A logikai absztrakt adattípus

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A logikai absztrakt adattípus"

Átírás

1 A logikai asztrakt adattípus A logikai asztrakt adattípus eg olan halmazt ad meg, amelnek két eleme van, a hamis és az igaz. Jelölésen L{hamis, igaz}. Röviden az elemeket a h (hamis) és az i (igaz) jellel jelöljük. A logikai asztrakt adattípus megadása: T(L,M), ahol L a logikai adatok halmaza (kételemű) és M a rajtuk végezhető műveletek halmaza. A típus M-en felsorolt műveletei lehetnek unáris (unér) és áris (ér) aszert, hog hán operandusuk van. (Lehetnek töoperandusú műveletek is ternáris, kvaternáris, st. -, de ezek, mt látni fogjuk, az előzőkkel kifejezhetők.) Mivel az adattípusnak mdössze két eleme van, ezért az összes műveletét fel tudjuk sorolni. n Mivel mdegik operandus kétféle értéket vehet fel, n operandus esetén ez lehetséges érték n-est jelent. Mdegik esetéen sztén kétféle eredmén kapcsolható hozzájuk md a n helen, ezért általáan n-változós műveletől n számú van. 1 Unáris művelet nég ( ) van, amt az az alái tálázatól kiolvasható. A Hamis és az Igaz mdig konstanst eredménez, ármi legen is az értéke, az Identikus visszaadja magát az -et, tehát az egetlen érdekes a Negáció, (tagadás, NEM, NOT), amek a jele a felülvonás a logikai adat neve fölött. Pl.:az adat negáltja (tagadottja, NEM, NOT ). Hamis Identikus Negáció,tagadás NEM, NOT Igaz h i h h h i i i h i h i Érdekese áris műveletek (a műveleti jeleket a két operandus közé heleztük): Diszjunkció (VAGY, OR) Konjunkció (ÉS, AND) Antivalencia (KIZÁRÓ VAGY, XOR) Ekvivalencia Implikáció Peirce níl (NEM VAGY, NOR) Scheffer vonás (NEM ÉS, NAND) h h h h h i i i i h i i h i h i h i i h i h i h h h i i i i i h i i h h

2 Programtervezési ismeretek Báris műveletől 16-ot ( ) lehet felírni. (Találjuk meg a töit!). A műveletek erősorrendje csökkenő erő szert (prioritás, zárójelezés nélkül írhatók) a következő: NEM, ÉS, VAGY, KIZÁRÓ VAGY, Ekvivalencia, Implikáció. A NEM, ÉS, VAGY műveletek tulajdonságai: 1. Kettős tagadás. Kommutativitás 3. Asszociativitás ( ) z ( z) ( ) z ( z) 4. Disztriutivitás ( z) ( ) ( z) z z 5. Idempotencia 6. Konstansok hatása i i i h h h 7. Elnelés ( ) ( ) 8. Ellentmondás h 9. Harmadik kizárása i 10. De Morgan szaál ( ) ( ) ( ) Ezen három művelettel (NEM, ÉS, VAGY) az összes töi (a töváltozósak is) kifejezhetők. Példák: ( ) ( ) ( ) ( ) A diszjunktív normálforma Defíció: Elemi konjunkció Változók vag tagadottjaak a konjunkciója, melen a változók legfelje egszer fordulnak elő. Defíció: Diszjunktív normálforma (DNF) Elemi konjunkciók diszjunkciója Művelettála alapján DNF előállítása: Ahol az eredmén oszlopan i van, azokat az eseteket diszjunkcióval kötjük össze úg, hog a változók konjunkcióiól formulát alkotunk. A formuláan i esetén a változó szerepel, h esetén a változó negáltja. Példa: Innen ( ) ( ). h h h h i i i h i i i h

3 Programtervezési ismeretek A logikai adatstruktúra Már eddig is végső soron adatstruktúrával dolgoztunk, hiszen lejegeztük a hamis és az igaz értéket h-val és i-vel. Látjuk, hog igazán semmilen proléma itt nem adódik, mden művelet ragogóan működik. A h és i etűk helett használhattuk volna a hamis és igaz szavakat is, az is eg lehetséges adatstruktúra lenne. Ha a szavak angol megfelelőit használnánk ( false és true ), akkor írhatnánk az f és t etűket a h és i helett. Az sem tiltott, hog a 0 és 1 jeleket alkalmazzuk, mt alá láthatjuk. Tehát az adatstruktúra hűen realizálja az asztrakt adattípust. A logikai adattípus/adatstruktúra implementációja A logikai adat (változó) realizálása itekkel értelemszerűen történhet a hamis 0, igaz 1 módon. Defíció: Izomorfizmus Két algerai struktúrát izomorfnak nevezünk, ha létezik olan kölcsönösen egértelmű megfeleltetés a két struktúra elemei között, amel esetén a műveletek is szkronizálódnak. Ez azt jelenti, hog ha az egik struktúra az (A, ), a másik struktúra a (B, ), a kölcsönösen egértelmű megfeleltetés pedig f : A B, akkor fennáll, hog f(a 1 a )f(a 1 ) f(a ) mden a 1 A és a A esetén. Az f megfeleltetést nevezzük izomorfizmusnak. Az izomorfizmus azt jelenti, hog a két struktúra azonos szerkezetű a művelet viselkedését tektve. Példa : Legen AR +, a pozitív valós számok halmaza a szorzás művelettel felruházva, és BR, az összes valós szám halmaza az összeadás művelettel. Akkor az f : R + R megfeleltetés, ahol f()log(), izomorfizmust valósit meg, hiszen a logaritmus azonosságai szert: log() log() +log() mden pozitív és esetén. Legen most az A halmaz az L logikai adattípus a negáció, a konjunkció és a diszjunkció műveletével felruházva. T L (L, {,, }). Legen a B halmaz a {0,1} számokól álló halmaz, amelen értelmezzük az alái három múveletet, miáltal létrehozunk eg T B (B,{e(),, }) adattípust. 1. Ellentett elem képzése unáris művelet : e()1-, B a kivonás művelete révén.. Szorzás áris művelet: 1, 1, B a számok szorzási műveletének megfelelően. 3. Bitösszegzés áris művelet : , B a számokra érvénes szokásos összeadás, kivonás és szorzás művelete révén. Ekkor a most defiált három művelet a negáció, konjunkció, és diszjunkció műveletének megfeleltetve, valamt a logikai menniségeknek a iteket a fenti módon megfeleltetve a logikai adattípus és a it adattípus között izomorfizmust hoztunk létre. Azt mondjuk, hog a logikai adatokat itekkel modellezzük. Amilen törvénszerűséget találunk az egiken, az izomorfizmus révén megtaláljuk a törvén párját a másikan. (Mutassuk meg, hog a művelet ekvivalens a ma( 1, ) művelettel.) A logikai típus nagon fontos, mert az értékeket feszültségsztekhez lehet társítani, a műveleteket pedig úgnevezett kapuáramkörökkel valósíthatjuk meg. A kapuáramkör fizikai (technikai) felépítése lénegtelen a számunkra, az változott az idők folamán (relék, diódák,

4 Programtervezési ismeretek tranzisztorok, st.). Sematikusan úg jelölhetjük őket, mt eg dooza zárt átalakító szerkezet, amelnek vannak emenetei és kimenetei. A emeneteken emenő jeleket dolgozzák fel a rendeltetésüknek megfelelően, és az eredmén megjelenik a kimeneteken. Példa kapuáramkörökre: NEM VAGY ÉS Mivel mdegik művelet kifejezhető ezen háromm művelettel, ezzel elérjük, hog kevés alaptípusól onolult rendeltetésű kapuáramköröket építhetünk fel. Kapuáramkörökől felépíthető az úgnevezett félösszeadó (Half Adder). Feladata egetlen itpozíción képezni a két it összegét és az átvitelt, tehát a művelet mdig kétjegű eredmént képez, melnek alacsona heliértékű itje az összegit (s), magasa heliértékű itje az átvitelit (Carr it, c). Láthatóan c s c s Művelettála c s ÉS c s A félösszeadó tö-ites számok összeadásakor csak fél munkát végez, helesen csak a legalacsona itpozíción működik. A továi pozíciókon három itet kell összeadni, a két összeadandó itet és az előző pozícióról jövő átvitelitet. A teljes összeadó (Full Adder) ezt valósítja meg. c c out s Művelettálája: c c out s Felírva a két eredménoszlopra a diszjunktív normálformákat, tulajdonképpen megkapjuk a műveletek eg lehetséges kapuzását. c out s ( c ) ( c ) ( c ) ( c ) ( c ) ( c ) ( c ) ( c ) Ezt a két, látszólag onolult formulát le lehet egszerűsíteni, és a teljes összeadó felépíthető két félösszeadó és eg VAGY kapuáramköről. Előtte azonan eg segéd formulát vezetünk le. Á llítás: ( ) ( )

5 Programtervezési ismeretek Bizonítás: Láttuk, hog ( ) ( ). Akkor ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 13 h 13 h Ezután a teljes összeadó levezetése az alái lehet: Jelölje s, c és s, c az első, valamt a második félösszeadő által adott eredmén összegitet és az átvitelitet.. Akkor c out s ( c ) ( c ) ( c ) ( c ) ( ) c c ( ) ( ) c ( ) c c c 13 i c s 4 c 13 ( c ) ( c ) ( c ) ( c ) ( ) ( ) c ( ) ( ) c ( ) c s c s A teljes összeadó sematikus árája: s c c s c s VAGY c out s Eg egte-os (nolcites) teljes összeadó ezután összerakható a megfelelő késleltető áramkörök közeiktatásával az alái séma szert c 7 c 6 c 5 c 4 c 3 c c 1 c 0 s 7 s 6 s 5 s 4 s 3 s s 1 s 0 Sztén kifejezhető az összes művelet csupán a (NEM, VAGY), vag csupán a (NEM, ÉS), műveletekkel. Sőt, egféle művelet is elegendő erre, ha a (NEM VAGY Pierce níl) vag pedig a (NEM ÉS Scheffer vonás) műveletet választjuk. (Próáljuk meg általuk kifejezni a három (NEM, ÉS, VAGY) alapműveletet!) A fenti tulajdonságokat formula átalakítási szaáloknak is tekthetjük, ameleket a munkánk során felhasználhatunk. Valójáan ezen szaálok méle értelemmel írnak, mivel más, általánosa struktúrák defíciójaként lépnek fel. A fentiek alapján más összefüggéseket is kimutathatunk.

6 Programtervezési ismeretek Példa: Bizoníts uk e, hog a kizáró vag műveletre teljesül az asszociativitás, a kommutativitás és h og h és!

7 Programtervezési ismeretek FELADATOK 1. a. Adja meg művelettáláival md a 16 áris logikai műveletet!. Fejezze ki md a nég unáris műveletet a NEM, ÉS, VAGY áris műveletekkel!. Fejezze ki a felsorolt hét áris műveletet a NEM, ÉS, VAGY műveletekkel! 3. Fejezze ki a felsorolt hét áris műveletet csak a NEM-mel, és a VAGY-gal! 4. a. Fejezze ki a NEM, ÉS, VAGY műveleteket csak a Peirce níllal!. Fejezze ki a NEM, ÉS, VAGY műveleteket csak a Scheffer vonással! 5. A formulák átalakításával lássa e, hog az alái egenlőségek azonosságok! a. z z és 1 K n 1 K n. ( z) ( ) ( z) c. ( z) ( ) ( z) d. ( z ) ( ) ( z ) ( z ) ( z ) e. ( ) (( ) ( ) ) ( ) ( ) 6. Adott eg IC (tegrált áramköri tok), amelnek 8 emeneti láa ( 0, 1,, 3, 4, 5, 6, 7 ), és 8 kimeneti láa (k 0, k 1, k, k 3, k 4, k 5, k 6, k 7 ) van. A emenetek is és a kimenetek is eg-eg te-a foglalhatók össze, a te itjeit az deek sorszámozzák. A emenetek és a kimenetek közötti összefüggéseket is megadtuk a kimenetek mellett. Input 0 k0 0 1 Output és függése az puttól HYPER 1 k1 (( 1 ) ( 3 )) ( 1 3 ) - SUPER k k CSODA k4 ( 7 ( 0 1 )) 4 IC k ( ) (( ) ) k k ( 4 ( 4 5 )) 5 6 ( ) ) ( ) A emenetre adott jeleket, mt egte-os előjel nélküli egész számot adjuk meg, mel itjeire ontandó. Határozza meg a kimenet itjeit és adja meg azt a emenet mtájára egte-os előjel nélküli egész számként decimálisan az alái putok esetére: 159, 163, 15, 89, 108, 05, 75, Igazolja a művelettálák segítségével a NEM, ÉS, VAGY műveletek tulajdonságai fentei tálázatáan felsorolt tulajdonságot!

8 Programtervezési ismeretek Tervezzen háromemenetes töségi elven működő szavazó automatát, azaz a három emenet ismeretéen a kimeneten az jelenjen meg, amelik emenetől tö van. (Töségi elv érvénesül.) Igekezzen mél egszerűre tervezni! 9. Tervezzen olan automatát, amel 3 emenő jel (0, 1) esetén azokat számoknak tektve a kimeneten a legkiseet (legnagoat) jeleníti meg! 10. Tervezzen olan automatát, amel 4 emenő jel (0, 1) esetén a kimeneten 1-et jelenít meg, ha a emeneten az egesek száma páros és nullát, egéként! (Páros paritás jelző.) 11. Tervezzen olan automatát, amel 3 emenő jel (0, 1) esetén akkor ad egest a kimeneten, ha mdegik emenet eges, egéként zérust ad! (Mdenki megszavazta.) 1. Tervezzen olan automatát, amel 3 emenő jel (0, 1) esetén akkor ad egest a kimeneten, ha mdhárom emenet egforma (zérus, vag eges), egéként zérust ad! (Mdenki egetértett, uganúg vélekedett.) 13. Tervezzen olan automatát, amel 3 emenő jel (0, 1) esetén akkor ad egest a kimeneten, ha ármelik emenet eges volt, egéként zérust ad! (Vétó.)

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

2019/02/11 10:01 1/10 Logika

2019/02/11 10:01 1/10 Logika 2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei

1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei 1. A matematikai logika alapfogalmai Megjegyzések: a) A logikában az állítás (kijelentés), valamint annak igaz vagy hamis voltát alapfogalomnak tekintjük, nem definiáljuk. b) Minden állítással kapcsolatban

Részletesebben

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logikai ekvivalencia Az A és a B elsőrendű formulák logikailag ekvivalensek, ha

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Adatstruktúrák és algoritmusok

Adatstruktúrák és algoritmusok Adatstruktúrák és algoritmusok Attila Házy, Ferenc Nagy 2011. április 6. 2 Tartalomjegyzék 1. Bevezetés 7 1.1. A tárgyról............................. 7 1.2. Alapvető fogalmak, definíciók..................

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Példa:

Példa: Digitális információ ábrázolása A digitális technika feladata: információ ábrázolása és feldolgozása a digitális technika eszközeivel Szakterület Jelkészlet Digitális technika "0" és "1" Fizika Logika

Részletesebben

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai

Részletesebben

AZ INFORMATIKA LOGIKAI ALAPJAI

AZ INFORMATIKA LOGIKAI ALAPJAI AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy

Részletesebben

3. Magyarország legmagasabb hegycsúcsa az Istállós-kő.

3. Magyarország legmagasabb hegycsúcsa az Istállós-kő. 1. Bevezetés A logika a görög,,logosz szóból származik, melynek jelentése gondolkodás, beszéd, szó. A logika az emberi gondolkodás vizsgálatával foglalkozik, célja pedig a gondolkodás során használt helyes

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Összeadó áramkör A legegyszerűbb összeadó két bitet ad össze, és az egy bites eredményt és az átvitelt adja ki a kimenetén, ez a

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Kijelentéslogika, ítéletkalkulus

Kijelentéslogika, ítéletkalkulus Kijelentéslogika, ítéletkalkulus Arisztotelész (ie 4. sz) Leibniz (1646-1716) oole (1815-1864) Gödel (1906-1978) Neumann János (1903-1957) Kalmár László (1905-1976) Péter Rózsa (1905-1977) Kijelentés,

Részletesebben

Elektronikai műszerész Elektronikai műszerész

Elektronikai műszerész Elektronikai műszerész A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK

28. EGYSZERŰ DIGITÁLIS ÁRAMKÖRÖK 28. EGYSZERŰ DIGITÁLIS ÁRMKÖRÖK Célkitűzés: z egyszerű kombinációs digitális áramkörök elvi alapjainak, valamint ezek néhány gyakorlati alkalmazásának megismerése. I. Elméleti áttekintés digitális eszközök

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

1. Logikailag ekvivalens

1. Logikailag ekvivalens Informatikai logikai alapjai Mérnök informatikus 4. gyakorlat 1. Logikailag ekvivalens 1. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p p) formulával? A. ((q p) q) B. (q q) C. ( p q) D.

Részletesebben

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104.

Logikai hálózatok. Dr. Bede Zsuzsanna St. I. em. 104. Logikai hálózatok Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St. I. em. 04. Tanszéki honlap: www.kjit.bme.hu/hallgatoknak/bsc-targyak-3/logikai-halozatok Gyakorlatok: hétfő + 08:5-0:00 J 208 HF: 4.

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

DIGITÁLIS TECHNIKA feladatgyűjtemény

DIGITÁLIS TECHNIKA feladatgyűjtemény IGITÁLIS TEHNIK feladatgyűjtemény Írta: r. Sárosi József álint Ádám János Szegedi Tudományegyetem Mérnöki Kar Műszaki Intézet Szerkesztette: r. Sárosi József Lektorálta: r. Gogolák László Szabadkai Műszaki

Részletesebben

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi

Részletesebben

Kijelentéslogika, ítéletkalkulus

Kijelentéslogika, ítéletkalkulus Kijelentéslogika, ítéletkalkulus Kijelentés, ítélet: olyan kijelentő mondat, amelyről egyértelműen eldönthető, hogy igaz vagy hamis Logikai értékek: igaz, hamis zürke I: 52-53, 61-62, 88, 95 Logikai műveletek

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Logikai ágensek. Mesterséges intelligencia március 21.

Logikai ágensek. Mesterséges intelligencia március 21. Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok

Részletesebben

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011.

Matematikai logika. Jegyzet. Összeállította: Faludi Anita 2011. Matematikai logika Jegyzet Összeállította: Faludi Anita 2011. Tartalomjegyzék Bevezetés... 3 Előzmények... 3 Augustus de Morgan (1806-1871)... 3 George Boole(1815-1864)... 3 Claude Elwood Shannon(1916-2001)...

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 6. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet. 1. A polinom fogalma Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1 = x egyenletet. Megoldás x + 1-gyel átszorozva x 2 + x + 1 = x 2 + x. Innen 1 = 0. Ez ellentmondás, így az

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

TARTALOMJEGYZÉK. Tarnai, Bokor, Sághi, Baranyi, Bécsi, BME

TARTALOMJEGYZÉK. Tarnai, Bokor, Sághi, Baranyi, Bécsi, BME TRTLOMJEGYZÉK. evezetés... 8. Kombinációs hálózatok és tervezésük... 9.. Logikai függvének... 9.. Logikai függvének megadása....3. Logikai függvének kanonikus alakjai... 4.3.. iszjunktív kanonikus alak

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Hatodik előadás Tartalom 2/33 Elsőrendű rezolúciós kalkulus - előkészítő fogalmak Prenex formula, Skolem normálforma 3/33 Eldönthető formulaosztályok keresése

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

6. LOGIKAI ÁRAMKÖRÖK

6. LOGIKAI ÁRAMKÖRÖK 6. LOGIKAI ÁRAMKÖRÖK A gyakorlat célja, hogy a hallgatók megismerkedjenek a logikai algebra elemeivel, és képesek legyenek egyszerű logikai függvények realizálására integrált áramkörök (IC-k) felhasználásával.

Részletesebben

2. Ítéletkalkulus szintaxisa

2. Ítéletkalkulus szintaxisa 2. Ítéletkalkulus szintaxisa (4.1) 2.1 Az ítéletlogika abc-je: V 0 V 0 A következő szimbólumokat tartalmazza: ítélet- vagy állításváltozók (az állítások szimbolizálására). Esetenként logikai változónak

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 3. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

Analóg és digitális mennyiségek

Analóg és digitális mennyiségek nalóg és digitális mennyiségek nalóg mennyiség Digitális mennyiség z analóg mennyiségek változása folyamatos (bármilyen értéket felvehet) digitális mennyiségek változása nem folyamatos, hanem ugrásszerű

Részletesebben

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel

Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedés- és Járműirányítási Tanszék Kombinációs hálózatok és sorrendi hálózatok realizálása félvezető kapuáramkörökkel Segédlet az Irányítástechnika I.

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Alapkapuk és alkalmazásaik

Alapkapuk és alkalmazásaik Alapkapuk és alkalmazásaik Bevezetés az analóg és digitális elektronikába Szabadon választható tárgy Összeállította: Farkas Viktor Irányítás, irányítástechnika Az irányítás esetünkben műszaki folyamatok

Részletesebben

XXVII. Erdélyi Magyar Matematikaverseny Nagyvárad, február I. forduló - 9. osztály

XXVII. Erdélyi Magyar Matematikaverseny Nagyvárad, február I. forduló - 9. osztály Nagvárad, 07. február 3 6.. feladat: Két játékos a következő játékot játssza: Az,,3,...,07 véges számsorozatból váltakozva kiválasztanak eg-eg számot, és azt törlik a sorozatból. Bármelikük látja, hog

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

Bevezetés az elektronikába

Bevezetés az elektronikába Bevezetés az elektronikába 4. Logikai kapuáramkörök Felhasznált irodalom Dr. Gárdus Zoltán: Digitális rendszerek szimulációja Mádai László: Logikai alapáramkörök BME FKE: Logikai áramkörök Colin Mitchell:

Részletesebben

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Második előadás Tartalom 2/26 Ítéletlogika - Szemantika (folytatás) Formulák és formulahalmazok szemantikus tulajdonságai Szemantikus következményfogalom Formalizálás

Részletesebben

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.

Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet   takach november 30. 1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Gy ur uk aprilis 11.

Gy ur uk aprilis 11. Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az

Részletesebben

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze! 1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD)

Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Laborgyakorlat Logikai áramkörök számítógéppel segített tervezése (CAD) Bevezetés A laborgyakorlatok alapvető célja a tárgy későbbi laborgyakorlataihoz szükséges ismeretek átadása, az azokban szereplő

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

Algebrai egész kifejezések (polinomok)

Algebrai egész kifejezések (polinomok) Algebrai egész kifejezések (polinomok) Betűk használata a matematikában Feladat Mekkora a 107m 68m oldalhosszúságú téglalap alakú focipála kerülete, területe? a = 107 m b = 68 m Terület T = a b = 107m

Részletesebben

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította:

Áramkörök elmélete és számítása Elektromos és biológiai áramkörök. 3. heti gyakorlat anyaga. Összeállította: Áramkörök elmélete és számítása Elektromos és biológiai áramkörök 3. heti gyakorlat anyaga Összeállította: Kozák László kozla+aram@digitus.itk.ppke.hu Elkészült: 2010. szeptember 30. Utolsó módosítás:

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

IRÁNYÍTÁSTECHNIKA I.

IRÁNYÍTÁSTECHNIKA I. IRÁNÍTÁSTEHNIK I. 5 éves Sc kurzus Összeállította: Dr. Tarnai Géza egetemi tanár udapest, 8. Rendszer- és iránításelméleti ismeretek. félév. félév Diszkrét állapotú rendszerek, logikai hálózatok Foltonos

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le Analitika című művében, Kr.e. IV. században. LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok

Részletesebben

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár

Irányítástechnika I. Dr. Bede Zsuzsanna. Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Előadó: Dr. Bede Zsuzsanna, adjunktus Összeállította: Dr. Sághi Balázs, egy. docens Dr. Tarnai Géza, egy. tanár Irányítástechnika I. Dr. Bede Zsuzsanna bede.zsuzsanna@mail.bme.hu St.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

Kifejezések. Kozsik Tamás. December 11, 2016

Kifejezések. Kozsik Tamás. December 11, 2016 Kifejezések Kozsik Tamás December 11, 2016 Kifejezések Lexika Szintaktika Szemantika Lexika azonosítók (változó-, metódus-, típus- és csomagnevek) literálok operátorok, pl. + zárójelek: (), [], {},

Részletesebben

10.3. A MÁSODFOKÚ EGYENLET

10.3. A MÁSODFOKÚ EGYENLET .. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.

Részletesebben

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály) 1. Számítsuk ki a következő szorzatok értékét! (a) 3 3 3 (b) 7 3 7 3 1 9. Számítsuk ki a következő hánadosokat! (a) (b) 1 0 1 0 3. Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk,

Részletesebben

Koincidencia áramkörök

Koincidencia áramkörök Koincidencia áramkörök BEVEZETÉS Sokszor előfordul, hogy a számítástechnika, az automatika, a tudományos kutatás és a technika sok más területe olyan áramkört igényel, amelynek kimenetén csak akkor van

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Digitális technika VIMIAA02

Digitális technika VIMIAA02 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA02 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben