Tartók statikája. 1. előadás Hajlított tartók rugalmas alakváltozása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tartók statikája. 1. előadás Hajlított tartók rugalmas alakváltozása"

Átírás

1 artók statkája. eőadás Hajított tartók rugamas aakvátozása Szabó mre Gábor écs udományegyetem űszak és nformatka Kar Építőmérnök anszék

2 . Statkaag határozott gerendatartók rugamas aakvátozása -. ábra. Hajított gerendatartó rugamas aakvátozása

3 tő függ a deformáódott tartóaak? a terheéstő, a tartó megtámasztásanak módjátó. A megtámasztások ehetnek: 3. ábra. egtámasztások kaakítása

4 A meggörbüt tengeyvona egyenete: ρ y" y' aho: ρ a meggörbüt tengeyvona sugara; y a meggörbüt tengeyvonaat eíró függvény. után az emozduások (aakvátozások) gen kcsnyek, ezért a tag az egyenetbő ehanyagoható. ρ y" ρ x k (x) így ρ k (x) y" y" x és k (x) x y' aho: rugamasság moduus; x a keresztmetszet x rányú nercanyomatéka.

5 DRVÁLÁS NGRÁLÁS. Függvénykapcsoatok A teher-, a nyíróerő- és a nyomatékfüggvények között függvénykapcsoat kegészítése a szögeforduás és emozduás ábrákka: q y V x q (z) teherfüggvény y x q z y x x y (z) x y y (z) meggörbüt tengeyvonaat eíró függvény y x. tábázat. Függvénykapcsoatok

6 4. ábra. Kéttámaszú tartó aakvátozása.

7 5. ábra. Kéttámaszú tartó aakvátozása.

8

9

10

11

12 6-. ábra. Kéttámaszú konzoosan túnyúó tartó aakvátozása.

13 . ábra. Kéttámaszú konzoosan túnyúó tartó aakvátozása.

14 3. Fetéteek a rúd egyenes tengeyű, áandó keresztmetszetű, anyaga homogén, neársan rugamas, az emozduások és aakvátozások gen kcsnyek, érvényesek a ks emozduásokra vonatkozó közeítések, érvényesek az eem szárdságtan összefüggése, ehanyagoható a fajagos nyúás és fajagos szögvátozás hatása az aakvátozásokra, csak a fajagos eforduássa ke számon.

15 4. Aakvátozások számítása. ábra. Normáerő és hőmérséketvátozás hatása N ε A ε(t) α Δt aho: ε aakvátozás (megnyúás); N normáerő; rugamasság moduus; A a keresztmetszet feüete; α hőtáguás együttható; Δt egyenetes hőmérséketvátozás.

16 3. ábra. Nyíróerő hatása γ G A γ ρ ( esetén) G A aho: γ aakvátozás (szögtorzuás); nyíróerő; G nyírás moduus; A a keresztmetszet feüete; ρ a meggörbüt tengeyvona sugara.

17 4. ábra. Nyomaték és reatív hőmérséketvátozás hatása k (x) x k (x) Δ Δ h aho: k aakvátozás (szögeforduás); forgatónyomaték; rugamasság moduus; x a keresztmetszet nercanyomatéka; Δ hőmérséketvátozás. a f

18 4. unkatéte A munka jee: L Az erő munkája: támadáspontjának etoódása L e (skaár szorzatként) aho: L munka; erő; e a támadáspont etoódásának erő rányú vetüete. Az erőpár munkája: L (skaár szorzatként) aho: L munka; nyomaték; φ szögeforduás.

19 ényeges, egyensúyban évő küső erőrendszer: 5. ábra. gyensúyban évő küső erőrendszer A, B,, Vrtuás küső erőrendszer: Vrtuás: tetszőeges, önkényesen fevett, de statkaag ehetséges, egyensúyban évő erőrendszer. 6. ábra. Vrtuás küső erőrendszer A, B,

20 Küső munkát a testre ható egyensúyban évő dnámrendszer végez vaamyen emozduásrendszeren.. épés: működtessük a tartón eőször a () tényeges dnámrendszert, amey étrehozza az aakvátozásokat (e p ), (dnám = erők + nyomatékok). épés: működtessük a tartón a () vrtuás dnámrendszert, így jön étre a () erőrendszer munkája a () dnámrendszer okozta emozduásrendszeren. z fordítva s gaz, ha eőször működtetjük a () vrtuás dnámrendszert, majd utána a () tényeges dnámrendszert, akkor beszéhetünk a () dnámrendszer munkájáró a () dnámrendszer okozta emozduásrendszeren. degen munka: amennyben más erőrendszer végz a munkát és más erőrendszer hozta étre az emozduást. Saját munka: ugyanaz az erőrendszer végz a munkát, mnt ameyk étre hozta az emozduást.

21 Küső munka: Küső munkát vaamey küső dnámrendszer végez vaamey emozduásrendszeren. Küső, degen munka: L L K K e Küső saját munka: L L K K e

22 Beső aakvátozás munka: Beső aakvátozás degen munka: Véges hosszúságú rúdon: Az eső két tag ehanyagoható, ezért:,, N h t - t α etve k A G ρ γ Δt α etve A N ε k γ ε N L a f B B ρ A G A N N L B L

23 Rácsos tartóná, aho csak normáerő keetkezk: gy rúdban: S S LB A Az egész rácsos tartóban: n S S LB s A S S A S S A s

24 Beső aakvátozás saját munka: Véges hosszúságú rúdon: Az eső két tag ehanyagoható, ezért:,, N h - t t α etve k A G ρ γ Δt α etve A N ε k γ ε N L a f B B ρ A G A N L B L

25 Rácsos tartóná, aho csak normáerő keetkezk: gy rúdban: Az egész rácsos tartóban: degen munkák tétee: küső degen munka = beső degen munka amennyben: = B s A S A S A S L n B s A S L B K e L L

26 Saját munkák tétee: küső saját munka = beső saját munka B K e e L L

27 . mntapéda ekkora a kéttámaszú tartó φ A és φ B szögeforduása, vaamnt mekkora a tartó közepén évő -es keresztmetszet e y ehajása? 7. ábra.. mntapéda kéttámaszú tartó aakvátozása őjeek: emozduás: a koordnátarendszer szokásos eőjeezése szernt, (abszoút)szögeforduás: az óramutató járásáva megegyező rány poztív, az eenkező rány negatív. A szmmetrkus terheés matt: A B A megodás menete:. épés: támaszerők kszámítása,. épés: megrajzojuk a tartó eredet terheésébő kapott nyomaték ábrát, (több teher esetén a teheresetekbő cészerű küön-küön nyomaték ábrát rajzon, majd a küön-küön végzett számítás után az eredményeket összegezn),

28 3. épés: vrtuás teher fevétee attó függően, hogy mey aakvátozást akarjuk meghatározn, szögeforduás meghatározásához vrtuás nyomatékot ke bektatn, meynek nagysága a számítás egyszerűsítése matt egy egységny [ kncm], emozduás meghatározásához vrtuás erőt ke bektatn, meynek nagysága a számítás egyszerűsítése matt egy egységny [ kn]. A vrtuás terhet mndg oyan rányban ke fevenn, hogy ugyanazt az aakvátozást okozza a törzstartón, mnt amt az eredet teher s okozott. Abba a keresztmetszetbe ke fevenn, aho az aakvátozás nagyságát k akarjuk számon. 4. épés: megrajzojuk a tartó vrtuás terheésébő kapott nyomaték ábrát, 5. épés: a számítás egyszerűsítése matt bevezetjük a grafkus ntegráást. Két nyomaték ábra összentegráása úgy történk, hogy egyk ábráró eovassuk a nyomaték ábra terüetét, majd ugyanennek az ábrának a súypontját, a másk nyomaték ábrára vetítjük. A kszámot terüetet a kmetszett nyomaték értékke összeszorozzuk, majd mndezt még beszorozzuk / értékke.

29 8. ábra.. mntapéda szögeforduás számítása 4 q 8 q 3 3 A A

30 9. ábra.. mntapéda ehajás számítása 3. ábra. Háromszögarány

31 384 q q 3 e e 4 y y

32 . mntapéda ekkora a kéttámaszú tartó φ A és φ B szögeforduása, vaamnt mekkora a tartó közepén évő -es keresztmetszet e y ehajása? 3. ábra.. mntapéda kéttámaszú tartó aakvátozása A szmmetrkus terheés matt: A B

33 3. ábra.. mntapéda szögeforduás számítása A A

34 33. ábra.. mntapéda szögeforduás számítása A A

35 Lehajás a saját munkák téteéve számova: e e L L 3 3 y B K

36 Fehasznát rodaom OROSZ ÁRÁD, HAJÓSNÉ S SZR: echanka. Határozatan szerkezetek. Jegyzet + pédatár, écs, 99 HAJÓSNÉ S SZR : artók statkája. Hajított gerendatartók rugamas aakvátozása. ektronkus jegyzet, écs,

= M T. M max. q T T =

= M T. M max. q T T = artók statikája II. SZIE-YMM BSc Építőmérnöki szak IV. évfoyam 3. eőadás: Határozatan tartók képékeny számítása Mechanika II M R rugamas határnyomték M K képékeny határnyomaték másképp: M törőnyomaték

Részletesebben

Castigliano- és Betti-tételek összefoglalása, kidolgozott példa

Castigliano- és Betti-tételek összefoglalása, kidolgozott példa Castigiano- és Betti-téteek összefogaása, kidogozott péda Készítette: Dr. Kossa Attia kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék Frissítve: 15. január 8. Az aakvátozási energiasűrűség számítása egy

Részletesebben

A befogott tartóvég erőtani vizsgálatához III. rész

A befogott tartóvég erőtani vizsgálatához III. rész A befogott tartóvég erőtani vizsgáatához III. rész Az I. részben a befogott gerendavéget merevnek, a tehereoszást ineáris függvény szerintinek vettük. A II. részben a befogott gerendavéget rugamasan deformáhatónak,

Részletesebben

Kidolgozott mintapéldák szilárdságtanból

Kidolgozott mintapéldák szilárdságtanból . péda Kidogozott mintapédák sziárdságtanbó Határozzuk meg az SZ. ábrán átható tégaap aakú keresztmetszet másodrendű nyomatékát az s (súyponton átmenő) tengeyre definició aapján! definició szerinti képet:

Részletesebben

Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tesztelés. Tankönyv fejezetei: HF: 4. fej.: 1, 2, 4-6, 9, 11,

Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tesztelés. Tankönyv fejezetei: HF: 4. fej.: 1, 2, 4-6, 9, 11, rugamas B mn 1. A rá ható erő következtében megvátozott aakját a hatás megszűntéve visszanyerő. Vmihez hozzáütődve róa visszapattanó. merev B mn 1. Nem rugamas, nem hajékony . Rugamasságát,

Részletesebben

VASBETON LEMEZEK KÉPLÉKENY TEHERBÍRÁSA

VASBETON LEMEZEK KÉPLÉKENY TEHERBÍRÁSA BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK KÉPLÉKENY TEHEBÍÁSA Oktatási segédet v1.0 Összeáította: Dr. Bódi István - Dr. Farkas György

Részletesebben

2. Közelítő megoldások, energiaelvek:

2. Közelítő megoldások, energiaelvek: SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, egy. ts.) III. eőadás. Közeítő megodások, energiaevek:.. A tejes otenciáis energia

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét

Részletesebben

1. Egydimenziós, rugalmas, peremérték feladat:

1. Egydimenziós, rugalmas, peremérték feladat: SZÉCHNYI ISTVÁN GYTM ALKALMAZOTT MCHANIKA TANSZÉK 1. MCHANIKA-VÉGSLM MÓDSZR LŐADÁS (kidogozta: Szüe Veronika, eg. ts.) Bevezető: A számítógépes mérnöki tervező rendszerek szinte mindegike tartamaz végeseem

Részletesebben

Tevékenység: Olvassa el a bekezdést! Jegyezze meg a teljes potenciális energia értelmezését! Írja fel és tanulja meg a külső erőrendszer potenciálját!

Tevékenység: Olvassa el a bekezdést! Jegyezze meg a teljes potenciális energia értelmezését! Írja fel és tanulja meg a külső erőrendszer potenciálját! tejes potenciáis energia minimuma ev Ovassa e a bekedést! Jegyee meg a tejes potenciáis energia értemeését! Írja fe és tanuja meg a küső erőrendser potenciáját! tejes potenciáis energia minimuma ev konervatív

Részletesebben

Kábel-membrán szerkezetek

Kábel-membrán szerkezetek Kábe-membrán szerkezetek Szereési aak meghatározása Definíció: Egy geometriai aak meghatározása adott peremfetéte és eőfeszítés esetén ameyné a beső erők egyensúyban vannak. Numerikus módszerek: Geometriai

Részletesebben

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői

Mágneses jelenségek. 1. A mágneses tér fogalma, jellemzői . mágneses tér fogama, jeemző Mágneses jeenségek mágneses tér jeenségenek vzsgáatakor a mozgó vamos tötések okozta jeenségekke fogakozunk mozgó vamos tötések (áram) a körüöttük évő teret küöneges áapotba

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Két példa lineárisan változó keresztmetszetű rúd húzása

Két példa lineárisan változó keresztmetszetű rúd húzása Két péda ineárisan vátozó keresztmetszetű rúd húzása Eőző dogozatnkban meynek címe: Hámos rúd húzása szintén egy vátozó keresztmetszetű, egyenes tengeyű, végein P nagyságú erőve húzott rúd esetét vizs

Részletesebben

+ - kondenzátor. Elektromos áram

+ - kondenzátor. Elektromos áram Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár

DEME FERENC okl. építőmérnök, mérnöktanár DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA

Részletesebben

Egy kis nyelvészkedés: Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tankönyv fejezetei:

Egy kis nyelvészkedés: Fogorvosi anyagtan fizikai alapjai 7. Mechanikai tulajdonságok 1. Tankönyv fejezetei: Egy kis nyevészkedés: A marsakók egyike, Teer Ede gyakran mondogatta, hogyha ő nem Ady Endre nyevén tanu gondokodni, akkor beőe egföjebb csak egy közepesné vaamive jobb fizikatanár ett vona. ogorvosi anyagtan

Részletesebben

1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből

1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből 1. Feadatok rugamas és rugamatan ütközések tárgykörébő Impuzustéte, impuzusmegmaradás törvénye 1.1. Feadat: Egy m = 4 kg tömegű kaapács v 0 = 6 m/s sebességge érkezik a szög fejéhez és t = 0,002 s aatt

Részletesebben

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén.

Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. Alkalmazott előjelszabályok Az igénybevételi ábrák témakörhöz az alábbi előjelszabályokat használjuk valamennyi feladat esetén. A kényszererők számításánál a következő a szabály: Az erők iránya a pozitív

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

A karpántokról, a karpántos szerkezetekről III. rész

A karpántokról, a karpántos szerkezetekről III. rész A karpántkró, a karpánts szerkezetekrő III. rész ytatjuk az eőző dgzatainkban meyek címe: ~ A karpántkró, a karpánts szerkezetekrő - I. rész, ~ A karpántkró, a karpánts szerkezetekrő - II. rész megkezdett

Részletesebben

2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás

2. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) II. előadás SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kiogozta: Szüe Veronika egy. ts.) II. eőaás. Közeítő megoások energiaevek: Összetett rugamas peremérték feaat

Részletesebben

3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P

3. MECHANIKA-SZILÁRDSÁGTAN GYAKORLAT (kidolgozta: dr. Nagy Zoltán egy. adjunktus; Bojtár Gergely egy. ts.; Tarnai Gábor mérnöktanár) y P SZÉCHEYI ISTVÁ EGYETEM LKLMZOTT MECHIK TSZÉK MECHIK-SZILÁRDSÁGT GYKORLT (idogota: dr ag Zotán eg adjuntus; Bojtár Gerge eg ts; Tarnai Gábor mérnötanár) Vastag faú cső húása: / d D dott: a ábrán átható

Részletesebben

Az egyszeres függesztőmű erőjátékáról

Az egyszeres függesztőmű erőjátékáról Az eyszeres üesztőmű erőjátékáró A címbei szerkezet az 1 ábrán szeméhető részeteive is 1 ábra orrása: [ 1 ] A szerkezet működésének jeemzése: ~ a vízszintes kötőerenda a két véén szabadon eekszik a közepén

Részletesebben

Bepattanó kötés kisfeladat

Bepattanó kötés kisfeladat Bepattanó kötés kisfeadat Hagató nee: Neptun kód: Bepattanó kötés kisfeadat FELADAT: Végzezze e az ADATTÁBLÁZAT (II. oda) megfeeő sorszámú adataia a tégaap keresztmetszetű egyensziárdságú, karos bepattanó

Részletesebben

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015.

Gyakorlati útmutató a Tartók statikája I. tárgyhoz. Fekete Ferenc. 5. gyakorlat. Széchenyi István Egyetem, 2015. Gyakorlati útmutató a tárgyhoz Fekete Ferenc 5. gyakorlat Széchenyi István Egyetem, 015. 1. ásodrendű hatások közelítő számítása A következőkben egy, a statikai vizsgálatoknál másodrendű hatások közelítő

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján

Nyeregetetős csarnokszerkezetek terhei az EN 1991 alapján BME Hdak és Szerkezetek Tanszék Magasépítés acélszerkezetek tárgy Gyakorlat útmutató Nyeregetetős csarnokszerkezetek terhe az EN 1991 alapján Összeállította: Dr. Papp Ferenc tárgyelőadó Budapest, 2006.

Részletesebben

Három erő egyensúlya kéttámaszú tartó

Három erő egyensúlya kéttámaszú tartó dott: z 1. ábr szerinti kéttámszú trtó. Három erő egyensúy kéttámszú trtó 1. ábr Keresett: ~ rekcióerők vektor, szerkesztésse és számításs, z ábbi dtok esetén ; ~ speciáis esetek tgás. dtok: F = 10,0 kn;

Részletesebben

DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSEINEK VIZSGÁLATA

DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSEINEK VIZSGÁLATA DAN U ACÉLSZERKEZETEK CSAPOS KÖTÉSENEK VZSGÁLATA Budape~ti Műszaki Egyetem, Közekedésmérnöki Kar Epítő- és Anyagmozgató Gépek Tanszék A Magyar Hajó- és Darugyár daru acészerkezetek nagyméretű eemeinek

Részletesebben

2. Közelítő megoldások, energiaelvek:

2. Közelítő megoldások, energiaelvek: SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 4. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidogozta: Szüe Veronika, eg. ts.) IV. eőadás. Közeítő megodások, energiaevek:.4. Ritz-módszer,.4.. Lineáris

Részletesebben

Az M A vektor tehát a három vektori szorzat előjelhelyes összege:

Az M A vektor tehát a három vektori szorzat előjelhelyes összege: 1. feladat Határozza meg a T i támadáspontú F i erőrendszer nyomatékát az A pontra. T 1 ( 3, 0, 5 ) T 1 ( 0, 4, 5 ) T 1 ( 3, 4, 2 ) F 1 = 0 i + 300 j + 0 k F 2 = 0 i 100 j 400 k F 3 = 100 i 100 j + 500

Részletesebben

***Megjegyzés: Képlettár a félév első feléhez:

***Megjegyzés: Képlettár a félév első feléhez: ***Megjegyzés: Ez egy rövd összefogaó a 17 tavaszában eadott anyagró, nem 1%-os, 1- apró rész hányzk beőe, etve jópár magyarázatot, és evezetést nem tartamaz, vaamnt érdemes kegészíten a szükséges ábrákka,

Részletesebben

more with metas Szendvicspaneek poiuretán hab magga SPF PU, SPD PU, SPB PU, SPC PU A poiuretán hab magga eátott szendvicspaneek univerzáis és modern termékek, kedvezõ hõszigeteési értékekke. A bevonatok,

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Schöck Isokorb Q, Q-VV, QP, QP-VV típus

Schöck Isokorb Q, Q-VV, QP, QP-VV típus Schöck Isokorb, -VV,, -VV típus Schöck Isokorb, -VV,, -VV típus Schöck Isokorb típus Aátámasztott erkéyekhez, pozitív nyíróerők fevéteére. Schöck Isokorb -VV típus Aátámasztott erkéyekhez, pozitív és negatív

Részletesebben

2011. Vasbetonszerkezetek Pontonként alátámasztott síklemez födém tervezése - Segédlet - Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék

2011. Vasbetonszerkezetek Pontonként alátámasztott síklemez födém tervezése - Segédlet - Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék 0. Vasbetonszerkezetek tervezése - Segédet - Dr. Kovács Imre tanszékvezető főiskoai tanár tervezése Vasbetonszerkezetek tervezése - Segédet - Dr. Kovács Imre tanszékvezető főiskoai tanár tervezése Tartaomjegyzék.0

Részletesebben

A szimmetrikus, külpontosan aláfeszített gerendatartóról

A szimmetrikus, külpontosan aláfeszített gerendatartóról A szimmetrikus, küpontosan aáfeszített gerendatartóró Bevezetés Koráan már tö, hasonó témájú dogozatunk szüetett, meyek az aáiak: ~ Az egyszeres feszítőmű erőjátékáró KD / ; ~ Az egyszeresen aufeszített

Részletesebben

1. MÁSODRENDŰ NYOMATÉK

1. MÁSODRENDŰ NYOMATÉK Gak 01 Mechanka. Szlárdságtan 016 01 Segédlet MECHNK. TNNYG SMÉTLÉSE Tartalom 1. MÁSODRENDŰ NYOMTÉK... 1. RÁCSOS TRTÓ.... GÉNYEVÉTEL ÁRÁK... 5. TÉREL TRTÓK GÉNYEVÉTEL ÁRÁ... 8 Ez a Segédlet a 015, 016

Részletesebben

Szilárd testek alakváltozása

Szilárd testek alakváltozása TÓTH A.: Rugamas aakvátozás (kibővített óravázat) 1 Sziárd testek aakvátozása A mozgás eírására hasznát modeek közü eddig a tömegpont- a pontrendszer- és a merev test-modee fogakoztunk. A merev test-mode

Részletesebben

Korpuszbútor hátfalrögzítő facsavarjainak méretezéséről

Korpuszbútor hátfalrögzítő facsavarjainak méretezéséről Koruszbútor hátfarögzítő facsavarjainak méretezésérő Páyám korai szakaszában köze kerütem bútorszerkezetek erőtani számításaihoz is. Az akkoriban feehető egyébként nagyon kisszámú hasznáható szakirodaom

Részletesebben

SZERKEZETEK INDIFFERENS EGYENSÚLYI ÁLLAPOTBAN

SZERKEZETEK INDIFFERENS EGYENSÚLYI ÁLLAPOTBAN SZERKEZETEK INDIFFERENS EGYENSÚLYI ÁLLAOTBAN Tarnai Tibor * RÖVID KIVONAT A dogozat pédákat ismertet a rugamas stabiitáseméetben ritkán eoforduó indifferens egyensúyi áapotokra, aho a szerkezet egyensúyát

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Egy háromlábú állvány feladata. 1. ábra forrása:

Egy háromlábú állvány feladata. 1. ábra forrása: 1 Egy háromlábú állvány feladata Az interneten találtuk az alábbi versenyfeladatot 1. ábra Az egyforma hosszúságú CA, CB és CD rudak a C pontban gömbcsuklóval kapcsolódnak, az A, B, D végükön sima vízszintes

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

Lindab Coverline Szendvicspanelek. Lindab Coverline. Lindab Szendvicspanelek. Műszaki információ

Lindab Coverline Szendvicspanelek. Lindab Coverline. Lindab Szendvicspanelek. Műszaki információ Lindab Coverine zendvicsaneek Lindab Coverine Lindab zendvicsaneek Műszaki információ 2 Faaneek Lindab Monowa Iari és kereskedemi éüetek, 0 C feetti hűtőházak burkoására és téreváasztására akamas önhordó

Részletesebben

Bevezetés. előforduló anyagokról is. 2

Bevezetés. előforduló anyagokról is. 2 ermodinamika ik másképpen A gumiszaag termodinamikája 1 Bevezetés Az eőadásokon a termodinamika törvényeit hagyományosan y az ideáis gázok akamazásáva vezetjük e (térogati munka). A megismert összeüggések

Részletesebben

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ címe: fogadóórája a szorgalmi időszakban:

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. OKTATÓ, ELŐADÓ  címe: fogadóórája a szorgalmi időszakban: Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat

Részletesebben

KÖZLEKEDÉSÉPÍTŐ ISMERETEK

KÖZLEKEDÉSÉPÍTŐ ISMERETEK ÉRETTSÉGI VIZSGA 2017. május 17. KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Közlekedésépítő

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

3. A RUGALMASSÁGTAN ENERGIA ELVEI

3. A RUGALMASSÁGTAN ENERGIA ELVEI A RUGALMASSÁGTAN ENERGIA ELVEI A rugamasságta egyeetredseréek egakt és köeítő megodásai eergia evekre aapova is eőáíthatók Aapfogamak Kiematikaiag ehetséges emoduásmeő Jeöése: u u r u, y, A továbbiakba

Részletesebben

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet OKTATÓK, ELŐADÓK címe: fogadóórája a szorgalmi időszakban:

TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet OKTATÓK, ELŐADÓK  címe: fogadóórája a szorgalmi időszakban: Mechanika 1 Mechanika I. (Statika) Mechanika I. (Statika) Neptun kódja: SGYMMET2001XA Neptun kódja: SGYMMET201XXX Tantárgy neve angolul: Mechanics 1 Építészmérnöki szak, Építőmérnöki szak Nappali tagozat

Részletesebben

3. MOZGÁS GRAVITÁCIÓS ERŐTÉRBEN, KEPLER-TÖRVÉNYEK

3. MOZGÁS GRAVITÁCIÓS ERŐTÉRBEN, KEPLER-TÖRVÉNYEK 3. MOZGÁS GRAVIÁCIÓS ERŐÉRBEN, KEPLER-ÖRVÉNYEK 3.. Eőobéma M nyugsik a oigóban és m ennek gavitációs eőteében moog. Miyenek a mogások? F = G m M m = gad A F = gad G M m A=G M m A megodásho, a mogások eeméséhe

Részletesebben

b 1 l t. szám ú előterjesztés

b 1 l t. szám ú előterjesztés Budapest Főváros X. kerüet Kőbánya Önkormányzat Pogármestere b 1 t. szám ú eőterjesztés Eőterjesztés a Képvseő-testüet részére az önkormányzat tuajdonában áó nem akás céjára szogáó heységek és terüetek

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel A. Ismertesse az anyagok tűzveszélyességi, valamint az építmények kockázati osztályba sorolását! B. Ismertesse a szerelési

Részletesebben

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA

TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ STATIKA GEMET001-B Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet MM/37/2018. Miskolc, 2018. február 5. HIRDETMÉNY Statika(GEMET201NB és GEMET001-B)

Részletesebben

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók.

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; vonalzók. A 27/2012. (VIII. 27.) NGM rendelet, a 27/2012. (VIII. 27.) NGM rendelet a 12/2013. (III. 28.) NGM rendelet által módosított és a 27/2012. (VIII. 27.) NGM rendelet a 4/2015. (II. 19.) NGM rendelet által

Részletesebben

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...

Részletesebben

HOGYAN IS MOZOG EGY TÖMEGES RUGÓ? I.

HOGYAN IS MOZOG EGY TÖMEGES RUGÓ? I. bi eredmények aapján ezze együtt is egfejebb néhány ezred naptömeget kapnánk a por mennyiségére, ami továbbra is jóva kisebb az eméeti tanumányokban prognosztizát tömegekné Tanumányunk összességében azt

Részletesebben

KÖZLEKEDÉSÉPÍTŐ ISMERETEK

KÖZLEKEDÉSÉPÍTŐ ISMERETEK ÉRETTSÉGI VIZSGA 2018. május 16. KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2018. május 16. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Közlekedésépítő

Részletesebben

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók. A 4/2015 (II. 19.) NGM rendelet és a 27/2012 (VIII. 27.) NGM rendelet a 12/2013 (III. 28.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése

Részletesebben

BUDAPESTI MŰSZAKI EGYETEM Építészmérnöki Kar. Tarján Gabriella. Épületek közelítő számítása földrengésre

BUDAPESTI MŰSZAKI EGYETEM Építészmérnöki Kar. Tarján Gabriella. Épületek közelítő számítása földrengésre UAPETI MŰZAKI EGYETEM Építészmérnö Kar Tarján Gabrea Épüete özeítő számítása födrengésre (Approxmate anayss of budng structures subjected to earthquaes) Ph. dsszertácó tézse témavezető: Koár Lászó P. egyetem

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS 454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Az egyszeres rálapolásról

Az egyszeres rálapolásról Az egyszeres rálapolásról A téma felvezetése Az idő múlásával egyre inkább kikristályosodik az ember véleménye, mintegy magától. Így van ez az egyszeres rálapolásnak nevezett kötés esetén is, mely a műszaki

Részletesebben

A késdobálásról. Bevezetés

A késdobálásról. Bevezetés A késdobáásró Beezetés Már sok ée annak, hogy kést dobátunk, több - keesebb sikerre. Ez tisztán tapasztaati úton működött. Femerütek bizonyos kérdések, ameyekre nem kaptunk áaszt sehon - nan. Ezek pédáu

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. május 23. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. május 23. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.)

1. MECHANIKA-VÉGESELEM MÓDSZER ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.) SZÉCHNYI ISTVÁN GYTM ALKALMAZOTT MCHANIKA TANSZÉK 1. MCHANIKA-VÉGSLM MÓDSZR LŐADÁS (kidogozta: Szüe Veronika, eg. ts.) Bevezető: A számítógépes mérnöki tervező rendszerek szinte mindegike tartamaz végeseem

Részletesebben

Statika gyakorló teszt I.

Statika gyakorló teszt I. Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)

Részletesebben

!J i~.számú előterjesztés

!J i~.számú előterjesztés Budapest Főváros X. kerüet Kőbánya Önkormányzat Apogármestere!J ~.számú eőterjesztés Eőterjesztés a Képvseőtestüet részére a Leonardo da Vnc projekt 20112012. év beszámoójáró I. Tartam összefogaó Budapest

Részletesebben

A centrikusan nyomott nyitott és zárt keresztmetszetb egyenes rúd stabilitása

A centrikusan nyomott nyitott és zárt keresztmetszetb egyenes rúd stabilitása enkusan nomott ntott és zárt keresztmetszetb egenes rú stabtása eu Moga, Kö Gábor,.tean Gu/u, tn Moga 3 proesszor, ajunkus, 3 tanársegé Koozsvár Mszak Egetem bsat Ths paper presents the bass o the anass

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a fizika tanításához Ismétlés Erőhatás a testek mechanikai kölcsönhatásának mértékét és irányát megadó vektormennyiség. jele: mértékegysége: 1 newton: erőhatás következménye: 1N 1kg

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0812 ÉRETTSÉGI VIZSGA 2011. október 17. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

Mechanika III. Határozatlan tartók

Mechanika III. Határozatlan tartók echanka III. Határozatlan tartók Zalka Károly C F T + udapest, 5 Zalka Károly, 5, e-kadás Szabad ezt a kadványt sokszorosítan, terjeszten és elektronkus vagy bármely formában tároln. Tlos vszont a kadványt

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS

Részletesebben

TARTÓ(SZERKEZETE)K. 05. Méretezéselméleti kérdések TERVEZÉSE II. Dr. Szép János Egyetemi docens

TARTÓ(SZERKEZETE)K. 05. Méretezéselméleti kérdések TERVEZÉSE II. Dr. Szép János Egyetemi docens TARTÓ(SZERKEZETE)K TERVEZÉSE II. 05. Méretezéselméleti kérdések Dr. Szép János Egyetemi docens 2018. 10. 15. Az előadás tartalma Az igénybevételek jellege A támaszköz szerepe Igénybevételek változása A

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés _. Bevezetés iesztési red, iterpoáió, eemtípuso Végeseem-módszer Mehaiai eadato matematiai modejei Poteiáis eergia áadóértéűségée tétee: Lieárisa rugamas test geometriaiag ehetséges emozduás-aavátozás

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

K - K. 6. fejezet: Vasbeton gerenda vizsgálata Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása.

K - K. 6. fejezet: Vasbeton gerenda vizsgálata Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. 6. fejezet: Vasbeton gerenda vizsgálata 6.1. Határnyomatéki ábra előállítása, vaselhagyás tervezése. A határnyíróerő ábra előállítása. pd=15 kn/m K - K 6φ5 K Anyagok : φ V [kn] VSd.red VSd 6φ16 Beton:

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság

Elektromosság. Alapvető jelenségek és törvények. a.) Coulomb törvény. Sztatikus elektromosság Eektomos tötés: (enjamin Fankin) megmaadó fizikai mennyiség Eektomosság pozitív vagy negatív egysége: couomb [C] apvető jeenségek és tövények eemi tötés:.6x -9 [C] nyugvó eektomos tötés: mozgó eektomos

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk

Részletesebben

Minta MELLÉKLETEK. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint

Minta MELLÉKLETEK. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint MELLÉKLETEK ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA ÍRÁSBELI TÉTEL Középszint Teszt-jellegű minta kérdéssor Építészeti és építési alapismeretek 1. kérdés Húzza alá a nemfémes anyagokat nikkel

Részletesebben

Elektrotechnika 1. ZH ellenőrző kérdések és válaszok. 1. Bevezetés: 2.A villamosenergia átalakítás általános elvei és törvényei

Elektrotechnika 1. ZH ellenőrző kérdések és válaszok. 1. Bevezetés: 2.A villamosenergia átalakítás általános elvei és törvényei 1. Bevezetés: Eektrotechnika 1. ZH eenőrző kérdések és váaszok Meyek a magyar energiapoitika stratégiai céjai? Eátásbiztonság: Megfeeő energiaforrás-struktúra, energiaimport-diverzifikáció, stratégiai

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2007. május 25. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES

Részletesebben