LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László."

Átírás

1 MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e ) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel, Robinson, Skolem, Turing, Zermelo, Post,, Quine Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László Mesterséges Intelligencia (MI) és matematikai logika: MI matematikai alátámasztása Tudás manipuláció: Állítások Újabb állítások Bizonyítások Következtetések Problémák: Emberi következtetés nem a logika szabályai szerint történik Túl szigorú rugalmatlan A logika egyik feladata: helyes következtetési sémák kialakítása Logikai alapok Automatikus tételbizonyítás Programozási nyelvek PROLOG MPROLOG (moduláris Prolog): Szeredi Péter, Futó Iván Bércesné Novák Ágnes 1

2 Nulladrendű logika (ítéletkalkulus) Formalizált nyelv: szintaxis és szematika Szintaxis: Szemantika: Jelkészlet Formulaképzés szabályai A helyes szintaxisú formulák jelentése Szintaxis Jelkészlet: 1. Betűk 2.,,, Atomok 3. I, H 4. Zárójelek Formula: Minden atom formula Ha α, β formula akkor α, α β, α β, α β is formulák a fenti két szabály véges sokszori alkalmazásával kapjuk a formulákat A magyar betűkkel az atomi formulákat, a görög betűkkel az összetett formulákat jelöljük. Bércesné Novák Ágnes 2

3 Szemantika A jelkészlet elemeit értelmezzük. A betűk az ún. ítéletváltozók. Nevüket az indokolja, hogy a köznapi nyelv kijelentő mondatainak, kijelentéseinek felelnek meg. A klasszikus logikában csak olyan kijelentésekre gondolunk, amelyek igaz vagy hamis volta egyértelműen eldönthető. Ezáltal egyfajta ítéletet képviselnek e mondatok. Változók pedig azért, mert az eredeti kijelentés tartalmától függetlenül, csakis annak igazságértékeit vehetik fel: az igaz, vagy a hamis értékek valamelyikét. Az igazságértékek tehát az ítéletváltozók lehetséges értékei, jelöljük ezek a halmazát I-vel. I csak a klasszikus logikában kételemű halmaz. Azt a függvényt, amely a betűkkel jelölt változókhoz hozzárendeli a lehetséges igazságértékek valamelyikét, interpretációnak hívjuk. (Az interpretációk az igazságtábla atomokat tartalmazó oszlopaiban találhatók, ezen oszlopok minden egyes sora egy interpretáció.) Praktikus, ha az I és H betűt kiemeljük a betűk közül, és rögzítjük igazságértéküket - ezáltal e betűk nem ítéletváltozók, hanem ítéletkonstansok lesznek. Az I betű igazságértéke minden interpretációban legyen igaz, a H betű igazságértéke minden interpretációban legyen hamis. A többi ítéletváltozó esetében az igazságérték az interpretációtól függ. A zárójelek értelmezése és használata a matematikában szokásos módon történik: lényegében a műveletek kiértékelési sorrendjét tudjuk általuk neghatározni. A,, jelek az igazságértékeken értelmezett műveleteknek felelnek meg. E műveletek közül csak az egy-, és kétváltozós műveletek közül néhánynak van gyakorlati jelentősége. A műveletek definícióját szokás kiértékelésnek, kiértékelési szabálynak is nevezni. A kiértékelés az igazságtábla eredménynek megfelelő oszlopában van. Negáció (tagadás): Egyváltozós művelet Igazságtáblázat: Ítéletváltozó Ítéletváltozó tagadása A A Igaz Hamis Hamis Igaz A 4 egyváltozós művelet közül csak a negáció lényeges, a többi a gyakorlatban alig fordul elő. Bércesné Novák Ágnes 3

4 Kétváltozós műveletek Általában infix jelölést használunk. Konjunkció A B: informális jelentése: és. Példa: Esik az eső és süt a nap. Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? A konjunkció akkor és csak akkor igaz, ha mindkét változó igazságértéke igaz. Igazságtáblázat: interpretációk Diszjunkció A B: informális jelentése: vagy. Példa: Esik az eső vagy süt a nap. Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? A diszjunkció akkor és csak akkor hamis, ha mindkét változó igazságértéke hamis. Igazságtáblázat: interpretációk interpretációk Ítéletváltozók Művelet A B A B I I I I H I H I I H H H Implikáció A B : informális jelentése: ha A, akkor B. Példa: Ha az iskolai tanulmányai alatt a tanuló/hallgató minden félévben lagalább jeles átlageredményt ért el, akkor az állam egy aranygyűrűt ad ajándékba a diploma kiosztásakor. (Valójában ehhez még az is feltétel, hogy ne legyen hármasnál rosszabb jegye). Ezt a mondatot az A B sémával lehet jellemezni. Mikor gondoljuk igaznak ezt a két kijelentés összetételével kapott mondatot? Az implikáció akkor és csak akkor hamis, ha az előtagja igaz, az utótagja hamis. Igazságtáblázat: Kérdés: Hány kétváltozós művelet van? Ítéletváltozók Művelet A B A B I I I I H H H I H H H H Ítéletváltozók Művelet A B A B I I I I H H H I I H H I kiértékelések kiértékelések kiértékelések Bércesné Novák Ágnes 4

5 Mitől függ az interpretációk száma? Példák kiértékelésre: 1. Adja meg az ((A B) C) (A B) formula kiértékelését minden interpretációban! A B C ((A B) C) (A B) I I I I I H H H I I H I H I H H I H I I I I I I I H H I H I I I H I I I I H H H H I H I H I H H H H I H H I H I H H H H H I H I 2. Adja meg az (A B) (A B) formula kiértékelését minden interpretációban! Megoldás: A B (A B) (A B) I I I I I H I H H I H I H H H I I I H I H I I H H H H H H H I H H H H I 3. Adja meg az (A B) (A B) formula kiértékelését minden interpretációban! A B A B A B (A B) (A B) I I I H I I H H I I H I I H I H H I H I Def.: Tautológia (azonosan igaz formula, érvényes formula): Az a formula, amely minden interpretációban igaz (például a 3. formula). Def.: Kontradikció (ellentmondás, azonosan hamis, kielégíthetlen):az a formula, amely minden interpretációban hamis (például a 2. formula). A kétértékű logikában érvényes az ún. harmadik (érték) kizárásának elve, amelyet például az alábbi formulákkal is megfogalmazhatunk: A A=H (kontradikció) ez azt jelenti, hogy az A ítéletváltozó az igaz, hamis értékek közül pontosan egyet vehet fel (kétértékű logika). A v A=I (tautológia) ez informálisan azt jelenti, hogy az A ítéletváltozó az igaz, hamis értékek közül legalább az egyiket felveszi. Def.: Modell: modellnek nevezzük azt az interpretációt, amelyben a formula igaz. Bércesné Novák Ágnes 5

6 Kérdések: Mi a tautológia tagadása? Mi a kontradikció tagadása? Hány modellje van az 1., 2., 3 példákban szereplő formuláknak? Formula: van modellje kielégíthető formulák tautológia nincs modellje kontradikció, ellentmondás Def.: Ekvivalens két formula, α és β, ha minden interpretációban ugyanaz az igazságértékük. (A két formula közös igazságtáblájában a kiértékelésnek megfelelő oszlopok azonosak) Jelölés: α β Példák fontos ekvivalens formulákra: 1. A konjunktív normálformára hozáshoz nélkülözhetetlen: α β α β α β α β α β I I I I I H H H H I I I H H I I 2. De Morgan azonosság 1. (A B) A B A B A B A B I I H H I H H H H I I I H H I I 3. De Morgan azonosság 2. (A B) A B A B (A B) A B I I H H I H I I H I I I H H I I Bércesné Novák Ágnes 6

7 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I A konjunkció és diszjunkció tulajdonságai 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A (A B) A 4.b. H A H 5.b. A (B C) (A B) (A C) 6.b. A A H Feladat: Igazolja igazságtáblázattal, hogy a fenti formulák valóban ekvivalensek! Halmazelméletben is hasonló azonosságok igazak: 1.a. A B=B A 1.b. A B=B A 2. a. (A B) C=A (B C) 2.b. (A B) C=A (B C) 3. a. A (A B)=A 3.b. A (A B)=A 4. a. U A=U 4.b. A= 5. a. A (B C)= (A B) (A C) 5.b. A (B C)= (A B) (A C) 6. a. A A = U 6.b. A A = Az olyan struktúrákat, amelyekben két művelet van definiálva, és van két kitüntett elem, amelyekre a fenti azonosságok igazak, BOOLE ALGEBRÁnak nevezzük. További példa: a valószínűségszámításban Boole algebrát alkotnak az események. Bércesné Novák Ágnes 7

8 További kétváltozós művelet Ekvivalencia Az ekvivalencia szót a logikában egy kétváltozós műveletre is használjuk. Az ekvivalencia, mint művelet az implikációból és a konjunkcióból származtatható: Def.: α β:= (α β) (β α) Az ekvivalencia akkor és csak akkor igaz, ha α és β igazságértéke egyforma. Az ekvivalencia igazságtáblázata: α β α β β α (α β) (β α) I I I I I I H H I H H I I H H H H I I I Kérdés: Ha α és β ekvivalens formulák, mit tudunk mondani az α β formuláról? Megjegyzés: Noha az alapjelkészletben nem szerepelt a jel, ezt használhatjuk a definícióban megadott formula rövidítéseként. Lemma: Minden (eddig felírt) igazságtábla igaz úgy is, ha az atomok helyett formulákat írunk. Lemma: α és β akkor és csak akkor ekvivalens, ha α β tautológia. Biz.: a. α ekvivalens β α β tautológia. Ha α és β igazságértéke megegyezik, akkor az ekvivalencia definíciója miatt csak igaz lehet tautológia. b. ha α β tautológia csak igaz lehet, de ez pontosan akkor van, ha α és β igazságértéke ugyanaz, vagyis α ekvivalens β. Tétel: Ha α tautológia, akkor az ítéletváltozók helyébe formulákat írva tautológiát kapunk. Tétel: Ha α tautológia, akkor bármely részformula helyett azzal ekvivalens formulát írva tautológiát kapunk. Tétel: Az ekvivalens nulladrendű formulák az összes formulák partícióját adják. ha α β α α reflexív α β és β α szimmetrikus α β és β γ α γ tranzitív Ekvivalencia reláció Bércesné Novák Ágnes 8

9 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre régebbi jelölésekkel: Az első példát nem tudjuk nulladrendű formulákkal jól modellezni: Minden veréb madár. Minden madár gerinces. Minden veréb gerinces. Feltétel1 Feltétel2 Következmény Az alábbi példa nulladrendben is jól modellezhető: Ha elfogy a benzin, az autó leáll. Elfogyott a benzin. Az autó leáll. Feltétel1 Feltétel2 Következmény A= Elfogy a benzin, B=az autó leáll. A megfelelő séma: A A B B Újabb jelöléssel: {A, A B} = 0 B Latin szavakkal: 1. feltétel 1. Premissza 2. feltétel. 2. Premissza Következmény Konklúzió Mikor helyes egy következtetési séma? Ahhoz, hogy e kérdésre válaszolni tudjunk, értelmeznünk kell a következmény fogalmát. Def.: Modellelméleti vagy szemantikus következményfogalom: Azt mondjuk, hogy az {α 1, α 2,,α n } formulahalmaz következménye a β formula, ha minden olyan interpretációban, amelyben az α 1, α 2, α n formulák igazak, β is igaz. Más szavakkal: {α 1, α 2,,α n } formulahalmaz következménye a β formula, ha β legalább akkor igaz, amikor az α i -k igazak. Jelölés: {α 1, α 2,,α n } = 0 β Megjegyzés: Mivel az elsőrendű logika következményfogalma nem teljesen azonos a nulladrendűével, ezért az indexben szokás azt is jelölni, hogy melyik nyelvről van szó: = 0 Bércesné Novák Ágnes 9

10 Az elsőrendű logikában a következményfogalom jele: = 1 Ha β tautológia, akkor minden interpretációban igaz, tehát abban is, amelyekben az α i k. Ezért a tautológia bármely formulahalmaz következménye. Ez indokolja a tautológia jelölését: = 0 β. A következményfogalom definíciójának egyszerű következményei:) - α i -k közös modellje β-nak is modellje (fordítva az állítás nem igaz) - tautológia következménye csak tautológia lehet: tautológia = 0 tautológia - a tautológia bármely α formula következménye: α = 0 tautológia, - kontradikciónak bármi lehet a következménye ( spec. A is és az A tagadása is) : Kontradikció = 0 α - kontradikció csak kontradikciónak lehet következménye (hiszen más formula esetén igaznak kellene lennie ott, ahol a formula igaz): kontradikció = 0 kontradikció Most már válaszolni tudunk a fejezet elején feltett kérdésre, melyek a helyes következtetési sémák. Def.: Azokat a következtetési sémákat tekintjük helyesnek, amelyekben a következmény valóban a feltételek (szemantikai) következménye. Példák helyes következtetési sémákra (szabályokra) 1. Modus ponens (leválasztási szabály): {α, α β } = 0 β Azt kell vizsgálnunk, ahol α és α β igaz, ott a β igaz-e. Ha igen, akkor helyes, ha nem, akkor helytelen a következtetési séma. Csak az első interpretációban teljesül, hogy α és α β igaz. Ebben a interpretációban β is igaz, tehát valóban {α, α β } = 0 β. Ítéletváltozók α β α β I I I I H H H I I H H I A A B A MODUS PONENS Feladat: Bizonyítsa be, hogy az alábbi következtetési sémák helyesek! - Modus tollens (elvető mód, kontrapozíció): {α β, β } = 0 α - Hipotetikus szillogizmus (feltételes szillogizmus, láncszabály): {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód): {α β, β} = 0 α - Indirekt: { α β, β } = 0 α Bércesné Novák Ágnes 10

11 Tétel: α 1, α 2,,α n = 0 β akkor és csak akkor, α 1 α 2 α n = 0 β Biz.: α 1, α 2,,α n együttesen akkor és csak akkor igaz, ha α 1 α 2 α n igaz. E tétel miatt a = 0 jel bal oldalát a továbbiakban egyszerűen α-val jelöljük, ahol α-n mindig α=α 1 α 2 α n formulát értjük. Tétel: α = 0 β akkor és csak akkor, ha α β tautológia. Biz.: a.) ha α = 0 β akkor α β tautológia: a jelölt sor ez esetben nem lehet az igazságtáblában, ugyanis akkor α = 0 β nem teljesülne, hiszen ekkor β-nak legalább akkor kell igaznak lennie, amikor α igaz. A maradék sorokra pedig valóban az I az igazságérték. α β α β I I I I H H H I I H H I b.) ha α β tautológia, akkor α = 0 β: Ha α β tautológia, akkor a fenti igazságtáblában jelölt sor nem szerepelhet, hanem csak a jelöletlen, I sorok. Ezekben a sorokban viszont valóban a β legalább ott igaz, ahol az α. Példa: Modus ponens: {α, α β } = 0 β helyes: Ítéletváltozók Formulák α β α β (α (α β)) β I I I I I I H H H I H I I H I H H I H I Feladat: A fenti módszerrel bizonyítsa be, hogyaz alábbi következtetési szabályk helyesek! - Modus tollens: {α β, β } = 0 α - Hipotetikus szillogizmus: {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód) {α β, β} = α - Indirekt: { α β, β } = 0 α Tétel: α = 0 β akkor és csak akkor, ha α β azonosan hamis. Biz: α = 0 β akkor és csak akkor, ha α β tautológia, vagyis hamis): (α β)= ( α β) α β α β (α β) kontradikció (azonosan Bércesné Novák Ágnes 11

12 Példa: Modus ponens {α, α β } = 0 β helyes: Ítéletváltozók Formulák α β α β (α (α β)) β I I I I H I H H H H H I I H H H H I H H Feladat: A fenti módszerrel bizonyítsa be, hogyaz alábbi következtetési szabályok helyesek! - Modus tollens: {α β, β } = 0 α - Hipotetikus szillogizmus: {α β, β γ} = 0 γ - Modus tollendo ponens / diszjunktív szillogizmus (elvéve helyező mód) {α β, β} = 0 α - Indirekt: { α β, β } = 0 α Tétel (rezolúció alapelvéhez): {α β, γ β} = 0 α γ (diszjunktív szillogizmus általánosabban). Megjegyzés: Az α β és γ β formulák ún. klózok. E két klóz rezolvense α γ. Biz.: igazságtáblával, a következők alapján többféleképpen lehet: a.) def. alapján (házi feladat) b.) α = 0 β akkor és csak akkor, ha α β tautológia (házi feladat) c.) α = 0 β akkor és csak akkor, ha α β azonosan hamis (előadáson) Alkalmazás: automatikus tételbizonyítás, rezolúció (PROLOG nyelv ) alapelve: A következményfogalom eldöntésére bizonyított tételekben az összes interpretációt meg kell vizsgálni. Ez exponenciális nagyságrendű feladat. Ezért volt forradalmi jelentőségű a rezolúció felfedezése (Robinson, 1965). Feladat: Hány interpretáció van, ha az ítéletváltozók száma n? Def.: Konjunktív NormálForma, KNF: K i klózok konjunkciója, klóz: literálok diszjunkciója, literál: atom, vagy annak tagadása. Bércesné Novák Ágnes 12

13 KNF: Klózok (diszjunkciók) konjunkciója K 1 K 2 K n K i = A 1 A 2 A n Literál Pozitív, ha A Negatív, ha A Tétel: Minden formulához létezik vele ekvivalens konjunktív normálforma. Biz.: 1. α β α β 2. De Morgan (α β) α β (α β) α β 3. α (β γ) ( α β) ( α γ) α (β γ) ( α β) ( α γ) Def.: DNF (diszjunktív normálforma): konjunkciók diszjunkciója Megjegyzés: A KNF és DNF duális: ua. mindkettő, csak helyett, helyett. Következmény: (Funkcionálisan) teljes rendszerek Fentiekből szerint, minden formula kifejezhető a,, műveletekkel. Ezért azt mondjuk, hogy e három művelet teljes rendszert alkot. A De Morgan azonosságokból azonnal adódik, hogy (α β) α β, így,, és hasonlóképpen bizonyíthatóan a, is funkcionálisan teljes halmaz. A, műveletekkel viszont nem lehet a -t kifejezni, így a konjunkció és diszjunkció együttesen NEM alkot teljes rendszert. Feladat: Bizonyítsa be, hogy a és teljes rendszert alkot! (Melyik implikáció ekvivalens α β-val?) Példa: Hozza konjunktív normálformára az alábbi formulát! [(A B) ((C A) (C B))] [( A B) ( (C A) (C B))] [ ( A B) ( (C A) (C B))] [ ( A B) (( C A) (C B))] [(A B) ( C A) (C B)] (A B) ( C A) (C B)] ( A B) (C A) ( C) B A klózok: K1=( A B) K2=(C A) K3=( C) K4= B Bércesné Novák Ágnes 13

14 Tétel volt: α = 0 W akkor és csak akkor, ha α W kontradikció, vagyis α=α 1 α 2 α n miatt α 1 α 2 α n W kontradikció. Adott az {α 1,α 2,,α n }formulahalmaz. E tétel alapján el szeretnénk dönteni, hogy {α 1,α 2,,α n } = 0 W? A rezolúció alapelve informálisan: W-t is, és a feltételhalmaz formuláit is konjunktív normálformára hozzuk. Mikor igaz egy KNF? Ha minden benne szereplő klóz igaz. A klózokban viszont lehetnek negált és negálatlan, azonos atomok. Ezek együttesen nem lehetnek igazak az egész formulában, ezért ezeket a klózpárokból, amelyekben szerepelnek, elhagyjuk, és a maradékból egy klózt képezünk, ez a rezolvens. Az így kapott klózzal bővítjük a formulát. Ezen új formula modelljét (amely interpretációban igaz a formula) keressük. A fentiek alkalmazása: Adott az {α 1,α 2,,α n }formulahalmaz. El szeretnénk dönteni, hogy {α 1,α 2,,α n } = 0 W? W-t is, és a feltételhalmaz formuláit is konjunktív normálformára hozzuk. Ekkor világos, hogy az α 1 α 2 α n W formula is KNF-ben van. Azt kell tehát megnézni, hogy van-e modellje. A fenti megjegyzés értelmében olyan klózokat keresünk, amelyekben azonos atom pozitív és negatív literálja szerepel. Ezekből a fent leírt módon konstruáljuk az új klózt, a rezolvenst. Az eljárás akkor ér véget, ha egy negált és egy negálatlan literál önmaga alkot egy-egy klózt. Ezek rezolvense az üres klóz, az azonosan hamis klóz (NIL-nek is nevezik). Jele: Bércesné Novák Ágnes 14

15 Példa: Adott {P 1, P 1 Q 1, Q 1 Q 2 }=AB (adatbázis) Kérdés: Q 2 következmény-e? Megoldás: {P 1, P 1 Q 1, Q 1 Q 2 } a feltételek halmaza, mindegyiket KNF-re kell hozni: AB={ P 1, P 1 Q 1, Q 1 Q 2 } W= Q 2, tagadása: Q 2 (tagadás indirekt feltevés) Fentiek értelmében azt kell belátni, hogy az AB { Q 2 }formulahalmaz elemeinek nincsen modellje, nincsen olyan interpretáció, amelyben igaz lehetne. Informálisan: Ha például P 1 igaz P 1 nem lehet igaz a 2. klózban, ezért mivel minden klóznak igaznak kell lennie, a Q 1 literálnak igaznak kell lennie Q 1 ekkor hamis a 3. klózban, ami szerint tehát Q 2 igaz, de ekkor már ellentmondásra jutottunk, hiszen Q 2 és Q 2 egyszerre nem lehet igaz. (Azért kellene nekik egyszerre igaznak lenni, mert különböző klózokban szerepelnek, és az egész formula igazságát az összes klóz igaz értéke garantálja. Igy azonban nagyon nehéz bizonyítani, hiszen minden lehetséges értékadásra végig kellene nézni. Ezt oldja meg a rezolúció. Rezolúciós levezetés: P 1 P 1 Q 1 Q 1 Q 2 Q 2 Q 1 P 1 P 1 Q 1 Q 1 Q 2 Q 2 Q 1 Q 2 P 1 P 1 Q 1 Q 1 Q Q 2 Q 1 Q 2 Eredeti Klózhalmaz = 0 Rezolvenssel bővített klózhalmaz - Üres klóz, ellentett literálpárból jön létre Rezolvense kielégíthetetlen P 1 P 1 Q 1 Q 1 Q Q 2 Q 1 Q 2 Ennek a klózhalmaznak nincsen modellje a miatt. Bércesné Novák Ágnes 15

16 Példa: Igazoljuk, hogy az alábbi ϕ formula tautológia! ϕ=[(a B) [(C A) (C B)]] Megoldás: ϕ akkor és csak akkor tautológia, ha ϕ kielégíthetetlen ϕ-t KNF-re írjuk át. ϕ= [(A B) [(C A) (C B)]] ( A B) (C A) ( C) ( B) A B C A C B A B Tehát az eredeti formula tautológia (hiszen tagadása kielégíthetetlen) Példa: Részlet egy nyomozás jegyzőkönyvéből (Pásztorné Varga Katalin: Matematikai logika és alkalmazásai, ELTE, 1991.) : 1. Ha férfi a tettes (F), akkor kistermetű(kt). (F KT F KT) 2. Ha kistermetű a tettes(kt), akkor az ablakon keresztül mászott be(am). (KT AM KT AM) 3. A tettes férfi(f), vagy férfiruhát hordott(fr). (F FR) 4. Ha a tettes férfiruhát hordott(fr) és a szemtanú hiteles(h) akkor az ablakon keresztül mászott be.(am) (H FR AM (H FR) AM H FR AM) 5. Helyszíni szemle: a tettes nem az ablakon mászott be. ( AM). Kérdés: férfi, F, vagy nő, F, a tettes? Adott { F KT, KT AM, F FR, H FR AM, AM} klózhalmaz. 1. Tegyük fel, hogy nő a tettes: F. A klózhalmazhoz hozzávesszük F tagadását: F 2. Rezolúcióval eldöntjük a klózhalmaz kielégíthetetlenségét. F KT KT AM F FR H FR AM AM F KT F tautológia F (tehát nem férfi a tettes) Bércesné Novák Ágnes 16

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai

Részletesebben

Diszkrét matematika MATEMATIKAI LOGIKA

Diszkrét matematika MATEMATIKAI LOGIKA NULLADRENDŰ LOGIKA (ÍTÉLETKALKULUS) A logikát, mint a filozófia egy részét, már az ókori a görög tudósok is igen magas szinten művelték, pl. Platón (Kr. e. 427- Kr. e. 347), Arisztotelész (Kr.e. 384- Kr.

Részletesebben

Matematikai logika NULLADRENDŰ LOGIKA

Matematikai logika NULLADRENDŰ LOGIKA Matematikai logika NULLADRENDŰ LOGIKA Kijelentő mondatokhoz, melyeket nagy betűkkel jelölünk, interpretáció (egy függvény) segítségével igazságértéket rendelünk (I,H). Szintaxisból (nyelvtani szabályok,

Részletesebben

AZ INFORMATIKA LOGIKAI ALAPJAI

AZ INFORMATIKA LOGIKAI ALAPJAI AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Második előadás Tartalom 2/26 Ítéletlogika - Szemantika (folytatás) Formulák és formulahalmazok szemantikus tulajdonságai Szemantikus következményfogalom Formalizálás

Részletesebben

3. Magyarország legmagasabb hegycsúcsa az Istállós-kő.

3. Magyarország legmagasabb hegycsúcsa az Istállós-kő. 1. Bevezetés A logika a görög,,logosz szóból származik, melynek jelentése gondolkodás, beszéd, szó. A logika az emberi gondolkodás vizsgálatával foglalkozik, célja pedig a gondolkodás során használt helyes

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája?

Logika és informatikai alkalmazásai kiskérdések február Mikor mondjuk, hogy az F formula a G-nek részformulája? ,,Alap kiskérdések Logika és informatikai alkalmazásai kiskérdések 2012. február 19. 1. Hogy hívjuk a 0 aritású függvényjeleket? 2. Definiálja a termek halmazát. 3. Definiálja a formulák halmazát. 4. Definiálja,

Részletesebben

Logikai ágensek. Mesterséges intelligencia március 21.

Logikai ágensek. Mesterséges intelligencia március 21. Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,

Részletesebben

Kijelentéslogika, ítéletkalkulus

Kijelentéslogika, ítéletkalkulus Kijelentéslogika, ítéletkalkulus Arisztotelész (ie 4. sz) Leibniz (1646-1716) oole (1815-1864) Gödel (1906-1978) Neumann János (1903-1957) Kalmár László (1905-1976) Péter Rózsa (1905-1977) Kijelentés,

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika 1/36

Logika es sz am ıt aselm elet I. r esz Logika 1/36 1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Hatodik előadás Tartalom 2/33 Elsőrendű rezolúciós kalkulus - előkészítő fogalmak Prenex formula, Skolem normálforma 3/33 Eldönthető formulaosztályok keresése

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 3. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

Logikai következmény, tautológia, inkonzisztens, logikai ekvivalencia, normálformák

Logikai következmény, tautológia, inkonzisztens, logikai ekvivalencia, normálformák 08EMVI3b.nb 1 In[2]:= Theorema Ítéletlogika 1 Ismétlés Szintaxis Szemantika Logikai következmény, tautológia, inkonzisztens, logikai ekvivalencia, normálformák 2 Kalkulusok Kalkulus Levezethetõség Dedukciós

Részletesebben

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus

Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,

Részletesebben

Matematikai logika és halmazelmélet

Matematikai logika és halmazelmélet Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete

Részletesebben

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.

Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely

Részletesebben

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai

BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A

Részletesebben

Kijelentéslogika, ítéletkalkulus

Kijelentéslogika, ítéletkalkulus Kijelentéslogika, ítéletkalkulus Kijelentés, ítélet: olyan kijelentő mondat, amelyről egyértelműen eldönthető, hogy igaz vagy hamis Logikai értékek: igaz, hamis zürke I: 52-53, 61-62, 88, 95 Logikai műveletek

Részletesebben

Logikai alapok a programozáshoz

Logikai alapok a programozáshoz Logikai alapok a programozáshoz Kidolgozott tételek Készítette: Chripkó Ágnes Felhasznált anyagok: előadásvázlat; gyakorlatok anyaga; Pásztorné Varga K., Várterész M.: A matematikai logika alkalmazásszemléletű

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

Intelligens Rendszerek I. Tudásábrázolás formális logikával

Intelligens Rendszerek I. Tudásábrázolás formális logikával Intelligens Rendszerek I. Tudásábrázolás formális logikával 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel:

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Az elsőrendű logikai nyelv interpretációja L interpretációja egy I-vel jelölt függvénynégyes,

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Formulahalmaz kielégíthetősége Ezen az előadáson Γ-val egy elsőrendű logikai nyelv

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 9. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Egy HF múlt hétről HF1. a) Egyesíthető: s = [y/f(x,

Részletesebben

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.

Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést. Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.

Részletesebben

Halmazelmélet és logika

Halmazelmélet és logika Halmazelmélet és logika Dr. Szilágyi Ibolya szibolya@ektf.hu Matematika és Informatika Intézet EKF, Eger 2006/07 I. szemeszter Dr. Szilágyi Ibolya (EKF) Logika 2006/007 1 / 58 Outline A halmazelmélet és

Részletesebben

Alapfogalmak-szemantika

Alapfogalmak-szemantika Volt (a helyes következtetéseknél): ELSŐRENDŰ LOGIKA Minden veréb madár. Minden madár gerinces. Minden veréb gerinces. Feltétel1 Feltétel2 Következmény Érezzük, hogy a leírt következtetés helyes. Azonban

Részletesebben

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól.

Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Az eredménye, ezek után a számításelélet részből elért eredmény

Részletesebben

1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei

1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei 1. A matematikai logika alapfogalmai Megjegyzések: a) A logikában az állítás (kijelentés), valamint annak igaz vagy hamis voltát alapfogalomnak tekintjük, nem definiáljuk. b) Minden állítással kapcsolatban

Részletesebben

1. Logikailag ekvivalens

1. Logikailag ekvivalens Informatikai logikai alapjai Mérnök informatikus 4. gyakorlat 1. Logikailag ekvivalens 1. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p p) formulával? A. ((q p) q) B. (q q) C. ( p q) D.

Részletesebben

Logikai alapok a programozáshoz

Logikai alapok a programozáshoz Logikai alapok a programozáshoz Nagy Károly 2014 Nyíregyházi Főiskola Matematika és Informatika Intézet 1 Tartalomjegyzék 1. Kijelentés logika, ítéletkalkulus 2 2. A kijelentés logika törvényei 5 3. Logikai

Részletesebben

Logikai alapok a programozáshoz. Nagy Károly 2014

Logikai alapok a programozáshoz. Nagy Károly 2014 Logikai alapok a programozáshoz előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logikai ekvivalencia Az A és a B elsőrendű formulák logikailag ekvivalensek, ha

Részletesebben

2. Ítéletkalkulus szintaxisa

2. Ítéletkalkulus szintaxisa 2. Ítéletkalkulus szintaxisa (4.1) 2.1 Az ítéletlogika abc-je: V 0 V 0 A következő szimbólumokat tartalmazza: ítélet- vagy állításváltozók (az állítások szimbolizálására). Esetenként logikai változónak

Részletesebben

1. Tétel - Az ítéletkalkulus alapfogalmai

1. Tétel - Az ítéletkalkulus alapfogalmai A tételhez hozzátartozik az elsőrendű nyelv szemantikája! 1. Tétel - Az ítéletkalkulus alapfogalmai Ítéletkalkulus - Az elsőrendű logika azon speciális este, amikor csak 0 ad rendű predikátumszimbólumok

Részletesebben

2019/02/11 10:01 1/10 Logika

2019/02/11 10:01 1/10 Logika 2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát

Részletesebben

Felmentések. Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21

Felmentések. Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21 Felmentések Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21 Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

Elsőrendű logika. Mesterséges intelligencia március 28.

Elsőrendű logika. Mesterséges intelligencia március 28. Elsőrendű logika Mesterséges intelligencia 2014. március 28. Bevezetés Ítéletkalkulus: deklaratív nyelv (mondatok és lehetséges világok közti igazságrelációk) Részinformációkat is kezel (diszjunkció, negáció)

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26

Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26 1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja

Részletesebben

1. Definíciók. 2. Formulák. Informatikai logikai alapjai Mérnök informatikus 3. gyakorlat

1. Definíciók. 2. Formulák. Informatikai logikai alapjai Mérnök informatikus 3. gyakorlat Informatikai logikai alapjai Mérnök informatikus 3. gyakorlat 1. Definíciók A feladatokban bevezetünk két újabb logikai konstanst: a és jellel jelölteket. Ez a két konstans önmagában is formulának tekintendő.

Részletesebben

Logika kiskáté. Mihálydeák Tamás és Aszalós László

Logika kiskáté. Mihálydeák Tamás és Aszalós László Logika kiskáté Mihálydeák Tamás és Aszalós László 2012 1. Definíciók 1. Adja meg a klasszikus nulladrendű nyel definícióját! Klasszikus nulladrendű nyelen az L (0) = LC, Con, F orm rendezett hármast értjük,

Részletesebben

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1

Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy

Részletesebben

Logika kiskáté. Mihálydeák Tamás és Aszalós László

Logika kiskáté. Mihálydeák Tamás és Aszalós László Logika kiskáté Mihálydeák Tamás és Aszalós László 2012 1. Definíciók 1. Adja meg a klasszikus nulladrendű nyel definícióját! Klasszikus nulladrendű nyelen az L (0) = LC, Con, F orm rendezett hármast értjük,

Részletesebben

Az informatika logikai alapjai

Az informatika logikai alapjai Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logika szó hétköznapi jelentése: rendszeresség, következetesség Ez logikus beszéd

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar

Formális szemantika. Kifejezések szemantikája. Horpácsi Dániel ELTE Informatikai Kar Formális szemantika Kifejezések szemantikája Horpácsi Dániel ELTE Informatikai Kar 2016-2017-2 Az előadás témája Egyszerű kifejezések formális szemantikája Az első lépés a programozási nyelvek szemantikájának

Részletesebben

Bizonyítási módszerek ÉV ELEJI FELADATOK

Bizonyítási módszerek ÉV ELEJI FELADATOK Bizonyítási módszerek ÉV ELEJI FELADATOK Év eleji feladatok Szükséges eszközök: A4-es négyzetrácsos füzet Letölthető tananyag: Emelt szintű matematika érettségi témakörök (2016) Forrás: www.mozaik.info.hu

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.

A logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le Analitika című művében, Kr.e. IV. században. LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok

Részletesebben

Logika és informatikai alkalmazásai. Wednesday 17 th February, 2016, 09:03

Logika és informatikai alkalmazásai. Wednesday 17 th February, 2016, 09:03 Logika és informatikai alkalmazásai Wednesday 17 th February, 2016, 09:03 A logika rövid története 2 A logika rövid története Ókor Triviális: A trivium szóból származik trivium (tri+via = három út): nyelvtan,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája

Negáció igazságtáblája. Propozicionális logika -- levezetések. Diszjunkció igazságtáblája. Konjunkció igazságtáblája. Kondicionális igazságtáblája Negáció igazságtáblája Propozicionális logika -- levezetések p ~p I H H I Konjunkció igazságtáblája Diszjunkció igazságtáblája p q p&q I I I I H H H I H H H H p q pvq I I I I H I H I I H H H Megengedő

Részletesebben

2004/2005 Logikai alapok a programozáshoz. (Kidolgozott vizsgakérdések) Előadó: Pásztorné Dr. Varga Katalin

2004/2005 Logikai alapok a programozáshoz. (Kidolgozott vizsgakérdések) Előadó: Pásztorné Dr. Varga Katalin 2004/2005 Logikai alapok a programozáshoz (Kidolgozott vizsgakérdések) Előadó: Pásztorné Dr. Varga Katalin 1. Tétel Mi a logika, ezen belül a matematikai logika tárgya és feladata? Milyen nyelvi eszközöket

Részletesebben

A TANTÁRGY ADATLAPJA

A TANTÁRGY ADATLAPJA A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 6. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 9. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás

Részletesebben

Diszkrét matematika I. gyakorlat

Diszkrét matematika I. gyakorlat Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség

Részletesebben

Levezetések klasszikus nulladrendű logikai kalkulusban

Levezetések klasszikus nulladrendű logikai kalkulusban Levezetések klasszikus nulladrendű logikai kalkulusban Molnár Attila 2008. november 21. Ebben az óravázlatban a nulladrendű logikai kalkulusbeli tételek levezetéséről esik majd szó. Következzen egy gyors

Részletesebben

Memo: Az alábbi, "természetes", Gentzen típusú dedukciós rendszer szerint készítjük el a levezetéseket.

Memo: Az alábbi, természetes, Gentzen típusú dedukciós rendszer szerint készítjük el a levezetéseket. Untitled 2 1 Theorema Predikátumlogika 1 3 Natural Deduction (Gentzen mag/alap kalkulus) Cél: a logikai (szematikai) következményfogalom helyett a (szintaktikai) levethetõség vizsgálata. A bizonyítási

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Bevezetés a Formális Logikába Érveléstechnika-logika 7.

Bevezetés a Formális Logikába Érveléstechnika-logika 7. Bevezetés a Formális Logikába Érveléstechnika-logika 7. Elemi és összetett állítások Elemi állítások Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról. Az állítás vagy igaz

Részletesebben

Logika és számításelmélet Készítette: Nagy Krisztián

Logika és számításelmélet Készítette: Nagy Krisztián Logika és számításelmélet Készítette: Nagy Krisztián LOGIKA RÉSZ 1. Gondolkodásforma vagy következtetésforma Egy F = {A 1, A 2,, A n } állításhalmazból és egy A állításból álló (F, A) pár. 2. Helyes következtetésforma

Részletesebben

Az informatika logikai alapjai előadások

Az informatika logikai alapjai előadások VÁRTERÉSZ MAGDA Az informatika logikai alapjai előadások 2006/07-es tanév 1. félév Tartalomjegyzék 1. Bevezetés 2 2. Az ítéletlogika 18 2.1. Az ítéletlogika nyelve szintaxis...............................................

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Logikai ágens, lehetőségek és problémák 2

Logikai ágens, lehetőségek és problémák 2 Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Mesterséges Intelligencia - MI Logikai ágens, lehetőségek és problémák 2 Előadó: Hullám Gábor Pataki Béla

Részletesebben

Algoritmusok a tételbizonyításban

Algoritmusok a tételbizonyításban Debreceni Egyetem Informatikai Kar Számítógéptudományi Tanszék Algoritmusok a tételbizonyításban Témavezet : dr. Várterész Magda egyetemi docens Készítette: Tanyi Attila Programtervez informatikus (B.Sc.)

Részletesebben

4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik.

4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik. 4. fejezet Analitikus táblázatok a kijelentéslogikában Bevezetés A következtetések helyességének ellenőrzésére több eljárás is kínálkozik. Az egyik az igazságtáblázatok módszere, amelyet az előző fejezetekben

Részletesebben

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33

Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33 1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások

Részletesebben

1. előadás: Halmazelmélet, számfogalom, teljes

1. előadás: Halmazelmélet, számfogalom, teljes 1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,

Részletesebben

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila

Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila ASP 1 Kedvcsináló N királynő 3+1 sorban index(1..n). % minden sorban pontosan 1 királynő van 1{q(X,Y):index(X)}1 :- index(y). % az rossz, ha ugyanabban az oszlopban 2 királynő van :- index(x; Y1; Y2),

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika

Részletesebben

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy

Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy 1. előadás: Halmazelmélet Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető, hogy hozzátartozik-e,

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor

Részletesebben

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3

Előadó: Dr. Oniga István DIGITÁLIS TECHNIKA 3 Előadó: Dr. Oniga István DIGITÁLIS TEHNIK 3 Logikai függvények logikai függvény olyan egyenlőség, amely változói kétértékűek, és ezek között csak logikai műveleteket végzünk függvények megadása történhet

Részletesebben

Elektronikai műszerész Elektronikai műszerész

Elektronikai műszerész Elektronikai műszerész A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles

0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)

Részletesebben

LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET

LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET LOGIKA ÉS SZÁMÍTÁSELMÉLET KIDOLGOZOTT JEGYZET Készítette: Butkay Gábor és Gyenes József A jegyzet a 2013-2014-es tanév 2. felében lévő Logika és számításelmélet előadások alapján született. A jegyzet nem

Részletesebben

Automatikus tételbizonyítás

Automatikus tételbizonyítás Automatikus tételbizonyítás előadások Várterz Magda Kádek Tamás Automatikus tételbizonyítás: előadások Várterz Magda Kádek Tamás Table of Contents 1 Előszó 1 2 Bevezet 2 1 Az elsőrendű nyelv szintaxisa

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa

Részletesebben

LOGIKA ÉS ÉRVELÉSTECHNIKA

LOGIKA ÉS ÉRVELÉSTECHNIKA LOGIKA ÉS ÉRVELÉSTECHNIKA Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Deníciók és tételek a beugró vizsgára

Deníciók és tételek a beugró vizsgára Deníciók és tételek a beugró vizsgára (a szóbeli viszgázás jogáért) Utolsó módosítás: 2008. december 2. 2 Bevezetés Számítási problémának nevezünk egy olyan, a matematika nyelvén megfogalmazott kérdést,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás

Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű

Részletesebben

1. Formalizálás. Informatikai logikai alapjai Mérnök informatikus 6. gyakorlat. 1. Jelöljék a következő nemlogikai konstansok a következőket:

1. Formalizálás. Informatikai logikai alapjai Mérnök informatikus 6. gyakorlat. 1. Jelöljék a következő nemlogikai konstansok a következőket: Informatikai logikai alapjai Mérnök informatikus 6. gyakorlat 1. Formalizálás 1. Jelöljék a következő nemlogikai konstansok a következőket: p Aladár gőgös. q Aladár zsémbes. r Bea gőgös. s Bea zsémbes.

Részletesebben

b, Van olyan makacs ember, a senki más tanácsára nem hallgat. (Univerzum az emberek halmaza)

b, Van olyan makacs ember, a senki más tanácsára nem hallgat. (Univerzum az emberek halmaza) Elsőrendű logika. Formalizálja az alábbi mondatokat: a, Aki másnak vermet ás, maga esik verembe. (Univerzum az emberek halmaza) ( yv ( E( ) E(: verembe esik, V(: vermet ás y-nak b, Van olyan makacs ember,

Részletesebben

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb Logika, 5. Az előadásfóliák ÉsikZoltén (SZTE InformatikaiTanszékcsoport) Logikaa szamtastudomanyban Logikaes informatikaialkalmazasai Előadásai alapján készültek Ésik Zoltán (SZTE Informatikai Tanszékcsoport)

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

A deduktív logika elemei. Érveléselmélet, 2015. 10. 12.

A deduktív logika elemei. Érveléselmélet, 2015. 10. 12. A deduktív logika elemei Érveléselmélet, 2015. 10. 12. Ismétlés: Deduktív érvelés Deduktív érvelés: A premisszák igazsága szükségszerűen maga után vonja a konklúzió igazságát. Minden magyar adócsaló. Pityu

Részletesebben