Kockázati modellek (VaR és cvar)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kockázati modellek (VaR és cvar)"

Átírás

1 Kockázati modellek (VaR és cvar) BSc Szakdolgozat Írta: Kutas Éva Matematika BSc Alkalmazott matematikus szakirány Témavezet Mádi-Nagy Gergely egyetemi adjunktus Operációkutatási Tanszék Eötvös Loránd Tudományegyetem Természettudományi Kar 2012

2 Köszönetnyilvánítás El ször hálás köszönetet mondok mindazoknak, akiknek segítségével elkészült ez a szakdolgozat. Els sorban Mádi-Nagy Gergely témavezet tanáromnak tartozom köszönettel azért, hogy folyamatosan gyelemmel kísérte munkámat, ötleteivel és szakmai tanácsaival segített. Nem utolsó sorban pedig családomnak tartozom nagy hálával a rendíthetetlen bizalmukért és megértésükért. 2

3 Tartalomjegyzék Köszönetnyilvánítás Bevezetés 4 1. Közgazdasági környezet Értékpapír, értékpapír-piac, árfolyam és hozam A Markowitz-féle portfólióválasztási modell A modell feltevései Hatékony portfólió Kockázati mértékek Szórás A kockáztatott érték: VaR CVaR Modell LP formátumban cvar-os modell Gyakorlati példa Adatok példa példa Összefoglalás 33 Irodalomjegyzék

4 Bevezetés Napjainkban a pénz világa nagyon fontos szerepet játszik mindenki életében. Pénzügyi döntéseknél érdemes megnézni mennyi a kockázat. Érdemes-e kockáztatni? "Mi a kockázat?" Teszik fel sokan a kérdést. Intuitíve érezzük a választ, deniálni már nehezebb, hát még mérni! És akkor még nem is kezeltük. Hétköznapi nyelven gyakran úgy fogalmazzák meg, mint a "nyereség bizonytalansága", illetve "a veszteség lehet sége". Képzeljünk el két különböz befektetést, A-t és B-t. Mindkett be 100 Ft-ért lehet beszállni. Egy év múlva az A befektetés garantáltan 110 Ft-ot zet, a B befektetés 50% - 50% eséllyel 100 vagy 130 Ft-ot zet. Melyik a jobb üzlet? Melyik a kockázatosabb üzlet? Képzeljünk el két másik befektetést, C-t és D-t. Mindkett 100 Ft kezd t két igényel. Egy év múlva a C befektetés 50% - 50% eséllyel 50, illetve 150 Ft-ot zet, a D pedig 50% - 49% - 1% eséllyel 50, 150, illetve 200 Ft-ot zet. Itt melyik a jobb üzlet? Melyik a kockázatosabb üzlet? A harmadik példában vegyünk egy újabb befektetést, E-t és F-et. Az ár megint csak 100 Ft. Egy év múlva az E 50% -50% eséllyel 100, illetve 120 Ft-ot zet, D 1% -49% -49% -1% eséllyel -20, 100, 120 illetve 300 Ft-ot zet. Itt melyik a jobb üzlet? Melyik a kockázatosabb üzlet? A példákban (és a valóságban) a végkifejlet pontosan nem ismert. El fordulhat, hogy a végén kevesebb pénzünk marad, mint amennyivel elindultunk, el fordulhat, hogy minden pénzünket elveszítjük és az adósok börtönébe kerülünk. Az összes lehetséges kimenetelt nem is sejthetjük. Az alkalmazott matematika egyik leggyorsabban fejl d ága mostanában a pénzügyi matematika. Matematikusokat, zikusokat, mérnököket alkalmaznak különböz bankok és pénzintézetek, hogy olyan modelleket alkossanak, amelyek a legtöbb protot hozzák. Szakdolgozatom a pénzügyi kockázatról és annak mérésér l szól. A befektetési tevékenység kockázattal jár. A pénzügyi kockázat modern elméletének születését Harry Markovitz nevéhez köthetjük. Az els fejezetben néhány közgazdasági fogalomat gy jtöttem össze, amire a kés bbiekben szükségem lesz. Itt mutatom meg a Markowitz féle portfólióválasztási modellelt és a hatékony portfólió kialakítását is. A második fejezetben deniálom a kockázati mérték fogalmát, és hármat közülük részletesen is bemutatok. Ez a három a szórás, a kockáztatott érték, másnéven VaR, és a 4

5 feltételes kockáztatott érték, másnéven CVaR. Szó lesz az alsó és fels VaR, illetve CVaR kapcsolatáról is. A harmadik fejezetben lineáris programozási feladatot oldok meg CVaR-os modellre. A negyedik fejezetben kerül sor 2 gyakorlati példa bemutatására. Itt 3-3 tényleges részvényt fogok vizsgálni. Ebb l próbálok hatékony portfóliót kialakítani. Az utolsó fejezetben, pedig rövid összefoglalást és magyarázatot adok a kapott eredményekre. 5

6 1. fejezet Közgazdasági környezet 1.1. Értékpapír, értékpapír-piac, árfolyam és hozam A fejezethez szükséges adatokat, illetve deníciókat az [1] könyv és a [6] értekezés felhasználásával gy jtöttem össze. A piac m ködése elképzelhetetlen a pénz nélkül. Az értékpapírok is a pénzb l fejl dtek ki, és annak helyettesítésére szolgálnak. A keletkezésük hátterében hitelügylet állt. Az értékpapírokat az áruforgalom, a kereskedelem szükségletei hívták életre, kés bb a vagyongyarapodás legbiztosabb eszközeiként jelentek meg. Az els értékpapírokat a vállalkozók és az állam hozták létre. Az értékpapírok vagyonhoz kapcsolódó jogokat testesítenek meg. Deníció 1.1 Értékpapír alatt olyan pénzügyi terméket (részvény, kötvény, befektetési jegy) értünk, amely vételár ellenében szabadon átruházható. Az államkincstár bocsátja ki. Az értékpapírok adás-vételének színtere az értékpapír-piac. Az els dleges értékpapírpiac a kibocsátást jelenti, míg a másodlagos a már kibocsátott értékpapír adás-vételét. Deníció 1.2 Azt az árat, amelyen az értékpapírt eladhatjuk, vagy megvásárolhatjuk, az értékpapír árfolyamának nevezzük. Az árfolyam jöv beli értéke véletlenszer, korlátozott mértékben, vagy egyáltalán nem jelezhet el re. Így a pénzügyi elméletben az árfolyamokat és a befektetések értékének alakulását véletlen folyamatokkal tudjuk modellezni. Deníció 1.3 A portfólió kifejezés többféle értelemben használható, legtágabb értelmezésben vagyonösszetétel, azoknak a befektetéseknek az együttese, amely adott magánszemély, vagy cég tulajdonát képezi, de értelmezhet úgy is, mint kötvények, részvények együttese, amelyet egy befektetésnek lehet tekinteni. Deníció 1.4 Hozamnak nevezünk egy pénzügyi terméken elért nyereséget/ veszteséget. Deníció 1.5 Várható hozamnak nevezzük a lehetséges hozamok valószín ségekkel súlyozott átlagát. Jele: E 1.2. A Markowitz-féle portfólióválasztási modell A portfólió választás els matematikai modelljét Harry Markowitz alkotta meg ben. Az nevéhez f z dik az a koncepció, amely a befektetési lehet ségek rangsorolását két mutató, a várható hozam és a hozam varianciájának segítségével végzi el. 6

7 A modell feltevései A befektet k az adott id távon a lehet legkisebb kockázat mellett a lehet legnagyobb vagyongyarapodást szeretnék elérni, a befektet k árelfogadók, egyes pénzügyi termékb l tetsz leges hányadot vehetünk, a rövidre eladás (shortolás, amikor a befektet olyan értékpapírt ad el, ami még nincs a birtokában) korlátlanul megengedett (a portfólió súlyok negatívak is lehetnek), nincs tranzakciós költség, az árfolyamváltozások normális eloszlásúak (a hozam bármely statisztikai jellemz je leírható a várható érték és a szórás függvényeként), a befektetés kockázatát hozamának szórásával mérjük Hatékony portfólió Egy portfóliót akkor nevezünk hatékonynak, ha nem állítható el a portfólióénál nem kisebb várható hozamú, de kisebb kockázatú portfólió és nem állítható el a portfólióénál nem nagyobb kockázatú, de nagyobb várható hozamú portfólió. Attól függ en, hogy mekkora hozamot vár el, vagy mekkora kockázatot vállal a befektet, több hatékony portfólió is képezhet, e szempontok gyelembe vételével. Ezen portfóliók által alkotott halmazt hatékony határgörbének nevezzük. Egy befektet alapvet en azért alakít ki portfóliót, hogy ne csupán egyetlen befektetési formától függjön. A portfólió alapvet en a kockázatmegosztás eszköze. A befektet k a pénzügyi piacon többféle termék közül választhatnak. Egy befektet tulajdonában lev termékek összességét az adott befektet portfóliójának nevezzük. Jelölje N a befektetési lehet ségek számát, ekkor a portfóliót egy N - dimenziós w vektor írja le. A vektor i-edik komponense az i. értékpapírba fektetett összeg. A vektor komponenseit portfóliósúlyoknak nevezzük. A súlyok összege 100%, tehát 1. N w i = 1 (1.1) i=1 Az i. értékpapír árfolyamát jelölje S i (t). A portfólió értéke a részvények értékének súlyozott átlaga. A t id pontbeli értékét az alábbi módon fejezhetjük ki: Y (t) = N w i S i (t) (1.2) i=1 Az i. értékpapír árfolyamának megváltozását jelölje X i (t), X i (t) = S i (t + t) S i (t), így a portfólió értékének megváltozása ebben az id szakban X(t) = Y (t + t) Y (t) 7 N w i X i (t) (1.3) i=1

8 X i (t) árfolyamingadozások stacionáriusak, és többváltozós normális eloszlást követnek. A hozamok várható értéke és kovariancia mátrixa a következ : µ i = E[X i ] (1.4) σ ij = E[X i X j ] E[X i ]E[X j ]. (1.5) A kovariancia mátrix szigorúan pozitív denit. Egy w portfólió hozamának µ p várható értéke és σp 2 varianciája: N µ p = w i µ i, (1.6) σ 2 p = N i=1 i=1 N σ ij w i w j, (1.7) j=1 Tehát, ha a befektet racionálisan gondolkodik, akkor az azonos várható hozamú portfóliók közül azokat választja, amelyek hozamának kisebb a szórása, vagy az azonos szórásúak közül a nagyobb várható hozamúakat. A hatékony portfóliót a következ Markov feladat adja meg: min w R N N i=1 N σ ij w i w j, (1.8) j=1 N w i µ j = µ, (1.9) i=1 N w i = 1, (1.10) i=1 Ez egy feltételes széls érték probléma (feltételes optimalizációs feladat), ahol az (1.8) feladat megoldásait határportfóliónak nevezzük. Lásd: 1.1 ábtát. A Markowitz-féle portfólióválasztási modellnek lényege, hogy a befektetést diverzikáljuk ábra. Portfólió [9] 8

9 Deníció 1.6 A diverzikáció egy befektet i magatartás, amely a portfólió kockázatának csökkenésére irányul, mégpedig a portfólióban szerepl értékpapírok számának növelésével. Tegyük fel hogy X és Y hozammal rendelkez befektetési eszközök, kombinációjuk azért kevésbé kockázatos mint külön-külön, mert annak a valószín sége, hogy a két befektetés egyszerre veszteséges, általában kisebb, mint annak, hogy csak az egyik, vagy csak a másik veszteséges (kivéve, ha tökéletesen korreláltak, mert akkor egyszerre veszteségesek, vagy egyszerre nyereségesek.) 9

10 2. fejezet Kockázati mértékek Az el z fejezetben felvázolt probléma megoldására több alkalmas modell is született. Az alábbiakban bevezetjük a kockázat mértékeit, majd bemutatok néhány, a hatékony portfólió kialakítására alkalmas modellt. A fejezetben deniált kockázati mértékeket, illetve a modellek bemutatásához szükséges információkat a [6], [3] illetve [4] források felhasználásával gy jtöttem. A pénzügyek kulcstényez je a bizonytalanság. Bizonytalanságról beszélünk, ha nem tudjuk, mi fog bekövetkezni, kockázatról, ha ismerjük valamely esemény lehetséges kimeneteleit, és azok bekövetkezési valószín ségét is. A pénzügyi döntések egyik alapeleme a kockázat meghatározása, számszer sítése. A döntések során különböz kockázatú és hozamú lehet ségekb l kell kiválasztani egy legmegfelel bbet. A kockázatosság nem feltétlenül negatív, mint általában a hétköznapi megközelítésben. A pénzügyi szakirodalom egyik alapelve ezt úgy fogalmazza meg, hogy egységnyi biztos pénz értékesebb, mint egységnyi kockázatos pénz. A pénzügy egyik f kérdése, hogy olyan eszközöket biztosítson, amelyek lehet vé teszik pénzügyi eszközök és kiváltképp portfóliók összehasonlítását, értékelését és kockázatosságuk jellemzését. A pénzügyi eszközökhöz és portfóliókhoz rendelt, a kockázatot jellemz mutatószámokat fogom a továbbiakban kockázati mértékeknek nevezni. A klasszikus mutatók nem igazán adnak információt az eszközök kockázatosságáról (pl: price/earing). Számos kockázati mérték jelent meg az irodalomban. Ezek közül a Value at Risk terjedt el a leginkább, mind elméletben, mind gyakorlatban. Számos pénzpiaci, pénzintézeti törvény megköveteli a pénzintézetekt l és esetleg egyéb piaci szerepl kt l ennek számítását, és ezzel kapcsolatos szabályok betartását. A kockázati mértékeket valószín ségi változók egy halmazán értelmezhetjük, hiszen ha adott egy portfólió, befektetés, vagy értékpapír, akkor egy valószín ségi változó mutatja az abból származó jöv beli veszteséget. Deníció 2.1 Legyen ξ egy valószín ségi változó, amely egy adott értékpapír hozamát (árfolyam-változását) reprezentálja a t és t + t id pontok között. Az ilyen ξ valószín ségi változók halmazát jelölje Ω. Kockázati mérték alatt egy ρ : Ω R funkcionált értünk, és azt mondjuk, hogy az ξ hozamú értékpapír kockázata ρ(ξ). 10

11 A deníció önmagában nem jelent sokat, mivel ρ nagyon sokféle funkcionál lehet. A helyes megválasztáshoz gyelembe kell venni, hogy az egyes piaci szerepl k milyen célból szeretnék jellemezni a kockázatot. Néhány fontos szempont: kockázat, mint bizonytalanság mértéke (kockázat Markowitz-féle megközelítése), kockázat, mint potenciális veszteségek mértéke (baj vele, hogy a befektet ket csak a váratlan veszteség zavarja, a váratlan nyereség nem), diverzikációs elv (t kemegosztás többféle befektetés közt), összegezhet ség és összehasonlíthatóság, t kemegfeleltetés (könnyen mozgósítható szavatoló t ke tartalékolás a cs d elkerülése végett) Szórás A legalapvet bb kockázati mérték a szórás. Deníció 2.2 A hozam varianciája a várható piaci hozamtól való eltérés négyzetének várahtó értéke. Jelölés: σ 2 Deníció 2.3 A szórás a variancia négyzetgyöke. Jelölés: σ A szórás normális eloszlású hozamok mellett jól méri a bizonytalanságot, és ösztönzi a diverzikációt. Így mindenféle befektetés kiszámítható, összegezhet és összehasonlítható. Viszont a normális eloszlást elvetve, gyengén jellemzi a kockázatot. Nem tesz különbséget a nyereségek és veszteségek közt, így nem mutatja meg a befektetés veszteségének nagyságát. A szórás csak szimmetrikus, véges varianciájú eloszlásokra elfogadható kockázati mérték. A szórás el nyei: Szemléletes jelentés, a jöv beli megtérülés bizonytalanságát méri. Az ered kockázat több, akár nagyon eltér jelleg befektetésre is meghatározható. Konvex, tehát a diverzikáció hatására csökken. A portfóliósúlyoknak jól kezelhet (pl. dierenciálható) függvénye. A szórás hátrányai: Nem minden eloszlásra létezik. Az eloszlás szélére nem elég érzékeny. Nem tesz különbséget nyereség és veszteség között. 11

12 2.2. A kockáztatott érték: VaR A szórás helyettesítésére az egyik vezet bank (J.P. Morgan) kutatócsoportjának javaslatára a szakma a kockáztatott értéket (value at risk, általánosan használt rövidítéssel VaR) fogadta el a kockázat mér számának. A '80-as évek óta ez az egyik legnépszer bb kockázati mérték. A VaR a várható legnagyobb veszteséget méri adott id távon, adott biztonsági szint (kon- dencia szint) mellett. A kondencia szintet jelölje α. Tipikus értéke a gyakorlatban nagyobb, mint 90% (pl. 95% vagy 99%) Példa 2.4 Képzeljük el, hogy VaR(95%,1 nap) = 100 Ft, azaz egy portfólió 1 napos VaR-ja 100 Ft 99% -os kondenciaszint mellett. Mit jelent ez? Kétféle megközelítés lehetséges: Normál piaci körülmények között az adott portfóliót tekintve, egy napos id távra 5% -os valószín séggel várható 100 Ft-nál nagyobb veszteség. Ezt nevezzük pesszimista megközelítésnek. Normál piaci körülmények között 95% annak a valószín sége, hogy egy nap alatt nem várható 100 Ft-nál nagyobb veszteség. Ezt pedig optimista megközelítésnek nevezzük. A kés bbiekben a pesszimista megközelítést az alsó VaR adja (mely az alsó 5% közül a legjobb kimenetel), míg az optimistát a fels VaR (mely a fels 95% közül a legrosszabb kimenetel). Most rátérek a precíz denícióra, ahol a követket jelöléseket használom: Egy ξ valószín ségi változó eloszlásfüggvénye F ξ, azaz F ξ (γ) = P(ξ < γ) Deníció 2.5 Legyen ξ egy valószín ségi változó, α (0, 1). Ekkor az ξ alsó α - kvantilise és az ξ fels α - kvantilise. q α (ξ) = sup{γ F ξ (γ) < α} (2.1) q α (ξ) = inf{y F ξ (γ) > α} (2.2) Ha ξ egy portfólió protját leíró valószín ségi változó egy valószín ségi mez n és α (0, 1), akkor ξ alsó α- Value at Risk értéke: míg ξ fels α- Value at Risk értéke: V ar α (ξ) = q α (ξ), (2.3) V ar α (ξ) = q α (ξ). (2.4) Megjegyzés 2.6 A mínusz el jel azért kell, mert a veszteségekhez pozitív kockázatot rendelünk. Megjegyzés 2.7 Diszkrét eloszlások esetén a kvantilis értéke nem mindig egyértelm, ezért szokás külön deniálni az alsó VaR-t és fels VaR-t. Az alsó és felsó VaR értéke nem feltétlenül egyezik meg, de abszolút folytonos eloszlások esetén egyenl a két érték. 12

13 Lemma 2.8 és q α (ξ) = q 1 α ( ξ) (2.5) q α (ξ) = q 1 α ( ξ) (2.6) Bizonyítás: A kvantilisek más alakban is megadhatók, így kapjuk, hogy q α (ξ) = inf{γ F ξ (γ) α}, illetve q α (ξ) = sup{γ F ξ (γ) α}. Jelölje F ξ az eloszlásfüggvény jobbról folytonos változatát, így F ξ = P(ξ z). Ekkor, ha a el bbi denícióban y F ξ (γ) = P(ξ < γ) eloszlásfüggvényt helyettesítenénk az y F ξ (γ) = P(ξ γ) függvénnyel, az q α (ξ) és q α (ξ) értét nem változtatná. q α (ξ) = inf{γ F ξ (γ) > α} = inf{γ P( ξ γ) < 1 α} = sup{ γ P( ξ γ) < 1 α} = sup{γ F ξ (γ) < 1 α} = q 1 α ( ξ). Azt mondjuk, egy befektetés VaR-ja α kondenciaszinten az α százaléknyi legjobb eset közül a legrosszabb esetben elszenvedett veszteség. Más lehetséges megfogalmazások: Az a pénzösszeg, amelynél többet csak 1 α valószín séggel veszíthetünk. Az 1 α százaléknyi legrosszabb eset közül a legjobb esetben elszenvedett veszteség. Megjegyzés 2.9 A VaR a hozameloszlás kvantilise. A VaR el nyei: Kifejezetten a veszteségekre koncentrál. Tetsz leges eloszlásra létezik. Az ered kockázat tetsz leges jelleg befektetések kombinációjára meghatározható. A kockázatot pénzveszteségben fejezi ki. 13

14 A VaR hátrányai: A portfóliósúlyok nemdierenciálható függvénye. Nem konvex. A VaR-nál nagyobb veszteségek eloszlása nem számít. Az utóbbi két hiányosság igen súlyos. Megjegyzés 2.10 Hátrányai miatt a VaR általában alkalmatlan a kockázat mérésére. Ennek ellenére a gyakorlatban és a szabályzásban széleskör en alkalmazzák CVaR Az elmúlt néhány évben akadémiai körökben egyre több oldalról érte bírálat a VaR-t mint kockázati mértéket. Sok kutató illetve kutatócsoport tett javaslatot, hogy kiküszöböljék a VaR legnyilvánvalóbb hibáját, a konvexitás hiányát. Az egyik legegyszer bb VaR-ra épül kockázati mérték, amely konvex is, a feltételes VaR, másnéven CVaR. A rövidítés a Conditional Value-at-Risk szóból származik. Deníció 2.11 A CVaR a VaR-nál nagyobb veszteségek átlaga, a VaR-t is beleértve. Példa 2.12 A VaR megmutatja, hogy adott id távon és kondenciaszinten maximum mekkora lehet a veszteség nagysága. Az el bbi példához h en legyen α = 0,95. Pesszimista néz pontból azt mondjuk, hogy 5% -os eséllyel lesz a VaR által mért kvantilisnél nagyobb a veszteség. Ekkor arra is kíváncsiak vagyunk, hogy ha bekövetkezik az 5% -os esemény, akkor mekkora lesz a veszteség várható értéke, átlagos nagysága. A VaR-hoz hasonlóan itt is létezik alsó és fels CVaR, melyeket a következ képpen deniálunk: CV ar α (ξ) = E[ξ ξ V ar α (ξ)], (2.7) ahol ξ a vizsgált befektetés hozama. CV ar α (ξ) = E[ξ ξ V ar α (ξ)], (2.8) Megjegyzés 2.13 CV ar α (ξ) V ar α (ξ), (2.9) CV ar α (ξ) V ar α (ξ), (2.10) CV ar α (ξ) V ar α (ξ), (2.11) továbbá CV ar α (ξ) = CV ar α (ξ) pontosan akkor ha V ar α (ξ) = V ar α (ξ) A CVaR f el nye a VaR-ral szemben, hogy nemcsak a veszteségek 1 α-kvantilisét veszi gyelembe, hanem az annál nagyobb veszteségeket is, így érzékeny az extrém eseményekre. 14

15 2.1. ábra. VaR és CVaR [2] 15

16 3. fejezet Modell LP formátumban Ebben a fejezetben a [2] és [5] források voltak segítségemre. Deníció 3.1 Az olyan feltételes széls érték-feladatot, amelyben a feltételek lineáris egyenletek és egyenl tlenségek, és egy lineáris függvény széls értékét keressük, lineáris programozási feladatnak nevezzük. (LP) Megjegyzés 3.2 Azon pontok halmazát, amelyek koordinátái kielégítik a feltételrendszert, lehetséges megoldásoknak nevezzük. Azon lehetséges megoldásokat, ahol a célfüggvény értéke maximális/minimális, optimális megoldásoknak nevezzük. Az operációkutatás különböz modelljeinek tényleges megoldása hosszadalmas, ezért ezen megoldási eljárásokra különböz számítógépes programcsomagokat készítettek, amelyek különböz hatékonysággal használhatók. Ezek egyike az EXCEL táblázatkezel ben található SOLVER beépül makró. A Solver a lineáris programozási feladat megoldásához a szimplex algoritmust alkalmazza. Hátránya, hogy nem tud nagyobb méret vektorváltozókkal számolni. Ezt a problémát kiküszöbölhetjük OpenSolver, vagy OpenOce.org programmal. Ez utóbbi programcsomagnak a része az OpenOce.org Calc, ami egy táblázatkezel program. Segítségével számításokat, matematikai, pénzügyi elemzéseket végezhetünk, grakusan ábrázolhatjuk számadatainkat. A második lehet séget, az OpenSolver programcsomagot fogom használni ábra. OpenSolver felület 16

17 3.1. cvar-os modell A következ jelöléseket vezetem be: ξ i : az i-edik részvény éves hozama (valószín ségi változó) x i az i-edik részvény súlya a portfólióban r i az i-edik értékpapír várható hozama r i = E(ξ i ) σ i normális szórása a nyereség visszatérülésének ρ ij korrelációs együttható ρ = cov(x,y ) D(X)D(Y ) Q ij variancia-kovariancia mátrix, ahol cov(x, Y ) = E((X r X )(Y r Y )) Várható hozamot és varianciát a következ képpen számolunk E[x] = r 1 x r n x n = r T x V ar[x] = i,j ρ ij σ i σ j x i x j = x T Qx További jelölések: f(x, ξ) = ξ T x : nyereségfüggvény f(x, ξ) = ξ T x : veszteségfüggvény p s r ségfüggvény Optimalizációs probléma: Többféle modell közül választhatunk max E[f(x, ξ)] x tekintve, hogy CV ar α [ f(x, ξ)] ν (3.1) x 0 min CV ar α [ f(x, ξ)] x tekintve, hogy E[f(x, ξ)] ρ (3.2) x 0 Mi most a (3.2)-vel dolgozunk. max E[f(x, ξ)] x tekintve, hogy CV ar α1 [ f(x, ξ)] ν 1 (3.3) CV ar α2 [ f(x, ξ)] ν 2 x 0 Hogy tudjuk formalizálni és megoldani ezt a problémát? 17

18 Rockafellar és Uryasev bebizonyították, hogy ezt a feladatot meg lehet oldani a következ képpen: tudjuk, hogy ahol z + = max{z, 0} CV ar α (f(x, ξ)) = V ar α + E[f(x, ξ) V ar α ] + (3.4) 1) Diszkrét esetben ez azt jelenti, hogy CV ar α (f(x, ξ)) = V ar α + N p(ξ)[f(x, ξ) V ar α ] +. (3.5) ξ=1 2) Abszolút folytonos esetben pedig CV ar α (f(x, ξ)) = V ar α + [f(x, ξ) V ar α ] + p(ξ)dξ. (3.6) Legyen F α (x, γ) = γ α ekkor a következ állítás igaz: Állítás 3.3 Minimalizáljuk F α (x, γ)-t. Diszkrét eloszlás esetén: CV ar α (f(x, ξ)) = min γ F α (x, γ) min CV ar α (f(x, ξ)) = min F x α(x, γ) x,γ ξ ξ k, ahol ξ k már nem valószín ségi változó, hanem felvett érték. ahol z k 0 és k = 1,..., N. p(ξ) p k, N p k = 1 k=1 f(x, ξ) f(x, ξ k ) F α (x, γ) = γ + 1 N [f(x, ξ k ) γ] + 1 α [f(x, ξ) γ] + p(ξ)dξ (3.7) k=1 [f(x, ξ k ) γ] + z k f(x, ξ k ) γ, 18

19 Maga a feladat: Plusz feltételek: min γ + 1 N p k z k 1 α k=1 min CV ar α ( ξ T x) z k ξ kt x γ z k 0 r T x ρ 1 T x = 1 x 0 (3.8) Amire szükségünk van: p k és ξ k 19

20 4. fejezet Gyakorlati példa Az utolsó fejezetben a felírt problémát oldom meg. A megoldáshoz a Budapesti Értékt zsde bizonyos részvényeit fogom felhasználni. A modellek gyakorlati alkalmazásához szükséges adatok megszerzéséhez a [8] forrást használtam, míg az algoritmusok m ködéséhez a [2]-t vettem útmutatóul. A gyakorlati alkalmazáshoz nagy segítséget nyújtott a [7] oldal Adatok példa A példában három részvénnyel foglalkoztam, olyan részvényeket választottam, amik már legalább 10 éve jelen vannak a t zsdén. A megoldáshoz és azok elemzéséhez szükséges adatokat a Budapesti Értékt zsde honlapjának adatbázisából gy jtöttem. Havi adatokkal számoltam. A BÉT oldalán felmerül problémákkal a szakdolgozat nem foglalkozik. A kiválasztott három részvény: a) DANUBIUS b) OTP c) ZWACK Ezen három részvény havi hozamát kiszámoltam a letöltött adatokból. Jelölje r a havi hozamot, ahol p α a hó eleji árat és p ω a hó végi árat, így a képlet amivel számoltam: r = p ω p α p α, (4.1) Ezek az értékek nem teljesen pontosak, mert a letöltött adatokban a hóvégi és hó eleji maximum árral dolgoztam az egyszer ség kedvéért. Minden részvényhez 120 eredményt kaptam, mivel a 2002.márciustól 2012.februárig vizsgáltam az adatokat. Lásd 4.1 ábrát. 20

21 4.1. ábra. Havi hozamok A feladat mérete miatt sajnos csak kiragadott részletek bemutatására van esély. Itt a különböz színek a különböz értékpapírok adatait jelölik. Majd az összes havi hozamból külön-külön minimumot és maximumot számoltam. A minimum és maximum közti részt 10 intervallumra osztottam úgy, hogy a következ tartományokat kaptam: (Lásd 4.1 táblázatot.) DANUBIUS OTP ZWACK 1 0, 1251 r < 0, , 8810 r < 0, , 1854 r < 0, , 1057 r < 0, , 8150 r < 0, , 1617 r < 0, , 0668 r < 0, , 6832 r < 0, , 1143 r < 0, , 0279 r < 0, , 5514 r < 0, , 0669 r < 0, , 0110 r < 0, , 4196 r < 0, , 0195 r < 0, , 0499 r < 0, , 2878 r < 0, , 0279 r < 0, , 0888 r < 0, , 1560 r < 0, , 0753 r < 0, , 1277 r < 0, , 0242 r < 0, , 1227 r < 0, , 1666 r < 0, , 1077 r < 0, , 1701 r < 0, , 2055 r 0, , 2395 r 0, , 2176 r 0, táblázat. Intervallumokhoz 1-t l 10-ig értékeket rendelünk 21

22 Ezután az el bbi értékekhez a táblázat alapján hozzárendeltem 1-t l 10-ig a számokat. Így a következ adatsorokat kaptam: (Lásd 4.2 ábrát.) 4.2. ábra. Havi hozamok értékadással Ezeket az értékeket oszlopok szerint növekv sorrendbe rendeztem. Összeszámoltam, hogy az adott kombináció hányszor fordult el, majd ezután kiszámoltam a relatív gyakoriságukat. Tudjuk, hogy relatív gyakoriság = 1. Lásd 4.3 ábrát. 22

23 4.3. ábra. Relatív gyakoriság kiszámítása Majd a 2-t l 9-es tartományokhoz a tartomány középpontját rendeltem, míg az 1-es tartományhoz a minimumot, a 10-es tartományhoz a maximumot. Így a 4.2 táblázatot kaptam: 23

24 DANUBIUS OTP ZWACK 1-0,1251-0,8810-0, , , , , , , , , , , , , , , , , , , , , , , , , ,2249 0,3054 0, táblázat. Értékekhez rendelt középpontok Erre visszaírva az értékeket, kaptam a 4.4 -es ábrát: 4.4. ábra. Táblázat az átírt adatokkal 24

25 Ezután felírható a feladat kezdeti állapota. Az ábra némi magyarázatot igényel. Az el bbi ábrát b vítettem. A jobb áttekinthet ség érdekében a lényeges mez ket különféle színekkel színeztem. El ször is felvettem egy α értéket F1 mez be. Ez a kondencia szintet jelöli. Majd egy ρ értéket J1 mez be. Ez a ρ jelöli az elvárt hozamot. A portfólióban szerepl részvények súlyozása (x) az L25, L26, L27 mez kben található, kezdetben ez az érték 0. A portfólió hozammátrixa a G4 - I24 mez kben lett eltárolva. A várható hozamvektor (µ) értékeit G25 - I25 mez kben rögzítettem. Változók még a z k értékek, ezeket L4 - L24 mez kbe írtam és kezdetben 0-ra állítottam. A feltételeket a Q4 - S24 mez kben tárolom. A Q26 - S26 mez k rzik a helyes súlyozásra vonatkozó feltételt (1 T x = 1). Végül pedig Q2-es mez be a célfüggvényt írtam. Most kiszámítjuk a modellt α =0,9-re. Lásd 4.5 ábrát. 25

26 ábra. A modell α =0,9-re

27 Ez az eredmény nem egészen azt adta, amit vártunk. Azt szerettem volna, ha megadja, hogy a különböz értékpapírokból milyen súllyal vegyünk. De nekem csak egy értékpapírt javasol példa Próbálkozok három másik értékpapírral. Hátha az volt az el bbiekkel a probléma, hogy nagyon egyszerre mozogtak. Az újabb három részvény: a) EGIS b) FOTEX c) MOL Ugyanazokat a lépéseket hajtottam végre, mint az el bb. Kiszámoltam a havi hozamokat. Lásd 4.6 ábrát ábra. Havi hozamok Az összes havi hozamból külön-külön minimumot és maximumot számoltam. A minimum és maximum közti részt 10 intervallumra osztottam. (Lásd 4.3 táblázatot.) 27

28 EGIS FOTEX MOL 1 0, 4261 r < 0, , 3066 r < 0, , 1755 r < 0, , 3839 r < 0, , 2390 r < 0, , 1502 r < 0, , 2995 r < 0, , 1040 r < 0, , 0996 r < 0, , 2151 r < 0, , 0311 r < 0, , 0489 r < 0, , 1307 r < 0, , 1662 r < 0, , 0017 r < 0, , 0464 r < 0, , 3013 r < 0, , 0523 r < 0, , 0380 r < 0, , 4363 r < 0, , 1029 r < 0, , 1224 r < 0, , 5714 r < 0, , 1536 r < 0, , 2068 r < 0, , 7065 r < 0, , 2042 r < 0, , 2911 r 0, , 8416 r 0, , 2548 r 0, táblázat. Intervallumokhoz 1-t l 10-ig értékeket rendelünk Ezután az el bbi értékekhez a táblázat alapján hozzárendeltem 1-t l 10-ig a számokat. (Lásd 4.7 ábrát.) 4.7. ábra. Havi hozamok értékadással Majd a kapott értékek oszlopait növekv sorrendbe rendeztem. Összeszámoltam, hogy az adott kombináció hányszor fordult el, majd ezután kiszámoltam a relatív gyakoriságukat. Tudjuk, hogy relatív gyakoriság = 1. (Lásd 4.8 ábrát.) 28

29 4.8. ábra. Relatív gyakoriság kiszámítása Majd a 2-t l 9-es tartományokhoz a tartomány középpontját rendeltem, míg az 1-es tartományhoz a minimumot, a 10-es tartományhoz a maximumot. Így a 4.4 táblázatot kaptam: EGIS FOTEX MOL 1-0,4260-0,3065-0, , , , , , , , , , , , , , , , , , , , , , , , , ,3333 0,9090 0, táblázat. Értékekhez rendelt középpontok Erre visszaírva az értékeket, kaptam a következ t: (Lásd 4.9 ábrát.) 29

30 4.9. ábra. Táblázat az átírt adatokkal Ezután felírható a feladat kezdeti állapota. Most kiszámítom a modellt α =0,9-re. Lásd 4.10 ábrát. Ekkor is csak egy értékpapírt kínál nekem. Hogy megbizonyosodjak a modell jóságáról, kiszámolom α =0,1-re. Lásd 4.11 ábrát. Az eredmény itt már kicsit jobban hasonlít a várthoz. Itt már két értépapírt kínál fel, különböz súlyokkal. EGIS részvényb l 86,6% -ot míg MOL részvényb l 13,4% -ot. Ezzel már csak az a probléma, hogy α-t 90% körülinek kellene választanunk, hogy a korábbiakban leírt CVaR modell jóságát belássuk, és ennél az utolsó példánál mi α = 10% -ra néztük. 30

31 ábra. A modell α =0,9-re

32 ábra. A modell α =0,1-re

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

A pénzügyi kockázat mérése és kezelése

A pénzügyi kockázat mérése és kezelése A pénzügyi kockázat mérése és kezelése Varga-Haszonits István Gazdasági Fizika Téli Iskola, 2009. január 31. Áttekintés 1 Bevezetés 2 A portfólióválasztási probléma 3 Kockázati mértékek 4 A hatékony portfóliók

Részletesebben

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30. Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként

Részletesebben

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában 9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában Bevezet : A témakörben els - és másodfokú egyenl tlenségek megoldásának

Részletesebben

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével

Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Kockázatos pénzügyi eszközök

Kockázatos pénzügyi eszközök Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi

Részletesebben

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy: Függvények 015. július 1. 1. Feladat: Határozza meg a következ összetett függvényeket! f(x) = cos x + x g(x) = x f(g(x)) =? g(f(x)) =? Megoldás: Összetett függvény el állításához a küls függvényben a független

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése

2. SZÉLSŽÉRTÉKSZÁMÍTÁS. 2.1 A széls érték fogalma, létezése 2 SZÉLSŽÉRTÉKSZÁMÍTÁS DEFINÍCIÓ 21 A széls érték fogalma, létezése Azt mondjuk, hogy az f : D R k R függvénynek lokális (helyi) maximuma (minimuma) van az x 0 D pontban, ha van olyan ε > 0 hogy f(x 0 )

Részletesebben

Biostatisztika. Sz cs Gábor. 2018/19 tavaszi félév. Szegedi Tudományegyetem, Bolyai Intézet

Biostatisztika. Sz cs Gábor. 2018/19 tavaszi félév. Szegedi Tudományegyetem, Bolyai Intézet Biostatisztika Sz cs Gábor Szegedi Tudományegyetem, Bolyai Intézet 2018/19 tavaszi félév Bevezetés Tudnivalók, követelmények Tudnivalók, követelmények Félév tematikája: Értékelés: Valószín ségszámítás

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz

Elméleti összefoglaló a Sztochasztika alapjai kurzushoz Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt! NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten MÁSODFOKÚ EGYENLETEK ÉS EGYENLŽTLENSÉGEK Készítette: Gábor Szakmai felel s: Gábor

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András

A kockázat fogalma. A kockázat fogalma. Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András Fejezetek a környezeti kockázatok menedzsmentjéből 2 Bezegh András A kockázat fogalma A kockázat (def:) annak kifejezése, hogy valami nem kívánt hatással lesz a valaki/k értékeire, célkitűzésekre. A kockázat

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Pszichometria Szemináriumi dolgozat

Pszichometria Szemináriumi dolgozat Pszichometria Szemináriumi dolgozat 2007-2008. tanév szi félév Temperamentum and Personality Questionnaire pszichometriai mutatóinak vizsgálata Készítette: XXX 1 Reliabilitás és validitás A kérd ívek vizsgálatának

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén

Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Matematikai modellek, I. kisprojekt Gibbs-jelenség viselkedésének vizsgálata egyszer négyszögjel esetén Unger amás István B.Sc. szakos matematikus hallgató ungert@maxwell.sze.hu, http://maxwell.sze.hu/~ungert

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

A leíró statisztikák

A leíró statisztikák A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az

Részletesebben

Függvények határértéke, folytonossága

Függvények határértéke, folytonossága Függvények határértéke, folytonossága 25. február 22.. Alapfeladatok. Feladat: Határozzuk meg az f() = 23 4 5 3 + 9 a végtelenben és a mínusz végtelenben! függvény határértékét Megoldás: Vizsgáljuk el

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Rövid távú modell III. Pénzkereslet, LM görbe

Rövid távú modell III. Pénzkereslet, LM görbe Rövid távú modell III. Pénzkereslet, Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Rövid távú modell III. Pénzkereslet, Félév végi dolgozat 40 pontos vizsga május 23. hétf 10 óra május

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27 Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 6. hét AZ IDŽ KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ IDŽ KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack Hirshleifer, Amihai

Részletesebben

Játékelmélet és pénzügyek

Játékelmélet és pénzügyek Játékelmélet és pénzügyek Czigány Gábor 2013. május 30. Eötvös Lóránd Tudományegyetem - Budapesti Corvinus Egyetem Biztosítási és pénzügyi matematika mesterszak Témavezet : Dr. Csóka Péter Tartalomjegyzék

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Rövid távú modell Pénzkereslet, LM görbe

Rövid távú modell Pénzkereslet, LM görbe Rövid távú modell Pénzkereslet, Kuncz Izabella Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Kuncz Izabella Rövid távú modell Pénzkereslet, Mit tudunk eddig? Elkezdtük levezetni a rövid

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

A portfólió elmélet általánosításai és következményei

A portfólió elmélet általánosításai és következményei A portfólió elmélet általánosításai és következményei Általánosan: n kockázatos eszköz allokációja HOZAM: KOCKÁZAT: variancia-kovariancia mátrix segítségével! ) ( ) ( ) / ( ) ( 1 1 1 n s s s p t t t s

Részletesebben

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel

Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Hajlított tartó elmozdulásmez jének meghatározása Ritz-módszerrel Segédlet az A végeselem módszer alapjai tárgy 4. laborgyakorlatához http://www.mm.bme.hu/~kossa/vemalap4.pdf Kossa Attila (kossa@mm.bme.hu)

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 5 V ELEmI ALGEbRA 1 BINÁRIS műveletek Definíció Az halmazon definiált bináris művelet egy olyan függvény, amely -ből képez -be Ha akkor az elempár képét jelöljük -vel, a művelet

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Ütemezési modellek. Az ütemezési problémák osztályozása

Ütemezési modellek. Az ütemezési problémák osztályozása Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Függvények növekedési korlátainak jellemzése

Függvények növekedési korlátainak jellemzése 17 Függvények növekedési korlátainak jellemzése A jellemzés jól bevált eszközei az Ω, O, Θ, o és ω jelölések. Mivel az igények általában nemnegatívak, ezért az alábbi meghatározásokban mindenütt feltesszük,

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1. Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz

Részletesebben

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév

Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Bebes András. 2011. június 2. BSc szakdolgozat. Természettudományi Kar Matematika BSc szakon

Bebes András. 2011. június 2. BSc szakdolgozat. Természettudományi Kar Matematika BSc szakon EÖTVÖS LÓRÁND TUDOMÁNYEGYETEM Bebes András Hatékony portfóliók különböző kockázati mértékek szerint Témavezető: Mádi-Nagy Gergely BSc szakdolgozat Természettudományi Kar Matematika BSc szakon 2011. június

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt:

13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: A 13. Egy 2000. január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: korcsoport (év) férfiak száma (ezer f ) n k száma

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós MBNK12: Permutációk el adásvázlat 2016 április 11 Maróti Miklós 1 Deníció Az A halmaz permutációin a π : A A bijektív leképezéseket értjünk Tetsz leges n pozitív egészre az {1 n} halmaz összes permutációinak

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 7. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát (vonat

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Nem-lineáris programozási feladatok

Nem-lineáris programozási feladatok Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Gráfokkal megoldható hétköznapi problémák

Gráfokkal megoldható hétköznapi problémák Eötvös Loránd Tudományegyetem Természettudományi Kar Gráfokkal megoldható hétköznapi problémák Szakdolgozat Készítette Vincze Ágnes Melitta Konzulens Héger Tamás Budapest, 2015 Tartalomjegyzék Bevezetés

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN Készült a TÁMOP-4.1.-08//a/KMR-009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

y ij = µ + α i + e ij

y ij = µ + α i + e ij Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Társaságok pénzügyei kollokvium

Társaságok pénzügyei kollokvium udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

Matematikai alapok és valószínőségszámítás. Normál eloszlás

Matematikai alapok és valószínőségszámítás. Normál eloszlás Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak

Részletesebben