1. Logikailag ekvivalens
|
|
- Mária Orsós
- 6 évvel ezelőtt
- Látták:
Átírás
1 Informatikai logikai alapjai Mérnök informatikus 4. gyakorlat 1. Logikailag ekvivalens 1. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p p) formulával? A. ((q p) q) B. (q q) C. ( p q) D. (p q) E. (q q) 2. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( p q) B. (p q) C. (q (p q)) D. (q p) E. (p p) 3. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p q) formulával? A. ( q p) B. (q (q p)) C. (q p) D. (q p) E. (q p) 4. Az alábbi formulák közül melyek logikailag ekvivalensek a ( p p) formulával? A. (q p) B. p C. ((p q) p) D. (p (q q)) E. (q q) 5. Az alábbi formulák közül melyek logikailag ekvivalensek a ( q p) formulával? A. ( q p) B. (p q) C. ( p q) D. (p q) E. (q (q p)) 6. Az alábbi formulák közül melyek logikailag ekvivalensek a ( q q) formulával? A. (p p) B. ((p p) p) C. (q p) D. q E. ((p q) q) 7. Az alábbi formulák közül melyek logikailag ekvivalensek a (q p) formulával? A. (p p) B. ((p p) p) C. ( q q) D. ( p q) E. ((p q) q) 8. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (q p) B. (q p) C. ((q p) p) D. ((q p) p) E. ( q p) 9. Az alábbi formulák közül melyek logikailag ekvivalensek a (q p) formulával? A. (p (p q)) B. (q p) C. ((q p) q) D. (q (q p)) E. (q (q p)) 10. Az alábbi formulák közül melyek logikailag ekvivalensek a (q p) formulával? A. (q p) B. (q q) C. (p p) D. (q (p p)) E. ( p q) 11. Az alábbi formulák közül melyek logikailag ekvivalensek a ((p q) p) formulával? A. ((q p) p) B. ((q p) q) C. ((p q) p) D. (p (q p)) E. (q q) 12. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (p (p q)) B. (q (q p)) C. (p (q p)) D. ((q p) q) E. ((q p) q) 13. Az alábbi formulák közül melyek logikailag ekvivalensek a (q (q p)) formulával? A. ((q p) p) B. ((q p) q) C. ((p q) p) D. (p (q p)) E. (q q) 14. Az alábbi formulák közül melyek logikailag ekvivalensek a (q (q p)) formulával? A. (p (p q)) B. (q (q p)) C. (p (q p)) D. ((q p) q) E. ((q p) q) 15. Az alábbi formulák közül melyek logikailag ekvivalensek a (q (p p)) formulával? A. ((q p) p) B. (q (q p)) C. ((q p) p) D. ((q p) p) E. ( q p) 16. Az alábbi formulák közül melyek logikailag ekvivalensek a formulával? A. (p p) B. (q (p q)) C. ( p p) D. (p (q p)) E. (q (q q)) 17. Az alábbi formulák közül melyek logikailag ekvivalensek a (p p) formulával? A. ( p q) B. ( p p) C. ((p q) q) D. ( q p) E. (q q) 18. Az alábbi formulák közül melyek logikailag ekvivalensek a (q p) formulával? A. ( p p) B. (q p) C. (p q) D. ((p q) p) E. (p p) 19. Logikailag ekvivalensek-e a (p q) és (q p) formulák? 20. Logikailag ekvivalensek-e a (p q) és (q p) formulák? 21. Logikailag ekvivalensek-e a (p (q r)) és a ((p q) r) formulák? 22. Logikailag ekvivalensek-e a (p (q r)) és a ((p q) r) formulák?
2 INBK gyakorlat 2/6 2. Logikai következmény 23. Mely formulák logikai következményei a (q q) formulának? A. ((q p) p) B. (q (p p)) C. (q (p q)) D. ( p q) E. ((p q) p) 24. Mely formulák logikai következményei a (p q) formulának? A. (p q) B. (p (p q)) C. ((p p) q) D. (p (q q)) E. (q (p p)) 25. Mely formulák logikai következményei a ((q q) p) formulának? A. ( q p) B. (p (p q)) C. ( p q) D. ( q p) E. ( p q) 26. Mely formulák logikai következményei a (p (p q)) formulának? A. ( p q) B. (q p) C. (q q) D. ((q q) p) E. ((q p) q) 27. Mely formulák logikai következményei a (p q) formulának? A. ( p p) B. ( q q) C. ( q p) D. ((p q) p) E. (p (q p)) 28. Mely formulák logikai következményei a (q p) formulának? A. (q q) B. (p q) C. (q p) D. ((q p) p) E. (q p) 29. Mely formulák logikai következményei a (q p) formulának? A. (p q) B. (p q) C. ((q p) q) D. (q (q p)) E. (q (p p)) 30. Mely formulák logikai következményei a ( p q) formulának? A. (p q) B. (p (q p)) C. (q (q p)) D. ( p p) E. (q (p q)) 31. Mely formulák logikai következményei a (q (q p)) formulának? A. (p p) B. ((q p) p) C. (q (q p)) D. (q (p p)) E. (q (p p)) 32. Mely formulahalmazoknak logikai következménye a (q q) formula? A. {(q (q p)), (p q)} B. {((q p) p), (q (q p))} C. {((p p) p), (q p)} D. {((p p) p), (p p)} E. {(p (p q)), ((q p) q)} 33. Mely formulahalmazoknak logikai következménye a (p p) formula? A. {((p p) q), (q p), } B. {(p p), q q} C. {((p q) p), (p p)} D. { ( q q), ((p q) p)} E. {(q p), ((q p) q)} 34. Mely formulahalmazoknak logikai következménye a (q p) formula? A. {(q p), ( q p)} B. {(p (p q)), (p q)} C. { (p p), ( q p)} D. { ( p p), (q (p q))} E. { q, ( p p)} 35. Mely formulahalmazoknak logikai következménye a (q p) formula? A. {(p p), }
3 INBK gyakorlat 3/6 B. {((p q) q), (p q)} C. {(p (q p)), (p q)} D. {( p q), q} E. { ( p p), (p q)} 36. Mely formulahalmazoknak logikai következménye a ( p p) formula? A. {((p q) q), ( p q)} B. {(p q), (p q)} C. {((q p) q), (q p)} D. {(q q), p} E. {( q p), (p q)} 37. Mely formulahalmazoknak logikai következménye a q formula? A. {( q p), (q p)} B. {(p q), } C. { (p p), (q p)} D. {(q p), (q p)} E. {(q p), (q p)} 38. Mely formulahalmazoknak logikai következménye a (p q) formula? A. {((p q) q), (q p)} B. {, (q (q p))} C. {, (q (q p))} D. {((p q) q), } E. {, (q (p p))} 39. Mely formulahalmazoknak logikai következménye a (p q) formula? A. {( q p), ( p p)} B. {((p p) p), ((q p) p)} C. {(q (q q)), } D. {(q (q p)), ( q q)} E. {(p q), p} 40. Mely formulahalmazoknak logikai következménye a (p (p q)) formula? A. {( p q), (p (q p))} B. {(p q), (p q)} C. {((p p) q), ( p q)} D. {(q (q p)), ( p q)} E. { (q p), (q p)} 41. Mely formulahalmazoknak logikai következménye a (p q) formula? A. {( q q), (p q)} B. {(q p), ( p p)} C. {(p p), ( p q)} D. { ( q p), ((q p) q)}
4 INBK gyakorlat 4/6 E. {(p (q p)), ( q q)} 42. Mely formulahalmazoknak logikai következménye a q formula? A. { ( p q), (p p)} B. {((p q) q), (p q)} C. { (q p), ((q q) p)} D. {(q (p q)), ( q p)} E. { q, ((p q) p)} 3. Definíciók Kétargumentumú igazságfüggvényekből (f : {0, 1} 2 {0, 1}) 16 darab létezik. Ebből kettő (a és ) egyik argumentumától sem függ, míg négy (π 1, π 2, és ezek negációja π 1, π 2) csak az egyik argumentumától függ; és 10 függ közülük valójában mindkét argumentumától: f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f 15 < π 1 > π 2 π 2 π Nem mindegyik igazságfüggvényhez kapcsolunk jelentést. A következő táblázat megmutatja, hogy az általunk használni kívánt igazságfunktorok szemantikai értéke melyik igazságfüggvény. f 11 f 8 f 14 f 9 f 6 f 7 f 1 Az eltérő logikai konstansok miatt az előadáson használt klasszikus nulladrendű nyelvtől különböző nulladrendű nyelvet használunk a következő fejezetben: L (0) = LC, Con, F orm, ahol LC = {,,,,,,,, (, )}, Con F orm, Ha A, B F orm, A F orm, (A B) F orm, (A B) F orm, (A B) F orm, (A B) F orm, (A B) F orm, (A B) F orm, (A B) F orm. Igazságfunktorok egy halmazát teljes rendszernek nevezzük, ha a szemantikai értékük kombinációjával az összes igazságfüggvény előállítható.
5 INBK gyakorlat 5/6 4. Kifejezhetőség 43. Az alábbi formulák közül melyek logikailag ekvivalensek a p formulával? A. ((p q) q) B. ((q q) q) C. (( q p) q) D. (p p) E. (p p) 44. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (p (q p)) B. ( p q) C. ( q p) D. (((p p) (q q)) ((p p) p)) E. (p q) 45. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (p q) B. (q q) C. ( p q) D. (((p p) p) ((q q) q)) E. (q (q q)) 46. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (q (q q)) B. ( q q) C. (( p p) q) D. (p q) E. (((p p) (q q)) ((p p) p)) 47. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( p q) B. ( p q) C. (p q) D. ((p p) q) E. ((((p p) q) (p p)) (p q)) 48. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( p q) B. ((p q) q) C. (q p) D. ((p q) p) E. ((p p) (p p)) 49. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( q p) B. ( q p) C. (p q) D. ((p p) q) E. (((p p) p) ((p p) q)) F. 50. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (p q) B. (q p) C. (p q) D. ((p q) (p q)) E. ((p p) (q q)) 51. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. (q p) B. ( p q) C. ( p q) D. ((p p) q) E. (((p p) p) ((p q) p)) 52. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( p q) B. ( p q) C. ( q p) D. ((p q) (p q)) E. ((p q) (p q)) 53. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ( q p) B. ( q p) C. (p (p p)) D. ((p p) (q q)) E. ((p p) (q q)) 54. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ((q p) (p q)) B. ( ( p q) (p q)) C. ( ( q p) ( p q)) D. (((p p) q) ((p q) p)) E. (((p p) q) ((q p) p)) 55. Az alábbi formulák közül melyek logikailag ekvivalensek a (p q) formulával? A. ((q p) (p q)) B. ( ( p q) (q p)) C. ( ( p q) (q p)) D. (((p p) (q q)) (p q)) E. (((p p) (q q)) (p q)) 56. Kifejezezhető-e a csak a segítségével? 57. Kifejezezhető-e a csak a segítségével? 58. Kifejezezhető-e a csak a segítségével? 59. Teljes rendszernek tekinthetjük-e a {, } halmazt? 60. Teljes rendszernek tekinthető-e a {,, }? 61. Teljes rendszernek tekinthető-e a {, }? 62. Teljes rendszernek tekinthető-e a {, }? 63. Teljes rendszernek tekinthető-e a {, }?
6 INBK gyakorlat 6/6 64. Teljes rendszernek tekinthető-e a { } ha a nulladrendű nyelv tartalmazza a azonosan hamis logikai konstanst? 65. Teljes rendszernek tekinthető-e a { }? 66. Fejezze ki a igazságfunkort a segítségével! 67. Teljes rendszernek tekinthető-e a { }? 68. Bizonyítsa be, hogy ha egy kétargumentumú igazságfunktorral kifejezhető minden kétargumentumú igazságfunktor, akkor az nem lehet más, mint a vagy a! 69. Teljes rendszernek tekinthető-e a {, }? 70. Teljes rendszernek tekinthető-e a {, }, ha a nulladrendű nyelv tartalmazza azonosan igaz logikai konstanst?
1. Definíciók. 2. Formulák. Informatikai logikai alapjai Mérnök informatikus 3. gyakorlat
Informatikai logikai alapjai Mérnök informatikus 3. gyakorlat 1. Definíciók A feladatokban bevezetünk két újabb logikai konstanst: a és jellel jelölteket. Ez a két konstans önmagában is formulának tekintendő.
AZ INFORMATIKA LOGIKAI ALAPJAI
AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy
2. Logika gyakorlat Függvények és a teljes indukció
2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció
Logika kiskáté. Mihálydeák Tamás és Aszalós László
Logika kiskáté Mihálydeák Tamás és Aszalós László 2012 1. Definíciók 1. Adja meg a klasszikus nulladrendű nyel definícióját! Klasszikus nulladrendű nyelen az L (0) = LC, Con, F orm rendezett hármast értjük,
Logika kiskáté. Mihálydeák Tamás és Aszalós László
Logika kiskáté Mihálydeák Tamás és Aszalós László 2012 1. Definíciók 1. Adja meg a klasszikus nulladrendű nyel definícióját! Klasszikus nulladrendű nyelen az L (0) = LC, Con, F orm rendezett hármast értjük,
3. Az ítéletlogika szemantikája
3. Az ítéletlogika szemantikája (4.2) 3.1 Formula és jelentése minden ítéletváltozó ( V v ) ha A JFF akkor A JFF ha A,B JFF akkor (A B) JFF minden formula előáll az előző három eset véges sokszori alkalmazásával.
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 4. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
A logikai következmény
Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel
Elsőrendű logika szintaktikája és szemantikája. Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1
Elsőrendű logika szintaktikája és szemantikája Logika és számításelmélet, 3. gyakorlat 2009/10 II. félév Logika (3. gyakorlat) 0-adrendű szemantika 2009/10 II. félév 1 / 1 Az elsőrendű logika Elemek egy
Kijelentéslogika I. 2004. szeptember 24.
Kijelentéslogika I. 2004. szeptember 24. Funktorok A természetesnyelvi mondatok gyakran összetettek: további mondatokból, végső soron pedig atomi mondatokból épülnek fel. Az összetevő mondatokat mondatkonnektívumok
Logika es sz am ıt aselm elet I. r esz Logika Negyedik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Negyedik előadás Tartalom 2/26 Az elsőrendű logika szemantikája Formulák és formulahalmazok szemantikus tulajdonságai Elsőrendű logikai nyelv interpretációja
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Formulahalmaz kielégíthetősége Ezen az előadáson Γ-val egy elsőrendű logikai nyelv
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logikai ekvivalencia Az A és a B elsőrendű formulák logikailag ekvivalensek, ha
Logika nyelvészeknek, 12. óra A típuselmélet alapjai. Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is.
Logika nyelvészeknek, 12. óra A típuselmélet alapjai Lehetőség van a kvantorfogalom mellett a funktorfogalom általánosítására is. Az L 1 elsőrendű nyelvben csak bizonyos típusú funktoraink voltak: ami
Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László
MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,
LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.
MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,
1. Formalizálás. Informatikai logikai alapjai Mérnök informatikus 6. gyakorlat. 1. Jelöljék a következő nemlogikai konstansok a következőket:
Informatikai logikai alapjai Mérnök informatikus 6. gyakorlat 1. Formalizálás 1. Jelöljék a következő nemlogikai konstansok a következőket: p Aladár gőgös. q Aladár zsémbes. r Bea gőgös. s Bea zsémbes.
Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33
1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások
Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)
(11/1) Függvények 1 1) Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon! (pont) ) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont) 3) Ábrázolja + 1 - függvényt a [ ;] -on! (3pont)
3. Magyarország legmagasabb hegycsúcsa az Istállós-kő.
1. Bevezetés A logika a görög,,logosz szóból származik, melynek jelentése gondolkodás, beszéd, szó. A logika az emberi gondolkodás vizsgálatával foglalkozik, célja pedig a gondolkodás során használt helyes
Levezetések klasszikus nulladrendű logikai kalkulusban
Levezetések klasszikus nulladrendű logikai kalkulusban Molnár Attila 2008. november 21. Ebben az óravázlatban a nulladrendű logikai kalkulusbeli tételek levezetéséről esik majd szó. Következzen egy gyors
Memo: Az alábbi, "természetes", Gentzen típusú dedukciós rendszer szerint készítjük el a levezetéseket.
Untitled 2 1 Theorema Predikátumlogika 1 3 Natural Deduction (Gentzen mag/alap kalkulus) Cél: a logikai (szematikai) következményfogalom helyett a (szintaktikai) levethetõség vizsgálata. A bizonyítási
ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai
Logika es sz am ıt aselm elet I. r esz Logika M asodik el oad as 1/26
1/26 Logika és számításelmélet I. rész Logika Második előadás Tartalom 2/26 Ítéletlogika - Szemantika (folytatás) Formulák és formulahalmazok szemantikus tulajdonságai Szemantikus következményfogalom Formalizálás
Válogatott fejezetek a logikai programozásból ASP. Answer Set Programming Kelemen Attila
ASP 1 Kedvcsináló N királynő 3+1 sorban index(1..n). % minden sorban pontosan 1 királynő van 1{q(X,Y):index(X)}1 :- index(y). % az rossz, ha ugyanabban az oszlopban 2 királynő van :- index(x; Y1; Y2),
Logika és számításelmélet. 2011/11 11
(Logika rész) Logika és számításelmélet. 2011/11 11 1. előadás 1. Bevezető rész Logika (és a matematikai logika) tárgya Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata. A gondolkodás
2. Ítéletkalkulus szintaxisa
2. Ítéletkalkulus szintaxisa (4.1) 2.1 Az ítéletlogika abc-je: V 0 V 0 A következő szimbólumokat tartalmazza: ítélet- vagy állításváltozók (az állítások szimbolizálására). Esetenként logikai változónak
3. Lineáris differenciálegyenletek
3. Lineáris differenciálegyenletek A közönséges differenciálegyenletek két nagy csoportba oszthatók lineáris és nemlineáris egyenletek csoportjába. Ez a felbontás kicsit önkényesnek tűnhet, a megoldásra
Logikai ágensek. Mesterséges intelligencia március 21.
Logikai ágensek Mesterséges intelligencia 2014. március 21. Bevezetés Eddigi példák tudásra: állapotok halmaza, lehetséges operátorok, ezek költségei, heurisztikák Feltételezés: a világ (lehetséges állapotok
LOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 3. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Az elsőrendű logikai nyelv interpretációja L interpretációja egy I-vel jelölt függvénynégyes,
1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!
Függvények 1 1. Ábrázolja az f()= -4 függvényt a [ ;10 ] intervallumon!. Írja fel az alábbi lineáris függvény grafikonjának egyenletét! 3. Ábrázolja + 1 - függvényt a [ ;] -on! 4. Az f függvényt a valós
Matematikai logika. Nagy Károly 2009
Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű
1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei
1. A matematikai logika alapfogalmai Megjegyzések: a) A logikában az állítás (kijelentés), valamint annak igaz vagy hamis voltát alapfogalomnak tekintjük, nem definiáljuk. b) Minden állítással kapcsolatban
A matematika alapjai. Nagy Károly 2014
A matematika alapjai előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről egyértelműen
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)
Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,
Bizonytalanság. Mesterséges intelligencia április 4.
Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel
Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben
Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben I. A kvantifikáció a klasszikus Frege-féle kvantifikációelméletben A kvantifikáció klasszikus
Logikai alapok a programozáshoz. Nagy Károly 2014
Logikai alapok a programozáshoz előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről
Logikai alapok a programozáshoz
Logikai alapok a programozáshoz Nagy Károly 2014 Nyíregyházi Főiskola Matematika és Informatika Intézet 1 Tartalomjegyzék 1. Kijelentés logika, ítéletkalkulus 2 2. A kijelentés logika törvényei 5 3. Logikai
Felmentések. Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21
Felmentések Logika (1. gyakorlat) 0-adrendű szintaktika 2009/10 II. félév 1 / 21 Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat
Logika és számításelmélet. 10. előadás
Logika és számításelmélet 10. előadás Rice tétel Rekurzíve felsorolható nyelvek tulajdonságai Tetszőleges P RE halmazt a rekurzívan felsorolható nyelvek egy tulajdonságának nevezzük. P triviális, ha P
Olvassa el figyelmesen az alábbi állításokat és karikázza be a helyes válasz előtt álló betűjelet.
Feleletválasztós kérdések 03 Hossz távú termelés, termelési tényezők Olvassa el figyelmesen az alábbi állításokat és karikázza be a helyes válasz előtt álló betűjelet. 1. érdés A termelési függvény minden
Logika. Mihálydeák Tamás szeptember 27. Tartalomjegyzék. 1.
Logika Mihálydeák Tamás mihalydeak@inf.unideb.hu www.inf.unideb.hu/szamtud/tagok/?mihalydeak 2007. szeptember 27. Tartalomjegyzék 1. Irodalom 3 2. A logika feladata 3 3. A helyes következtetés 3 4. Történeti
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
Matematikai logika NULLADRENDŰ LOGIKA
Matematikai logika NULLADRENDŰ LOGIKA Kijelentő mondatokhoz, melyeket nagy betűkkel jelölünk, interpretáció (egy függvény) segítségével igazságértéket rendelünk (I,H). Szintaxisból (nyelvtani szabályok,
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
Diszkrét matematika MATEMATIKAI LOGIKA
NULLADRENDŰ LOGIKA (ÍTÉLETKALKULUS) A logikát, mint a filozófia egy részét, már az ókori a görög tudósok is igen magas szinten művelték, pl. Platón (Kr. e. 427- Kr. e. 347), Arisztotelész (Kr.e. 384- Kr.
1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy
/. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Predikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.
LOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Bevezetés a Formális Logikába Érveléstechnika-logika 7.
Bevezetés a Formális Logikába Érveléstechnika-logika 7. Elemi és összetett állítások Elemi állítások Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról. Az állítás vagy igaz
Matematikai logika Arisztotelész Organon logika feladata Leibniz Boole De Morgan Frege dedukció indukció kijelentésnek
Matematikai logika A logika tudománnyá válása az ókori Görögországban kezd dött. Maga a logika szó is görög eredet, a logosz szó jelentése: szó, fogalom, ész, szabály. Kialakulása ahhoz köthet, hogy már
Felmentések. Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól.
Felmentések Ha valaki tanár szakos, akkor mivel neki elvileg a hálóban nincs logika rész, felmentést kaphat a logika gyakorlat és vizsga alól. Az eredménye, ezek után a számításelélet részből elért eredmény
Az informatika logikai alapjai 1
Az informatika logikai alapjai 1 1.1. Az alábbi idézetek 1 közül melyek fejeznek ki állítást? Miért, illetve miért nem? (a) Ez volt ám az ember, ha kellett, a gáton. (b) Szép öcsém, miért állsz ott a nap
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Predikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely
1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
A matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
A matematika nyelvéről bevezetés
A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
Komplex számok. (a, b) + (c, d) := (a + c, b + d)
Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)
Kalkulus I. gyakorlat Fizika BSc I/1.
. Ábrázoljuk a következő halmazokat a síkon! {, y) R 2 : + y < }, b) {, y) R 2 : 2 + y 2 < 4}, c) {, y) R 2 : 2 + y 2 < 4, + y < }, {, y) R 2 : + y < }. Kalkulus I. gyakorlat Fizika BSc I/.. gyakorlat
Ítéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
Az informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. Példák Az alábbi világokban állításokat akarunk megfogalmazni: A táblára színes karikákat
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
ADATBÁZISOK ELMÉLETE 5. ELŐADÁS 3/22. Az F formula: ahol A, B attribútumok, c érték (konstans), θ {<, >, =,,, } Példa:
Adatbázisok elmélete 5. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu http://www.cs.bme.hu/ kiskat 2005 ADATBÁZISOK ELMÉLETE
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Sor és oszlopkalkulus
Adatbáziskezelés Sor és oszlopkalkulus Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2017. szeptember 29. Csima Judit Adatbáziskezelés Sor és oszlopkalkulus 1 / 1 Sorkalkulus Formális
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
LINEÁRIS VEKTORTÉR. Kiegészítő anyag. (Bércesné Novák Ágnes előadása) Vektorok függetlensége, függősége
LINEÁRIS VEKTORTÉR Kiegészítő anyag (Bércesné Noák Ágnes előadása) Vektorok függetlensége, függősége Vektortér V 0 Halmaz T test : + ; + ; Abel csoport V elemeit ektoroknak neezzük. Abel - csoport Abel
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
MÉSZÁROS JÓZSEFNÉ, NUMERIKUS MÓDSZEREK
MÉSZÁROS JÓZSEFNÉ, NUmERIKUS módszerek 9 FÜGGVÉNYKÖZELÍTÉSEK IX. SPLINE INTERPOLÁCIÓ 1. SPLINE FÜGGVÉNYEK A Lagrange interpolációnál említettük, hogy az ún. globális interpoláció helyett gyakran célszerű
Az informatika logikai alapjai előadások
VÁRTERÉSZ MAGDA Az informatika logikai alapjai előadások 2006/07-es tanév 1. félév Tartalomjegyzék 1. Bevezetés 2 2. Az ítéletlogika 18 2.1. Az ítéletlogika nyelve szintaxis...............................................
Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:
Trigonometria Megoldások ) Oldja meg a következő egyenletet a valós számok halmazán! cos + cos = sin ( pont) sin cos + = + = ( ) cos cos cos (+ pont) cos + cos = 0 A másodfokú egyenlet megoldóképletével
Logika feladatgyűjtemény
Debreceni Egyetem Informatikai Kar Logika feladatgyűjtemény 2005. május 19. Készítette: Lengyel Zoltán lengyelz@inf.unideb.hu Tartalomjegyzék 1. Ítéletlogika 2 2. Elsőrendű logika 17 2.1. Prenex alak......................................
5.3. Logika a relációkhoz
236 5. Algebrai és logikai lekérdező nyelvek! 5.2.3. feladat. Az egyik dolog, amit az eredeti 2.4.5. alfejezetben definiált vetítési művelettel szemben elérhetünk a kiterjesztett vetítési művelet segítségével,
Logika es sz am ıt aselm elet I. r esz Logika Hatodik el oad as 1/33
1/33 Logika és számításelmélet I. rész Logika Hatodik előadás Tartalom 2/33 Elsőrendű rezolúciós kalkulus - előkészítő fogalmak Prenex formula, Skolem normálforma 3/33 Eldönthető formulaosztályok keresése
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
Diszkrét matematika I. gyakorlat
Diszkrét matematika I. gyakorlat 2. ZH 2014. november 28. A csoport 1. Feladat. (5 pont) Határozza meg a z 1 = 2 + 2i komplex szám trigonometrikus alakját, majd adja meg a z 1 z 2 és z 1 z 2 komplex számok
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Differenciálhatóság H607, EIC 2019-03-14 Wettl
f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva
6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási
2. Reprezentáció-függvények, Erdős-Fuchs tétel
2. Reprezentáció-függvények, Erdős-Fuchs tétel A kör-probléma a következőképpen is megközelíthető: Jelölje S a négyzetszámok halmazát. Jelölje r S (n) azt az értéket, ahány féleképpen n felírható két pozitív
Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1
3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció
Relációs struktúrák Relációs elméletek Modális elméletek Gyakorlás Modellezés Házifeladatok MODÁLIS LOGIKAI ALAPOK
DEONTIKUS LOGIKA MODÁLIS LOGIKAI ALAPOK Molnár Attila, Markovich Réka Eötvös Loránd University March 14, 2015 Relációs struktúrák DEONTIKUS RENDSZER MINT RELÁCIÓS STRUKTÚRA Modellezni szeretnénk a cselekvéseket
Programok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
Logikai következmény, tautológia, inkonzisztens, logikai ekvivalencia, normálformák
08EMVI3b.nb 1 In[2]:= Theorema Ítéletlogika 1 Ismétlés Szintaxis Szemantika Logikai következmény, tautológia, inkonzisztens, logikai ekvivalencia, normálformák 2 Kalkulusok Kalkulus Levezethetõség Dedukciós
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Logika és informatikai alkalmazásai
Logika és informatikai alkalmazásai 9. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2011 tavasz Irodalom Szükséges elmélet a mai gyakorlathoz Előadás
Automatikus tételbizonyítás
Automatikus tételbizonyítás előadások Várterz Magda Kádek Tamás Automatikus tételbizonyítás: előadások Várterz Magda Kádek Tamás Table of Contents 1 Előszó 1 2 Bevezet 2 1 Az elsőrendű nyelv szintaxisa
0-49 pont: elégtelen, pont: elégséges, pont: közepes, pont: jó, pont: jeles
Matematika szigorlat, Mérnök informatikus szak I. 2013. jan. 10. Név: Neptun kód: Idő: 180 perc Elm.: 1. f. 2. f. 3. f. 4. f. 5. f. Fel. össz.: Össz.: Oszt.: Az elérhető pontszám 40 (elmélet) + 60 (feladatok)
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb
Logika, 5. Az előadásfóliák ÉsikZoltén (SZTE InformatikaiTanszékcsoport) Logikaa szamtastudomanyban Logikaes informatikaialkalmazasai Előadásai alapján készültek Ésik Zoltán (SZTE Informatikai Tanszékcsoport)