Fázisátalakulások vizsgálata

Hasonló dokumentumok
Fázisátalakulások vizsgálata

Fázisátalakulások vizsgálata

Jegyzőkönyv. fázisátalakulás vizsgálatáról (6)

Fajhő mérése. Mérést végezte: Horváth Bendegúz Mérőtárs neve: Olar Alex Mérés ideje: Jegyzőkönyv leadásának ideje:

Termoelektromos hűtőelemek vizsgálata

Fajhő mérése. (Mérési jegyzőkönyv) Hagymási Imre február 26. (hétfő délelőtti csoport)

5. Fajhő mérése jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Fajhő mérése. Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport

Peltier-elemek vizsgálata

Modern Fizika Labor. 2. Elemi töltés meghatározása

2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Mágneses szuszceptibilitás mérése

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

A II. kategória Fizika OKTV mérési feladatainak megoldása

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia május 6.

Fényhullámhossz és diszperzió mérése

Modern Fizika Labor. 17. Folyadékkristályok

Hőmérsékleti sugárzás

Rugalmas állandók mérése

Belső energia, hőmennyiség, munka Hőtan főtételei

Rugalmas állandók mérése

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Mágneses szuszceptibilitás mérése

Hangfrekvenciás mechanikai rezgések vizsgálata

FIZIKA. Ma igazán belemelegszünk! (hőtan) Dr. Seres István

Termodinamika (Hőtan)

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

Mérési hibák

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Folyadékszcintillációs spektroszkópia jegyz könyv

Ellenállásmérés Ohm törvénye alapján

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

Hőtan I. főtétele tesztek

2. KRISTÁLYOSSÁG MEGHATÁROZÁSA DSC ÉS SŰRŰSÉGVIZSGÁLATTAL

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Félvezetk vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata

Modern fizika laboratórium

A mágneses szuszceptibilitás vizsgálata

Nehézségi gyorsulás mérése megfordítható ingával

Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel

Halmazállapot-változások

4. Laplace transzformáció és alkalmazása

Modern Fizika Labor Fizika BSC

17. Diffúzió vizsgálata

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

Mérésadatgyűjtés, jelfeldolgozás.

Halmazállapot-változások vizsgálata ( )

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

(2006. október) Megoldás:

2. Rugalmas állandók mérése

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

7. Mágneses szuszceptibilitás mérése

19. A fényelektromos jelenségek vizsgálata

A mikroszkóp vizsgálata Lencse görbületi sugarának mérése Newton-gyűrűkkel Folyadék törésmutatójának mérése Abbe-féle refraktométerrel

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

Modern Fizika Laboratórium Fizika BSc 1. Hőmérsékleti sugárzás

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Polimerek fizikai, mechanikai, termikus tulajdonságai

Runge-Kutta módszerek

Atomi er mikroszkópia jegyz könyv

AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.

Termodinamika. 1. rész

Fizika minta feladatsor

Descartes-féle, derékszögű koordináta-rendszer

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3 Ellenállás mérés az U és az I összehasonlítása alapján. 3.a mérés: Ellenállás mérése feszültségesések összehasonlítása alapján.

Jegyzőkönyv. mágneses szuszceptibilitás méréséről (7)

100 o C víz forrása 212 o F 0 o C víz olvadása 32 o F T F = 9/5 T C Példák: 37 o C (láz) = 98,6 o F 40 o C = 40 o F 20 o C = 68 o F

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Modern Fizika Labor. A mérés száma és címe: A mérés dátuma: Értékelés: Infravörös spektroszkópia. A beadás dátuma: A mérést végezte:

Mérések állítható hajlásszögű lejtőn

Modern Fizika Labor Fizika BSC

E-tananyag Matematika 9. évfolyam Függvények

Lemezeshőcserélő mérés

Rugalmas állandók mérése

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

7. 17 éves 2 pont Összesen: 2 pont

5. Laboratóriumi gyakorlat

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Bevezetés a lézeres anyagmegmunkálásba

3. POLIMEREK DINAMIKUS MECHANIKAI VIZSGÁLATA (DMA )

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia március 18.

A fák növekedésének egy modelljéről

BIOMATEMATIKA ELŐADÁS

Mágneses szuszceptibilitás mérése

Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVI-a, Zalău Proba experimentală, 3 iunie 2013

Az éjszakai rovarok repüléséről

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Átírás:

Klasszikus Fizika Laboratórium VI.mérés Fázisátalakulások vizsgálata Mérést végezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.18..

1. Mérés leírása A mérés során egy adott minta viselkedését vizsgáljuk hőmérsékletváltozás (hűtés, fűtés) hatására. A minta fázisátalakuláson megy keresztül. Az adatokat egy mérési programban rögzítjük. A kiértékelés során megállapítjuk a fázisátalakulások jellemzőit, vagyis az olvadáspontot és a forráspontot, illetve a minta egységnyi tömegre vonatkoztatott fázisátalakulási hőjét. 2. Mérőeszközök anyagminta számítógépes mérő- és kiértékelőprogramok DTA (Digital Thermal Analysis) leegyszerűsített változata (fémtömb, kályha, szabályozó, termoelemek, multiplexer, feszültségmérő) elektromos mérleg 3. A mérés elmélete Hő hatására az anyagok tulajdonságai megváltoznak. Azt a jelenséget, mikor az anyagok lassú, folytonos változása egy bizonyos hőmérsékleten ugrásszerűvé válik, fázisátalakulásnak nevezzük. A mérés során egy adott minta fűtés során bekövetkező olvadását és hűtés során bekövetkező dermedését vizsgáltuk. A mérést DTA-szerű berendezéssel végeztük el. A mintát a mintatartóba tettük, amely egy elektromosan vezérelhető kályhában helyezkedett el. Mindezt vízhűtéssel szigeteltük el a környezettől. A kályha és a tartó hőmérsékletét termoelemekkel mértük. Ezek referenciapontja egy elektromos vezérléssel állandó hőmérsékleten tartott műjég volt. A kályha hőmérsékletét és annak változási sebességét egy kályhaszabályozó berendezéssel tudtuk változtatni. A rendszert egytest modellel közelítettük, vagyis feltesszük, hogy a minta és a mintatartó hőmérséklete azonos. A minta és a környezet közti hőátadást jellemző együttható a h hőátadási tényező. A mintatartó hőmérséklete T, a környezeté pedig T k, a kettejük közt átadott hő pedig Q. A hőátadást jól leírja a Newton-féle hőátadási törvény. dq dt = h(t T k) A kályha hőmérsékletét lineárisan változtatjuk az idő függvényében adott sebességgel. Melegítéskor: T k (t)=t 0 +αt Hűtéskor: T k (t)=t 0 α t

A méréseket számítógépes programmal rögzítettük, amely ábrázolta nem csak a minta és a környezet (vagyis a kályha) hőmérsékletét, hanem ezek különbségét is. A T (t) T k (t) különbségi hőmérsékletgörbének az alapvonallal bezárt F területe arányos a minta által felvett, illetve leadott Q fázisátalakulási hővel. Q f =h F, ahol a h hőátadási együttható az arányossági tényező. Az F területet egy hitelesítési görbéről olvassuk le, a kiértékelőprogram segítségével. Innen a fajlagos fázisátalakulási hő: q f = h F m, ahol m a minta tömege. 4. Mérési eredmények és kiértékelés Először felfűtöttük, és hagytuk megolvadni a mintát, túlhevítettük az olvadásponton. Ezzel egyrészt meg tudtuk becsülni az olvadáspontot, másrészt azért volt rá szükség, hogy a minta az olvadás során jobban szétterüljön a mintatartóban, így pontosabbá téve a közelítést, miszerint a minta és a mintatartó hőmérséklete megegyezik. 4.1 Lassú hűtés A gyors felfűtés után lehűtöttük a rendszert, a minta lehűlt az olvadáspontja alá, fázisátalakulás mégsem jött létre. Ezt hívjuk túlhűtésnek. Majd hirtelen hőmérséklet emelkedés következett be, és végbement a fázisátalakulás. Mikor a dermedés folyamata megindult, hő szabadult fel, a minta felmelegedett a dermedési hőmérsékletére, és ezen a viszonylag konstans értéken maradt, amíg teljesen meg nem szilárdult. Ezután a minta hőmérséklete exponenciálisan közelített az alapvonalhoz. A hűtés sebessége 4 C min volt. A T t grafikonon látható rövid konstans szakasz és a hőmérsékleti tengely metszete megadja a minta dermedési hőmérsékletét. T o1 =228,7 C

A lassú hűtéshez tartozó T t grafikon: A lassú hűtéshez tartozó (T k T ) - t grafikon: A (T k T ) - t grafikon a hőmérséklet különbséget ábrázolja az idő függvényében. A függvény által bezárt területet a kiértékelő program numerikus integrálással kiszámolta. F 1 =55,331 C min

4.2 Lassú fűtés Végül újra fűtöttük a mintát, ahol kis kezdeti szakasz után a mintatartó és a környezet hőmérséklete egyenlő mértékben változott, vagyis a különbségük beállt egy konstans értékre. Ennek az egyenesét alapvonalnak nevezzük. A fázisátalakulás (azaz az olvadás) végbemenésekor a mintatartó (vagyis a minta) hőmérséklete egy közel állandó értéket vesz fel, majd miután az egész minta megolvadt, újra beáll az alapvonalhoz, exponenciálisan megközelítve azt. A fűtés sebessége itt is 4 C min volt. A lassú fűtéshez tartozó T t grafikon: A T t grafikonon a konstans szakasznak a hőmérsékleti tengellyel való metszetéből megkapjuk a minta olvadáspontját. T o2 =232,66 C Ebben az esetben is a kiértékelő program számolta ki a hőmérséklet különbség időfüggését ábrázoló (T k T ) - t grafikon által bezárt területet. F 2 =51,863 C min

A lassú fűtéshez tartozó (T k T ) - t grafikon: 4.3 Fázisátalakulási hő Az általam használt minta tömege: m=0,7448 g A minta olvadáspontját megkaphatjuk, ha átlagoljuk az előző két módszerből kapott dermedési és olvadási hőmérsékleteket. T 0 = T +T o1 o2 =230,68 C 2 Az olvadáspont hibáját a két érték átlagtól való eltérésével azonosnak vettem. Tehát a mérés során használt minta hibával együtt: T o ±Δ T o =230,7±1,98 C A laborban található grafikonról leolvastam ehhez a hőmérséklethez tartozó hőátadási együttható értékét. J h=0,755 C min

A képletben szereplő görbék által bezárt területet szintén az előzőleg kapott két terület átlagának tekintjük. F = F F 1 2 =53,597 C min 2 Ezek segítségével már kiszámolhatjuk a fázisátalakulási hőt. Q f =h F =40,466 J Az olvadáspont, illetve a görbék által bezárt terület hibájnak a lassú hűtés és fűtés során kapott értékek átlagtól való eltérését tekintjük. A fázisátalakulási hő hibája: Δ Q f =Q f ( Δ h h + Δ F F ) A felhasznált mennyiségek hibája: J Δ h=0,005 C min Δ F =1,734 C min Tehát a fázisátalakulási hő hibával együtt: Q f ±Δ Q f =40,5±1,58 J Ezt felhasználva a fajlagos fázisátalakulási hő: q f = Q f m =54,331 J g Ez utóbbi hibája: Δ q f =q f ( Δ h h + Δ F F + Δ m m ) A felhasznált mennyiségek hibái: J Δ h=0,005 C min Δ F =1,734 C min m=0,0001 g Tehát a fajlagos fázisátalakulási hő a hibájával együtt: q f ±Δ q f =54,3±2,12 J g

A mérés viszonylag nagy hibái onnan származnak, hogy az általunk használt elmélet nem teljesen tükrözi a valóságot. Hiszen például nem vettük figyelembe a minta fajhőjének hőmérsékletfüggését, illetve a feltevés, hogy a minta és a mintatartó hőmérséklete megegyezik, csak közelítés. A mérési leírásban található táblázat alapján az általam használt minta valószínűleg ón (Sn), mert a kapott mennyiségek ( T o és q f ) nagyjából megegyeznek az ónhoz tartozó irodalmi értékekkel. Az eltérés származhat a mérés hibájából, illetve a mintán található esetleges szennyeződésekből.