İki düzlemdeki çerçevelerin kesiti devamlı değişen ortak çubuğu

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "İki düzlemdeki çerçevelerin kesiti devamlı değişen ortak çubuğu"

Átírás

1 İki dülemdeki çerçevelerin kesiti devamlı değişen ortak çubuğu Sistem ve bilinen değerler: L L U J U J J K D J Ç C C Maleme "S35" f 35MPa mnietli akma mukavemeti γ M. f f M γ M f M 4MPa L lastiklik modülü MPa Kiriş L K 8m J K mm 4 t b Uç bağlantı L U m J U 73 6 mm 4 Kabul: ğrinin şekli parabol L 8m t t h T h h α deg 4kN.4.9 b c. Kısım t b b 4mm h 38mm t mm b ç mm h T h t h T 4mm.5 h t 95mm. Kısım k..j O. Kısım.J Ç,5.L,5. ; ( ) b t 3 3 th J tb J 4 6 mm 4 J W W 55 3 mm 3 h T t b h 6mm L cos( α) 8.3 m.5 b t b ç 5mm 3 b t t 3 h J th J mm 4 J W W 9 3 mm 3 b L K k k 4357 L U J K m k k 569 J U m M.üven KUTY /

2 k > k olduğundan burkulma hesabı kesitinde apılacaktır. cos( α) 46.kN. Kısım k.5 b kb b 63mm h kh h 57mm h T h t h T 59mm.5 h t 9mm b t 3 3 th J tb J mm 4 J W W h mm 3 T J J J 87MNm.5 b t b ç 3mm 3 b t t 3 h J th J 5 6 mm 4 J W W b 48 3 mm 3 J J J 38MNm J k J k J J 3.44 t b h 4mm Vianelloa göre çöüm: dülemi w ma JK JK J Ç () J Ç J () Ç L K C LK M.üven KUTY /

3 çubuğunun hesabı Vianello metodu ile dülemine göre apılır. wma J K wma M M M C M C JÇ() J Ç LK C w ma w ma çubuğunda etkili. sehim M C w ma M w M d w J M kj d D VYD w w w 5 w ma J 5 w ma kj w ma 5 sabit dışarı alalım w w J k N çubuğunda etkili. sehim M M M C w ma M w M M d w J M M d kj D VYD M.üven KUTY 3/

4 w w w 3 w ma J 3 w ma kj w 3 w ma J k w ma sabit dışarı alalım w w. 6 6J k N Kirişinde etkili 3. sehim MC w ma D VYD M C L K L K M C w 3 d J J K sabit İntegral tablosundan Üçgen + Üçgen w 3 K 3 w ma sabit olduğundan integralin dışına alalım. Kirişinde etkili 4. sehim L K w 3 w 3 J K N w ma L K J K M MC M M C L K w ma D VYD L K M M C w 4 d J J K sabit K İntegral tablosundan Üçgen + Üçgen w 4 3 w ma w ma L K J K L K sabit olduğundan integralin dışına alalım. w 4 w 3 J K N w w ma w w w 3 w 4 kr w w ma kabul edersek kr w w w 3 w 4 kr 63kN 4kN Sonuç: Çubukta burkulma tehlikesi oktur. M.üven KUTY 4/

5 Kesitinde mukavemet hesabı: ğilme momenti M w ma dülemi JK M 8m J () Ç LK J lemsilık radusu i i 38.8mm J π uler burkulma bou L kr L 4.8 m kma narinliği λ π λ f L Narinlik λ λ i λ ağıntılı narinlik λ λ.864 λ W Merke noktası mesafesi k el k el 93.8mm kma kuvveti pl f M pl 57.3kN urkulma parametresi α.34 Kanaklı kutular her eksende. Ma burkulma sehimi w ma k el α λ. w ma 9.35mm urkulma ardımcı faktörü φ.5 α λ. λ φ.5 altma faktörü χ χ.37 φ φ λ Kuvvetin mukavemet emnieti S S.334 χ pl M.üven KUTY 5/

6 Plastikliğin en küçük momenti M pl W f M M pl 99kNm M knm M w ma M 44.45kNm ψ M ψ ψ M. β M.8.7ψ β M.8 M pl α pl α pl α M pl.3 a.8 a λ β M 4 α pl a.567 a a if a.8 a.8.8 otherwise k 5 k a χ k.733 pl k k if k.5 k otherwise ğilme momenti M M S M k M S M.33 pl a J J U LU L J Δ Δ 4kN M a L a L sin( α) a.389 m L L U a L m M a L U.5Δ a L M kNm J lemsilık radusu i i 5mm J π uler burkulma bou L kr L m M.üven KUTY 6/

7 L Narinlik λ λ i λ ağıntılı narinlik λ λ.864 λ W Merke noktası mesafesi k el k el.5mm Ma burkulma sehimi w ma k el α λ. w ma 3.8mm urkulma ardımcı faktörü φ.5 α λ. λ φ.5 altma faktörü χ χ.37 φ φ λ Kuvvetin mukavemet emnieti S S.334 χ pl Plastikliğin en küçük momenti M pl W f M M pl 5.7kNm M w ma M 46kNm M M M M 59kNm ψ M knm M ψ ψ. M β M.8.7ψ β M.8 M pl α pl α pl α pl.738 M a λ β M 4 α pl a.7 a a if a.8.8 otherwise a.7 k a k. χ pl k k if k.5 k..5 otherwise M S M k S M.577 M pl M.üven KUTY 7/

8 M M S k χ pl M k pl M S.943 pl M M S k χ pl M k pl M S.943 pl Sonuç: S ve S değerleri den küçük olduğundan. kısımın hesaplarına göre konstrüksion fonksionunu apar. O Kesitinde mukavemet hesabı:.5 4m wma dülemi J K wma M. Kısım O Kesitinde moment kontrolü: LK wma J K wma M M M C M C J Ç () O Kesiti O Kesiti O Kesiti O Kesiti J Ç w Oma LK C O Kesitinde çubuğunda etkili. sehim MC M w ma M C,5. w M M C d J D VYD 5 w w ma J M.üven KUTY 8/

9 w ma 5 sabit dışarı alalım w w J N O Kesitinde çubuğunda etkili. sehim M M M C w ma M C w M M d w J 3 w ma J D VYD w ma sabit dışarı alalım w w.64 6 J N w w ma w w kr w w ma kabul edersek kr kr 6974kN 4kN w w O Kesitinde burkulma tehlikesi oktur. O Kesitinde mukavemet hesabı J lemsilık radusu i i 6.3mm J π uler burkulma bou L kr L.5 m kma narinliği λ L Narinlik λ λ i λ ağıntılı narinlik λ λ.734 λ W Merke noktası mesafesi k el k el 8.47mm kma kuvveti pl f M pl 348.kN urkulma parametresi α.34 Kanaklı kutular her eksende. Ma burkulma sehimi w ma k el α λ. w ma 3.36mm M.üven KUTY 9/

10 urkulma ardımcı faktörü φ.5 α λ. λ φ.86 altma faktörü χ χ.764 φ φ λ Kuvvetin mukavemet emnieti S S χ.56 pl J i lemsilık radusu i 66.4mm J π L uler burkulma bou L kr.473 m L λ Narinlik i λ λ λ ağıntılı narinlik λ λ.734 W k el Merke noktası mesafesi k el 3.85mm Ma burkulma sehimi w ma k el α λ. w ma 3.945mm urkulma ardımcı faktörü φ.5 α λ. λ φ.86 altma faktörü χ χ.764 φ φ λ Kuvvetin mukavemet emnieti S S χ.56 pl Plastikliğin en küçük momenti M pl W f M M pl 439kNm ψ M w ma M 9.76kNm M knm M ψ ψ M. β M.8.7ψ β M.8 M pl α pl α pl α M pl a.8 a λ β M 4 α pl a M.üven KUTY /

11 a a if a.8 a.8.8 otherwise k 5 k a k.876 χ pl k k if k.5 k otherwise M S M k S M.9 M pl ğilme momenti M O a J L U J U J M O O a/ L Δ 4kN a.389 m L m L U M.5 a.5δ a L M 7.3kNm L Plastikliğin en küçük momenti M pl W f M M pl 45.6kNm M knm M w ma M 9kNm M M M M 8kNm ψ M ψ ψ. M β M.8.7ψ β M.8 M pl α pl α pl α pl.6 M a λ β M 4 α pl a.38 a a if a.8.8 otherwise a.38 M.üven KUTY /

12 k a χ k.953 pl k k if k.5 k otherwise M S M k M S M.595 pl M M S k χ pl M k pl M S.77 pl M M S k χ pl M k pl M S.77 pl Sonuç: S ve S değerleri den küçük olduğundan kesitinin hesaplarına göre konstrüksion fonksionunu apar. O kesitinin emnietli mukavet değerine göre kontrolü: σ he M M W W σ he 64MPa f M 4MPa σ he k M k f M.77 M kesitinin emnietli mukavet değerine göre kontrolü: σ he M M W W σ he 49MPa f M 4MPa σ he k M k f M.7 M Sonuç: Sistemin emnietli mukavet değerine göre kontrolündede görüldüğü gibi konstrüksion fonksionunu apar. SON M.üven KUTY /

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

2. fejezet: Vasbeton keresztmetszet ellenõrzése hajlításra

2. fejezet: Vasbeton keresztmetszet ellenõrzése hajlításra . ejezet: Vasbeton keresztmetszet ellenõrzése hajlításra.1. Ellenõrizze az alábbi keresztmetszetet M S =105 knm hajlítónyomatékra! Beton: C16/0 Betonaél: B60.50 φ0 1.15!! = 10.667 N y = 3.783 N φ π A s

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

V. fejezet: Vasbeton keresztmetszet ellenõrzése nyírásra

V. fejezet: Vasbeton keresztmetszet ellenõrzése nyírásra : Vasbeton keresztmetszet ellenõrzése nyírásra 5.. Koncentrált erõvel tehelt konzol ellenõrzése nyírásra φ0/00 Q=0 kn φ0 φ0 Anyagok : Beton: C5/30 Betonacél: B60.0 Betonfedés:0 mm Kedv.elm.: 0 mm Kengy.táv:

Részletesebben

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól

Transzformáció a főtengelyekre és a nem főtengelyekre vonatkoztatott. Az ellipszis a sík azon pontjainak mértani helye, amelyeknek két adott pontól Ellipsis.tex, February 9, 01 Az ellipszis Az ellipszis leírása Az ellipszis szerkesztése és tulajdonságai Az ellipszis kanonikus egyenlete A kör vetülete ellipszis Az ellipszis polárkoordinátás egyenlete

Részletesebben

Szilárdtestek elektronszerkezete feladatok

Szilárdtestek elektronszerkezete feladatok Szilárdtestek elektronszerkezete feladatok Csősz Gábor 8. január.. feladat A feladatban az alábbi mátriot kell diagonizálni. ε B,F,G (k) V V H = V ε B,F,G (k) V V V ε B,F,G (k) Kihasználva a rács szimmetriáját

Részletesebben

Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája

Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Fülöp Tamás + Deák László MTA Wigner FK RMI MTA Wigner FK RMI, Budapest, 2012.06.22 Mi a reciprocitás? A fénysugár útja megfordítható G. Stokes,

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai. DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:

Részletesebben

Az elektron-foton kölcsönhatás (folyamatok)

Az elektron-foton kölcsönhatás (folyamatok) Az elektron-foton kölcsönhatás (folyamatok) Itten most a Compton-szórás hatáskeresztmetszetét kell kiszámolni, felhasználva a QED-ben és úgy általában a kvantumtérelméletben ismert dolgokat (Feynman-szabályok,

Részletesebben

Sinkovicz Péter, Szirmai Gergely október 30

Sinkovicz Péter, Szirmai Gergely október 30 Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés

Részletesebben

Magyary Zoltán Posztdoktori beszámoló előadás

Magyary Zoltán Posztdoktori beszámoló előadás Magyary Zoltán Posztdoktori beszámoló előadás Tengely Szabolcs 2007. november 9. Számelméleti Szeminárium tengely@math.klte.hu slide 1 Eredmények Eredmények Chabauty (T.Sz.): On the Diophantine equation

Részletesebben

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Vasalt falak: 4. Vasalt falazott szerkezetek méretezési mószerei Vasalt falak 1. Vasalás fekvőhézagban vagy falazott üregben horonyban, falazóelem lyukban. 1 2 1 Vasalt falak: Vasalás fekvőhézagban vagy

Részletesebben

elemi gerjesztéseinek vizsgálata

elemi gerjesztéseinek vizsgálata Hatszögrácson kialakuló spin-folyadék fázis elemi gerjesztéseinek vizsgálata Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2013 április 29 Áttekintés

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

Rugalmas ágyazású gerenda számítása Eredmények

Rugalmas ágyazású gerenda számítása Eredmények Tarcsai út. 157/18 Budapest Üzletközpont Black Rose Rugalmas ágyazású gerenda számítása Eredmények A számítás lefutott. Altalaj vizsgálat tipikus kombinációja : HHÁ: Q3:G1+G2+Q4 Számítás 1 Név : Analysis

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

Bevezetés a görbe vonalú geometriába

Bevezetés a görbe vonalú geometriába Bevezetés a görbe vonalú geometriába Metrikus tenzor, Christoffel-szimbólum, kovariáns derivált, párhuzamos eltolás, geodetikus Pr hle Zsóa A klasszikus térelmélet elemei (szeminárium) 2012. október 1.

Részletesebben

2. Reprezentáció-függvények, Erdős-Fuchs tétel

2. Reprezentáció-függvények, Erdős-Fuchs tétel 2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MKOLC EGYETEM Gzáguoá K Üzl oácógzáloá é Móz éz Üzl z é Előlzé éz Tzé VZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ Vzozáo. V, V, V. l, b 3. l l... l l b Π 4. - b b 5. V : V : TTZTK KÉPLETGYŰJTEMÉNY É TÁLÁZTOK Nöélboá

Részletesebben

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes

Részletesebben

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek.

Fizika II minimumkérdések. A zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. izika II minimumkérdések zárójelben lévő értékeket nem kötelező memorizálni, azok csak tájékoztató jellegűek. 1. Coulomb erőtörvény: = kq r 2 e r (k = 9 10 9 m2 C 2 ) 2. Coulomb állandó és vákuum permittivitás

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén

Analízis. 1. fejezet Normált-, Banach- és Hilbert-terek. 1. Definíció. (K n,, ) vektortér, ha X, Y, Z K n és a, b K esetén 1. fejezet Analízis 1.1. Normált-, Banach- és Hilbert-terek. Zártés teljes ortonormált rendszer. Fourier-sor. Riesz-Fischer tétel Hilbert-térben. Szeparábilis Hilbert terek izomorfiája. 1.1.1. Normált-,

Részletesebben

Számítási dokumentáció. Megnevezés: Félév: 2008/2009 I. félév. Lapok száma: 10. Tervezési feladat I. Autóemelő. Név: Katona Géza. Neptun kód: L0I8ZH

Számítási dokumentáció. Megnevezés: Félév: 2008/2009 I. félév. Lapok száma: 10. Tervezési feladat I. Autóemelő. Név: Katona Géza. Neptun kód: L0I8ZH Megnevezés: Tervezési feladat I. Autóemelő Számítási dokumentáció Félév: 008/009 I. félév Név: Katona Géza Lapok száma: 10 Neptun kód: L0I8ZH Bevezető Ezen autóemelő szerkezettel Renault típusú személygépkocsit

Részletesebben

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban I. z éő yg egotos szekezet tujoság és szeepük oóg ukók h j I. ε ε k e k I.5 h h λ I. p υ ε υ k ozgás I. M [ Z p Z ] M, Z pv k I.5 I.9 II. Sugázások és kösöhtásuk z éő ygg P M II. e P ~, ~ II. továk II.5

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 >

Ψ = α 0 > +β 1 > ØÓÚ α 2 + β 2 = 1. Ψ = cos θ 2 0 > +eiϕ sin θ 2 1 > ÃÚ ÒØÙÑ Ò ÓÖÑ Ø Ð Ô Ó ÐÑ ØØÔ»» ØÔº ØÓÑ º Ù»ÀÇÅ ¹È»Ð ØÙÖ» Ú Ò ºÔ Ø Ù Ø ÙÐÐ Ñ Ú ÒÝ Þ ÓÑÐ ýðð ÔÓØÓ Þ ÓÒ ÃÚ ÒØÙÑÐÓ ÔÙ ÃÚ ÒØÙÑØ Ð ÔÓÖØ Ë Ö ÓÐ ÃÚ ÒØÙÑ Ö ÔØÓ Ö ÃÚ ÒØÙÑ Þ Ñ Ø Ô ½ Ø ÃÙ Ø Ø Ø ÐÐ ÔÓØ Ð Þ Ù Ö Ò Þ

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek emelt szint 0911 ÉRETTSÉGI VIZSGA 2009. október 19. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI

Részletesebben

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel

Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,

Részletesebben

KÚPKERÉKPÁR TERVEZÉSE

KÚPKERÉKPÁR TERVEZÉSE MISKOLCI EGYETEM GÉPELEMEK TANSZÉKE OKTATÁSI SEGÉDLET a GÉPELEMEK III. c. tantárgyhoz KÚPKERÉKPÁR TERVEZÉSE Összeállította: Dr. Szente József egyetei docens Miskolc, 007. Geoetriai száítások. A kiskerék

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék.   [1] ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

1. feladatsor Komplex számok

1. feladatsor Komplex számok . feladatsor Komplex számok.. Feladat. Kanonikus alakban számolva határozzuk meg az alábbi műveletek eredményét. (a) i 0 ; i 8 ; (b) + 4i; 3 i (c) ( + 5i)( 6i); (d) i 3+i ; (e) 3i ; (f) ( +3i)(8+i) ( 4

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató Lindab Z/C 200 ECO gerendák statikai méretezése Tervezési útmutató Készítette: Dr. Ádány Sándor Lindab Kft 2007. február ZC200ECO / 1 1. Bevezetés Jelen útmutató a Lindab Kft. által 1998-ban kiadott Lindab

Részletesebben

Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok

Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok Gakorló feladatok a. zárthelihez Kidolgozott feladatok. a) Határozzuk meg a függesztőrúd négzetkeresztmetszetének a oldalhosszát cm-re kerekítve úg, hog a függesztőrúdban ébredő normálfeszültség ne érje

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 2010. szeptember X. Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék Alapozás Rajzfeladatok Hallgató Bálint részére Megtervezendő egy 30 m 18 m alapterületű épület síkalapozása és a

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

E-mail: info@silliker.hu web: www.silliker.hu Telefon: +36-30-479-1802

E-mail: info@silliker.hu web: www.silliker.hu Telefon: +36-30-479-1802 Pom T-206/3 szállítócsiga Műszaki adatok : T-206/3 4-9 t/h Alapgép hossza (m) 4 Maximális hossz (m) 6 1,7* 4,3** 60⁰ Belső átmérő (mm) 100 1,5 1420 Gép tömege (kb) 80 Kiegészítő tartozékok: fogadógarat

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Makromolekulák fizikája

Makromolekulák fizikája Makomoekuák fizikája Bevezetés Az egyedi ánc moekuaméet, áncmode a konfomációt befoyásoó tényezők eoszások Poime odatok köcsönhatások eegyedés fázisegyensúy Moekuatömeg meghatáozás fagyáspontcsökkenés

Részletesebben

Ð ØÖÓÑ Ò Ø Ö ÎÁÁÁº ÆÝ ØÖ Ý Ö ÐÝ ÈÌ ÈÅÅÁà ΠÐÐ ÑÓ À Ð Þ ØÓ Ì Ò Þ ¼½ º ÒÓÚ Ñ Ö º ÍÐØÖ Ö Ú ¹ ÒÝ ÑÔÙÐÞÙ Ó Ð ÐÐ Ø Þ Ð Ð Þ Ö ÑÓÒ ØÖ Å Ñ Ò ÖÙ ÒÐ Þ Ö ½ ¼ ÁÑÔÙÐÞÙ Ó Þ ÒØ ¹ Ô Ò ½¼¼ Ò ½ Ò ½¼ µ ¹ ɹ Ô ÓÐ ½ ½¹ µ ½¼

Részletesebben

2. gyakorlat. A polárkoordináta-rendszer

2. gyakorlat. A polárkoordináta-rendszer . gyakorlat A polárkoordináta-rendszer Az 1. gyakorlaton megismerkedtünk a descartesi koordináta-rendszerrel. Síkvektorokat gyakran kényelmes ún. polárkoordinátákkal megadni: az r hosszúsággal és a φ irányszöggel

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VII. Előadás. Homloklemezes kapcsolatok méretezésének alapjai

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VII. Előadás. Homloklemezes kapcsolatok méretezésének alapjai 7_Előadás.sm DEBRECEI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRÖKI TASZÉK Acélszerkezetek II VII. Előadás Homloklemezes kapcsolatok méretezésének alapjai - Homloklemezes kapcsolatok viselkedése - A komponens módszer

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett.

BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett. BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett. 1 1 2 U6 cm = = = 0,4387 W/ m K 1 d 1 1 0,015 0,06 0,3 0,015 1 + + + + + + + α λ α

Részletesebben

Véletlen mátrix extrém-érték statisztika: Tracy-Widom eloszlás

Véletlen mátrix extrém-érték statisztika: Tracy-Widom eloszlás Véletlen mátrix extrém-érték statisztika: Ábel Dániel June 15, 2006 1 / 34 2 / 34 Előző alkalommal bevezetett dolgok, amiket használni fogunk: 3 / 34 Előző alkalommal bevezetett dolgok, amiket használni

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Enzimreakciók Aktiválási energia számítások Bevezetés a kinetikába. OH - + CH 3 Cl HO...CH HOCH 3 + Cl -

Enzimreakciók Aktiválási energia számítások Bevezetés a kinetikába. OH - + CH 3 Cl HO...CH HOCH 3 + Cl - Bevezetés ketkáb Bevezetés ketkáb A B j k j,l C l D,j,l, kvtuállpotok őérséklettől függő sebesség álldó [ A] d[ B] d T dt dt )[ A][ B] [A], [B] A és B kocetrácój [ A ] f A ( T )[ A] f A eloszlásfüggvéy

Részletesebben

l = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 )

l = 1 m c) Mekkora a megnyúlás, ha közben a rúd hőmérséklete ΔT = 30 C-kal megváltozik? (a lineáris hőtágulási együtható: α = 1, C -1 ) 5. TIZTA HÚZÁ-NYOMÁ, PÉLDÁK I. 1. a) Határouk meg a függestőrúd négetkerestmetsetének a oldalhossát cm-re kerekítve úg, hog a függestőrúdban ébredő normálfesültség ne érje el a σ e = 180 MPa-t! 3 m 1 C

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás)

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás) Dr. Németh György Szerkezetépítés II. 1 A fáradt törés ismétlődő terhek hatására a statikus törőszilárdság feszültségszintje alatt feszültségcsúcsoknál lokális képlékeny alakváltozásból indul ki általában

Részletesebben

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő

Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő 1 / 32 Stacionárius tengelyszimmetrikus terek a Kerr-Newman téridő Fodor Gyula MTA KFKI Részecske- és Magfizikai Kutatóintézet Integrálhatóság Nyári Iskola Budapest, 2008 augusztus 25 Bevezetés 2 / 32

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat Tételjegyzék Áramlástan, MMF3A5G-N, 006 007-es tané, őszi félé, géészmérnöki szak, naali tagozat. A folyaékok és gázok jellemzése: nyomás, sűrűség, fajtérfogat. Az ieális folyaék.. A hirosztatikai nyomás.

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

3. Feloldható csoportok

3. Feloldható csoportok 3. Feloldható csoportok 3.1. Kommutátor-részcsoport Egy csoport két eleme, a és b felcserélhető, ha ab = ba, vagy átrendezve az egyenlőséget, a 1 b 1 ab = 1. Ezt az [a,b] = a 1 b 1 ab elemet az a és b

Részletesebben

A rendelet hatálya 1..

A rendelet hatálya 1.. ENYING VÁROS ÖNKORMÁNYZAT KÉPVISELŐ-TESTÜLETÉNEK 7/2010. (II. 26.) számú rendelete Enying Város Önkormányzatának 2010. évi költségvetéséről Enying Város Önkormányzata a helyi önkormányzatokról szóló 1990.

Részletesebben

Atomok mágneses momentuma

Atomok mágneses momentuma Kvantuchanikai pályaontu: A pályaontu gységkbn kvantált. Az abszolút érték kvantuszáai: l! ( n ) 0,,... l l,, Lˆ rˆ pˆ [ Lˆ x,lˆ y] i! Lˆ z, [ Lˆ y,lˆ z ] i! Lˆ x, [ Lˆ z,lˆ x ] i! Lˆ y L l( l +)! L z

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

Határozatlan integrál, primitív függvény

Határozatlan integrál, primitív függvény Határozatlan integrál, primitív függvény Alapintegrálok Alapintegráloknak nevezzük az elemi valós függvények differenciálási szabályainak megfordításából adódó primitív függvényeket. ( ) n = n+ n+ + c,

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MIKOLCI EGYETEM Gazdaágtudoá Kar Üzlt Iorácógazdálodá é Módzrta Itézt Üzlt tatzta é Előrlzé Tazé TATIZTIKAI KÉPLETGYŰJTEMÉNY É TÁLÁZATOK (Dolgozatíráál, zgá ca gé bgzé élül hazálható!). VIZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

Eötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása

Eötvös Loránd Tudományegyetem Informatikai Kar. Additív számelméleti függvények eloszlása Eötvös Loránd Tudományegyetem Informatikai Kar Additív számelméleti függvények eloszlása Doktori értekezés tézisei Germán László Témavezető Prof. Dr. Kátai Imre akadémikus Informatika Doktori Iskola vezető:

Részletesebben

Modellek és Algoritmusok - 2.ZH Elmélet

Modellek és Algoritmusok - 2.ZH Elmélet Modellek és Algoritmusok - 2.ZH Elmélet Ha hibát elírást találsz kérlek jelezd: sellei_m@hotmail.com A fríss/javított változat elérhet : people.inf.elte.hu/semsaai/modalg/ 2.ZH Számonkérés: 3.EA-tól(DE-ek)

Részletesebben

differenciálegyenletek

differenciálegyenletek Állandó együtthatójú lineáris homogén differenciálegyenletek L[y] = y (n) + a 1y (n 1) + + a ny = 0 a i R (1) a valós, állandó együtthatójú lineáris homogén n-ed rendű differenciálegyenlet Megoldását y

Részletesebben

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel

) (11.17) 11.2 Rácsos tartók párhuzamos övekkel Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek

Részletesebben

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány

Szili László. Integrálszámítás (Gyakorló feladatok) Analízis 3. Programtervező informatikus szak BSc, B és C szakirány Szili László Integrálszámítás (Gyakorló feladatok Analízis. Programtervező informatikus szak BSc, B és C szakirány. február Tartalomjegyzék I. Feladatok 5. A határozatlan integrál (primitív függvények...........

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

ő ü ó ü ü ő ő ó ę ö É Ĺ Ĺ ö ű ő ó ó ő ü ő ő ó ö ó ő ü ö ę đ ü ó ý ť ü ű ő ú ü ý ó ő ó ő ó ó ő ö ö ó ő ü ő ő ę ó ź ú ő ő ó Í ó ó ę ü ü ó ť ő ó ó ü ź ó Ĺ ő ű ú ő ű ó ű ś ű ő ę ó ö ó ú ö ö ő ń ü ý ü ő Í ü

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0921 ÉRETTSÉGI VIZSGA 2010. május 14. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =,

Matematika II képletek. 1 sin xdx =, cos 2 x dx = sh 2 x dx = 1 + x 2 dx = 1 x. cos xdx =, Matematika II előadás elméleti kérdéseinél kérdezhető képletek Matematika II képletek Határozatlan Integrálszámítás x n dx =, sin 2 x dx = sin xdx =, ch 2 x dx = sin xdx =, sh 2 x dx = cos xdx =, + x 2

Részletesebben

A véges forgatás vektoráról

A véges forgatás vektoráról A véges forgatás vektoráról Az idők során sokszor olvastuk azt a mondatot a mechanika - könyvekben hogy a végtelen kis szögelfordulások az elemi forgások vektornak tekinthetők [ ] Természetesen adódik

Részletesebben

Budapesti Műszaki és Gazdaságudományi Egyetem

Budapesti Műszaki és Gazdaságudományi Egyetem Szilárdságtan példatár Járműváz- és Könnyűszerkezetek Tanszék udapesti Műszaki és Gazdaságudományi Egyetem ii iii bstract Ez a példatár elsősorban a Közlekedésmérnöki és Járműmérnöki Kar Sc hallgatóinak

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1. mintpéld Folyttólgos többtámsú ösvérgerend visgált en egyetemi docens BME, Hidk és Serkeetek Tnsék 01. Trtóserkeet-rekonstrukciós 1. A sámítás lpjául solgáló dtok 1.1 Váltterv 1. A sámításho felhsnált

Részletesebben

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.

A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra. A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

Analízis 5. Előadásjegyzet

Analízis 5. Előadásjegyzet Anlízis 5. Elődásjegyzet Oláh Gábor oliks.g@gmil.com Jnury, 9 A jegyzet z ELTÉ-n 8-9 őszi félévében elhgzott elődás lpján készült. Az elődó Simon Péter. A jegyzet szbdon terjeszthető, zonbn kérek mindenkit,

Részletesebben

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =

Matematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx = Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!

Részletesebben

Excel segédlet Üzleti statisztika tantárgyhoz

Excel segédlet Üzleti statisztika tantárgyhoz Miskolci Egyetem Üzleti Statisztika és Előrejelzési Intézeti Tanszék Excel segédlet Üzleti statisztika tantárgyhoz. Z próba einek meghatározása óbafüggvény: x - m z = ; vagy σ/ n x - m z = ; vagy s/ n

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Laplace-transzformáció. Vajda István február 26.

Laplace-transzformáció. Vajda István február 26. Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 3 ÉRETTSÉGI VIZSGA 03. május 3. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók

Részletesebben

Jármű- és hajtáselemek I. (KOJHA156) Csavarkötés kisfeladat: Feladatlap - A

Jármű- és hajtáselemek I. (KOJHA156) Csavarkötés kisfeladat: Feladatlap - A BUDAESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Jármű- é hajtáeeme I. (KOJHA156) Cavaröté ifeaat: aatap - A Sz.: A/. Név:... Neptun ó.:. ADATVÁLASZTÉK A Eacé 10 10 3 [N/mm ] Eöntöttva 15 10 3 [N/mm ] Eauminium

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben