szerint másképpen is felírhtjuk szimmeikus kontytető felszínét Az ábr szerint z ABC* vetület - háromszög z oldlnézeti képen láthtó, ezért o ABC* h és ABC h jelölésekkel, ( 9 ) szerint: o h h ( 3 ) sin A tető felszíne: A, ( 3 ) h mjd ( 30 ), ( 3 ) és ( 3 ) - vel: végül o e h A sin sin o e h A, sin sin ( 33 ) A ( 33 ) képlet lpján z 5 étel: A szimmeikus kontytető felszínét úgy is meghtározhtjuk, hogy z elöl - és z oldlnézeti síkidomok területét osztjuk sját ereszvonlukból induló tetősík hjlásszögének szinuszávl, mjd vesszük kpott értékek összegének kétszeresét A ( 33 ) összefüggés megjegyzését segítheti 3 ábr is Összeállított: Glgóczi Gyul mérnöktnár Sződliget, 008 szeptember 3 3 ábr