Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika
|
|
- Sára Török
- 8 évvel ezelőtt
- Látták:
Átírás
1 Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor már meglévő fogalmak segítségével alakítunk ki újabb fogalmakat, dedukciónak nevezzük. Általában induktív úton szerezzük meg a tapasztalatokat a fogalmak megértéséhez, de a fogalmak meghatározását már deduktív úton tesszük. DEFINÍCIÓ: (Kijelentés) Logikai értelemben kijelentésnek (állításnak, ítéletnek) nevezzük azt a kijelentő mondatot, amelyről egyértelműen eldönthető, hogy igaz vagy hamis. A kijelentéseket latin nagybetűkkel jelöljük. Nem minden kijelentő mondat ítélet, de minden ítélet kijelentő mondat. Egy kijelentések logikai értéke:,,igaz, vagy,,hamis. Jelölés: A = I; B = H. A formális logika nem vizsgálja a kijelentések tartalmát, csak a logikai értéküket. Paradoxon: Azt a kijelentő mondatot, melynek logikai értékét vizsgálva mindig ellentmondásra jutunk, paradoxonnak nevezzük. Pl.:,,Ez a mondat hamis. Harmadik kizárásnak elve: Egy adott tárgyalás során egy ítélet vagy igaz, vagy hamis, más logikai értéke nem lehet, vagyis bármely A ítélet esetén: A A = I (egy ítélet és negációja nem lehet egyszerre hamis). Ellentmondás mentesség elve: Egy adott tárgyalás során egy ítélet nem lehet egyszerre igaz és hamis is, vagyis bármely A ítélet esetén: A A = H (egy ítélet és negációja nem lehet egyszerre igaz). 1
2 Logikai művelet: Logikai műveletnek nevezzük a formális logikában azt a gondolati eljárást (valamely nyelvi forma alkalmazását), amely eredményeként egy vagy több ítéletből újabb ítéletet kapunk, és az új ítélet logikai értékét a felhasznált ítéletek logikai értéke, valamint a végrehajtott művelet egyértelműen meghatározzák. DEFINÍCIÓ: (Elemi ítélet) Elemi ítéletnek nevezzük azt az ítéletet, amelyet nem lehet egyszerűbb ítéletekből logikai műveletek alkalmazásával létrehozni. DEFINÍCIÓ: (Összetett ítélet) Összetett ítéletnek nevezzük az elemi ítéletekből logikai műveletek alkalmazásával képzett ítéletet. DEFINÍCIÓ: (Negáció) Az A ítélet negációján (tagadásán) azt a kijelentést értjük, amely igaz, ha A hamis, és hamis, ha A igaz. Jelölés: A; A. A tagadás nyelvi formái:,,nem,,,nincs,,,nem igaz, stb. Értéktáblázat: A I H A H I Kettős tagadás elve: Egy kijelentés tagadásának tagadása az eredeti kijelentés. Jelöléssel: ( A) = A. DEFINÍCIÓ: (Konjunkció) Az A és B ítélet konjunkcióján azt a kijelentést értjük, amely pontosan akkor igaz, ha a két eredeti ítélet egyidejűleg igaz. Jelölés: A B. A konjukció nyelvi formái:,,és,,,de,,,noha,,,pedig,,,bár,,,mégis,,,továbbá,,,valamint,,,illetve, stb. 2
3 A kötőszók a logikai művelet szempontjából helyettesíthetőek az,,és kötőszóval, ezért a konjunkciót logikai és műveletnek is szokás nevezni. Értéktáblázat: A B A B I I I I H H H I H H H H DEFINÍCÓ: (Diszjunkció) Az A és B ítélet diszjunkcióján azt a kijelentést értjük, amely pontosan akkor hamis, ha a két eredeti ítélet egyidejűleg hamis. Jelölés: A B. A konjukció nyelvi formája:,,vagy. A,,vagy - ot megengedő értelemben használjuk, vagyis az,,a vagy B jelentése:,,a vagy B vagy mindkettő. A diszjunkciót logikai megengedő vagy műveletnek is szokás nevezni. Értéktáblázat: A B A B I I I I H I H I I H H H DEFINÍCÓ: (Összeférhetetlenségi vagy) Az A és B ítélet összeférhetetlenségi vagy műveletén azt a kijelentést értjük, amely pontosan akkor hamis, ha a két eredeti ítélet egyidejűleg igaz. Jelölés: A B. Az összeférhetetlenségi vagy nyelvi formái:,,legalább az egyik, legfeljebb az egyik. Az összeférhetetlenségi vagy esetén az,,a vagy B jelentése:,,a vagy B vagy egyiksem. 3
4 Értéktáblázat: A B A B I I H I H I H I I H H I DEFINÍCÓ: (Kizáró vagy) Az A és B ítélet kizáró vagy műveletén (antivalenciáján) azt a kijelentést értjük, amely pontosan akkor hamis, ha a két eredeti ítélet egyidejűleg igaz, illetve hamis. Jelölés: A B; A B. A kizáró vagy nyelvi formái:,,pontosan az egyik ;,,vagy, vagy. A kizáró vagy esetén az,,a vagy B jelentése:,,a vagy B közül pontosan az egyik. Értéktáblázat: A B A B I I H I H I H I I H H H TÉTEL: Bármely A, B és C ítélet esetén teljesülnek a következő azonosságok: Idempotencia (azonos hatványúság): Pl.: A A = A Kommutativitás (felcserélhetőség): Pl.: A B = B A Asszociativitás (csoportosíthatóság, társíthatóság): Pl.: (A B) C = A (B C) Adjunktivitás (elnyelési tulajdonság, abszorpció): Pl.: A (A B) = A Disztributivitás (széttagolhatóság): Pl.: A (B C) = (A B) (A C) De Morgan képletek: (A B) = A B és (A B) = A B 4
5 DEFINÍCIÓ: (Implikáció) Az A előtag és a B utótag implikációján azt az ítéletet értjük, amely pontosan akkor hamis, ha az előtag igaz, de az utótag hamis. Jelölés: A B; A B; A B. Hamis állításból bármi következhet. Az előtagot feltételnek (premisszának), az utótagot következménynek (konklúziónak) nevezzük. Az implikáció nyelvi formája:,,ha, akkor. Értéktáblázat: A B A B I I I I H H H I I H H I DEFINÍCIÓ: (Ekvivalencia) Az A és B ítéletek ekvivalenciáján azt az ítéletet értjük, amely pontosan akkor igaz, ha a két komponens logikai értéke megegyezik. Jelölés: A B; A B; A = B. Az ekvivalencia azt jelenti, hogy a két kijelentést egyenértékűnek tekintjük. Az implikáció nyelvi formái:,,akkor és csak akkor, ha ; pontosan akkor, ha ; ekvivalens azzal. A tételek általában implikációk, vagy ekvivalenciák. Értéktáblázat: A B A B I I I I H H H I H H H I 5
6 TÉTEL: Bármely A és B ítélet esetén teljesülnek a következő azonosságok: A B = A B A B = (A B) (B A). Állítások tagadása: Két,,és sel összekötött állítás esetén: az állításokat tagadjuk és azokat,,vagy gyal kötjük össze. Jelöléssel: (A B) = A B. Két,,vagy gyal összekötött állítás esetén: az állításokat tagadjuk és azokat,,és sel kötjük össze. Jelöléssel: (A B) = A B. Két,,kizáró vagy gyal összekötött állítás esetén: az állításokat (vagy azok tagadásait),,akkor és csak akkor ral kötjük össze. Jelöléssel: (A B) = A B = A B. Két,,akkor és csak akkor ral összekötött állítás esetén: az állításokat (vagy azok tagadásait),,kizáró vagy gyal kötjük össze. Jelöléssel: (A B) = A B = A B. Két,,ha akkor ral összekötött állítás esetén: az első állítást és a második állítás tagadását,,és - sel kötjük össze. Jelöléssel: (A B) = A B. A,,ha akkor helyett szokás a,,minden t használni, amit tagadáskor a,,van olyan - ra cserélünk (és fordítva). Elviekben a,,nem igaz, hogy kifejezéssel bármi tagadható, de egyes esetekben nehéz értelmezni, ezért ezt a formát kerülni szoktuk. Univerzális kvantor: A,,bármely,,,minden, stb. kifejezést univerzális kvantornak nevezzük. Jelölés:. Egzisztenciális kvantor: A,,van olyan,,,létezik, stb. kifejezést egzisztenciális kvantornak nevezzük. Jelölés:. Kvantorok tagadása: Ha A(x) jelöli az x tulajdonságát, akkor a x A(x) tagadása: x A(x) a x A(x) tagadása: x A(x). 6
7 Állítás megfordítása: Az,,A ból következik a B kijelentés megfordítása:,,b ből következik az A. Az A B megfordítása B A. Ha az állítás és megfordítása is igaz, akkor a kijelentést megfordíthatónak nevezzük. Ellenkező esetben nem fordítható meg. A megfordítható állítás nyelvi formái:,,akkor és csak akkor, ha ;,,pontosan akkor, ha ;,, ekvivalens azzal ;,, szükséges és elegendő. Szükséges feltétel: Ha egy A állítás csak akkor lehet igaz, ha egy B állítás igaz, azaz A igazságához szükséges B igazsága, akkor a B állítás az A állítás szükséges feltétele. Ha B hamis, akkor A is biztosan hamis, de B igazsága esetén A lehet igaz és hamis is, vagyis A igazságához szükséges B igazsága, de nem feltétlenül elegendő. Elégséges feltétel: Ha egy B állításból biztosan (minden esetben) következik egy A állítás, akkor a B állítást az A állítás elégséges feltételének nevezzük. Ha B igaz, akkor A is biztosan igaz, de B hamissága esetén A lehet igaz és hamis is, vagyis A igazságához elegendő B igazsága, de nem feltétlenül szükséges. Ha B elégséges feltétele A nak, akkor A szükséges feltétele B nek. Szükséges és elégséges feltétel: Ha a B álításból következik az A állítás, és ugyanakkor az is igaz, hogy ha B nem teljesül, akkor A sem teljesül, akkor a B állítást az A állítás szükséges és elégséges feltételének nevezzük. A szükséges és elégséges feltétel kölcsönösen egyértelmű kapcsolatot jelent: ha B szükséges és elégséges feltétele A nak, akkor A is szükséges és elégséges feltétele B nek. 7
8 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen el tudjuk dönteni, hogy igaz, vagy sem. Ezek alapján a megoldás: C. 2. Írd le a következő kijelentéseket logikai műveletek segítségével! a) Ha 2 nagyobb, mint 0, akkor a 2 nem negatív. b) Minden hétvégén focizok, vagy moziba megyek. c) Van olyan sportoló, aki nem tud vezetni, de szeret repülni. d) Bármely két különböző szám között van egy harmadik. a) Tekintsük a következő jelöléseket: A = { 2 nagyobb, mint 0} B = { 2 negatív} Ezek alapján a kijelentést leírhatjuk a következőképpen: A B. b) Tekintsük a következő jelöléseket: A = {hétvége van} B = {focizok} C = {moziba megyek} Ezek alapján a kijelentést leírhatjuk a következőképpen: A (B C). c) Tekintsük a következő jelöléseket: A = {sportoló} B = {tud vezetni} C = {szeret repülni} Ezek alapján a kijelentést leírhatjuk a következőképpen: A ( B C). d) Az állítást leírhatjuk a következőképpen: x, y R x < y ( z R x < z < y). 8
9 3. Legyen P = {péntek van} és F = {fáradt vagyok}. Írd le logikai műveletek segítségével a következő kijelentéseket! A = {Ma péntek van, vagy fáradt vagyok. } B = {Ma péntek van, de nem vagyok fáradt. } C = {Ha ma nincs péntek, akkor nem vagyok fáradt. } D = {Akkor és csak akkor vagyok fáradt, ha péntek van. } Az állítások logikai műveletekkel leírva a következők: A = P F B = P F C = P F D = F P 4. Legyen A = {A 19 összetett szám. } és B = {A 19 kisebb 20 nál. }. Fogalmazd meg a következő logikai szimbólumokkal leírt állításokat! C = (A B) D = A B E = B A F = A B Az állítások megfogalmazása a következők: C = {Nem igaz, hogy a 19 összetett szám és 20 nál kisebb. } D = {A 19 nem összetett szám, vagy 20 nál kisebb. } E = {Ha a 19 kisebb 20 nál, akkor össztett szám. } F = {A 19 akkor és csak akkor összetett szám, ha nem kisebb 20 nál. } 5. A következő kijelentésekben mely logikai műveletet fejezheti ki a,,vagy kötőszó? A: Az adott valós szám pozitív, vagy negatív. B: Az adott egész szám vagy páros, vagy páratlan. C: Az adott négyszögnek van beírt köre, vagy köré írt köre. A,,vagy kötőszó jelentésétől függően a következőképpen kategorizálhatjuk a mondatokat: A:,,összeférhetetlenségi vagy B:,,kizáró vagy C:,,megengedő vagy. 9
10 6. Tagadd a következő állításokat! A: Holnap délután focizni megyek vagy tanulok. B: Ma este 8 kor vagy alszok, vagy meccset nézek. C: Van olyan fiú, aki nem játszik számítógépen és nem is néz sorozatokat. D: Hull a hó és Micimackó fázik. E: István szereti a zenét és gyakran énekel a fürdőszobában. F: Van olyan kutya, amelyik nyávog. G: Minden nyáron kirándulunk és bulizunk. H: A 9 nek legalább három osztója van. I: A háromszög akkor és csak akkor derékszögű, ha nincs tompaszöge. J: Ha fürdőbe megyek, akkor veszek lángost. Használjuk a tagadásra vonatkozó szabályokat: Az A állítás tagadása: Holnap délután nem megyek focizni és nem tanulok. A B állítás tagadása: Ma este 8 kor akkor és csak akkor nem alszok, ha nem nézek meccset. A C állítás tagadása: Minden fiú játszik számítógépen vagy néz sorozatot. A D állítás tagadása: Nem hull a hó, vagy Micimackó nem fázik. Az E állítás tagadása: István nem szereti a zenét, vagy ritkán énekel a fürdőszobában. Az F állítás tagadása: Egyik kutya sem nyávog. (Minden kutya nem nyávog.) A G állítás tagadása: Van olyan nyár, amikor nem kirándulunk, vagy nem bulizunk. A H állítás tagadása: A 9 nek háromnál kevesebb osztója van. Az I állítás tagadása: A háromszög vagy nem derékszögű, vagy van tompaszöge. A J állítás tagadása: Van olyan, hogy fürdőbe megyek, és nem veszek lángost. 10
11 7. Fogalmazz meg olyan állításokat, amelyek tagadásai a következő állítások! A: Van olyan bolt, ahol nincs próbafülke. B: Minden lónak pontosan négy lába van. C: Ha macskát látok, az biztosan fekete színű. D: Minden vonat minden kocsijában van ülés és fűtés is. E: Van olyan mozi, ahol van olyan alkalmazott, aki takarít vagy jegyet árul. F: Minden embernek van legfeljebb két háza, vagy legalább egy háziállata. G: Ha sok vizet iszom, akkor nem leszek szomjas. H: Van olyan meccs, amikor végig játszik és gólt is lő. I: Egyik héten sincs olyan nap, hogy két órát sportolnék. J: Akkor és csak akkor veszek sálat, ha esik a hó, vagy fúj a szél. Az eredeti kijelentések a következők lehetnek: A: Minden boltban van próbafülke. B: Van olyan ló, amelynek nem négy lába van. C: Van olyan, hogy macskát látok és nem fekete színű. D: Van olyan vonat, amiben van olyan kocsi, ahol nincs ülés, vagy fűtés. E: Minden mozi minden alkalmazottja nem takarít és nem árul jegyet sem. F: Van olyan ember, akinek kettőnél több háza van és nincs háziállata. G: Van olyan, hogy sok vizet iszom és szomjas leszek. H: Minden meccsen nem játszik végig, vagy nem lő gólt. I: Van olyan hét, amikor van olyan nap, hogy két órát sportolok. J: Vagy veszek sálat, vagy esik a hó, vagy fúj a szél. 11
12 8. Írd fel a következő állítások megfordítását és add meg a logikai értéküket! A: Ha egy szám osztható 8 - cal, akkor osztható 2 - vel. B: Ha két szám közül legalább az egyik 0, akkor a két szám szorzata 0. C: Ha egy híd kőoroszlánjai észreveszik, hogy esik az eső, akkor bemásznak a híd alá. D: Ha a fű zöld, akkor a Hold sajtból van. Az állítások megfordításánál a tagmondatokat fel kell cserélnünk. Ezek alapján a megoldások: Az A megfordítása: Ha egy szám osztható 2 - vel, akkor osztható 8 - cal. hamis A B megfordítása: Ha két szám szorzata 0, akkor a két szám közül legalább az egyik 0. igaz A C megfordítása: Ha egy híd kőoroszlánjai bemásznak a híd alá, akkor esik az eső. igaz A D megfordítása: Ha a Hold sajtból van, akkor a fű zöld. igaz 9. Döntsd el, hogy a 24 - gyel való oszthatóságnak milyen feltételei a következők! (Szükséges és elégséges; Szükséges, de nem elégséges; Elégséges, de nem szükséges; Nem szükséges és nem elégséges) a) A számnak oszthatónak kell lennie 48 - cal. b) A számnak oszthatónak kell lennie 5 - tel. c) A számnak oszthatónak kell lennie 4 - gyel és 6 - tal. d) A számnak oszthatónak kell lennie 3 - mal és 8 - cal. a) Elégséges, de nem szükséges feltétel, mert ha egy szám osztható 48 - cal, akkor biztosan osztható 24 - gyel is, de egy szám nem csak akkor osztható 24 gyel, ha osztható 48 - cal. b) Nem szükséges és nem elégséges feltétel, mert a 24 - gyel való oszthatósághoz nem kell az 5 - tel való oszthatóságnak teljesülnie. c) Szükséges, de nem elégséges feltétel, mert egy szám csak akkor osztható 24 gyel, ha osztható 4 - gyel és 6 tal is, de ha egy szám osztható 4 - gyel és 6 tal, akkor nem biztos, hogy osztható 24 - gyel is. d) Szükséges és elégséges feltétel, mert egy szám csak akkor osztható 24 - gyel, ha osztható 3 - mal és 8 - cal is, illetve ha egy szám osztható 3 - mal és 8 cal, akkor biztosan osztható 24 gyel is. 12
13 10. A következő állítások esetén az A - nak milyen feltétele a B? a) A: Két szám összege páros. B: Mindkét szám páros. b) A: Két szám különbsége osztható 3-mal. B: Ugyanaz a maradékuk 3 - mal osztva. c) A: Egy négyszög négyzet. B: Egy négyszög minden oldala egyenlő. d) A: Egy négyszög paralelogramma. B: A négyszög átlói merőlegesek egymásra. a) Az A - nak elégséges, de nem szükséges feltétele a B, mert a B állításból biztosan következik az A is, de az A állítás nem csak a B esetén igaz, ugyanis két páratlan szám összege is páros. b) Az A - nak szükséges és elégséges feltétele a B, mert csak akkor igaz az A, ha a B teljesül, illetve ha a B igaz, akkor biztosan teljesül A is. c) Az A - nak szükséges, de nem elégséges feltétele a B, mert A csak akkor igaz, ha a B teljesül, de ha B igaz, akkor nem biztos, hogy A is teljesül, ugyanis a négyzet szögei is egyenlő nagyságúak. d) Az A - nak nem szükséges és nem elégséges feltétele a B, mert nincs összefüggés közöttük. 11. Egy útelágazáshoz érkezve két emberrel találkozunk. Az egyik ember mindig igazat mond, a másik pedig hazudik. Egy kérdést tehetünk fel, amire mindketten válaszolnak, de nem tudjuk, hogy melyik az igazmondó. Milyen kérdést tegyünk fel nekik, hogy megtudjuk, melyik út vezet Kabára? Mivel az igazmondó mindig helyesen felel, ezért olyan kérdést kell feltennünk, amire a hazug is helyesen fog felelni. Ez pedig a kettős tagadás elve alapján akkor lehetséges, ha a kérdésbe belefogalmazunk egy újabb kérdést. Ekkor ugyanis a hazug az első kérdésre hazudna, de mivel a kérdésünkre ismét hazudik, így ő is helyesen fog válaszolni. Legyen a kérdés a következő: Melyik utat mutatnád, ha azt kérdezném, melyik út megy Kabára? Az igazmondó a helyes útra fog mutatni. A hazug arra a kérdésre, hogy melyik út megy Kabára, a rossz irányt mutatná, de mivel most is hazudik, ezért a jó irányba fog mutatni. Ezek alapján, amelyik irányba mutatnak mindketten, arra kell továbbhaladnunk. 13
14 12. Készítsd el a következő kifejezések logikai értéktáblázatát! a) (A B) (A B) b) (A B) (B C) a) A táblázat a következőképpen készíthető el: A B A B (A B) (A B) B A B I I I I H I I H H I I H H I H I H H H H H I I I b) A táblázat a következőképpen készíthető el: A B C A B (A B) (B C) B C I I I I I I I I H I I I I H I H H I I H H H I H H I I I I I H I H I I I H H I I I I H H H I H H 14
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Logika
Logika Indukció: A fogalomalkotásnak azt a módját, amikor a konkrét tapasztalatokra támaszkodva jutunk el az általános fogalomhoz, indukciónak nevezzük. Dedukció: A fogalomalkotásnak azt a módját, amikor
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás
Megoldás 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen
RészletesebbenKijelentéslogika, ítéletkalkulus
Kijelentéslogika, ítéletkalkulus Arisztotelész (ie 4. sz) Leibniz (1646-1716) oole (1815-1864) Gödel (1906-1978) Neumann János (1903-1957) Kalmár László (1905-1976) Péter Rózsa (1905-1977) Kijelentés,
RészletesebbenKijelentéslogika, ítéletkalkulus
Kijelentéslogika, ítéletkalkulus Kijelentés, ítélet: olyan kijelentő mondat, amelyről egyértelműen eldönthető, hogy igaz vagy hamis Logikai értékek: igaz, hamis zürke I: 52-53, 61-62, 88, 95 Logikai műveletek
Részletesebben1. A matematikai logika alapfogalmai. 2. A matematikai logika műveletei
1. A matematikai logika alapfogalmai Megjegyzések: a) A logikában az állítás (kijelentés), valamint annak igaz vagy hamis voltát alapfogalomnak tekintjük, nem definiáljuk. b) Minden állítással kapcsolatban
RészletesebbenMatematika Logika
Matematika Logika 1 Állítások - Kijelentések Az alábbi kijelentő mondatok közül válaszd ki az állításokat! 1. Minden prímszám páratlan 2. Holnap jó műsor lesz a tv-ben. 3. Az óvodában a legszebb lány Veronika.
RészletesebbenA logika, és a matematikai logika alapjait is neves görög tudós filozófus Arisztotelész rakta le "Analitika" című művében, Kr.e. IV. században.
LOGIKA A logika tudománnyá válása az ókori Görögországban kezdődött. Maga a logika szó is görög eredetű, a logosz szó jelentése: szó, fogalom, ész, szabály. Már az első tudósok, filozófusok, és politikusok
RészletesebbenMatematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
RészletesebbenMatematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1
3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció
RészletesebbenKnoch László: Információelmélet LOGIKA
Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke
RészletesebbenA matematika nyelvér l bevezetés
A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások
RészletesebbenA matematika nyelvéről bevezetés
A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések
RészletesebbenÍtéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
Részletesebben3. Magyarország legmagasabb hegycsúcsa az Istállós-kő.
1. Bevezetés A logika a görög,,logosz szóból származik, melynek jelentése gondolkodás, beszéd, szó. A logika az emberi gondolkodás vizsgálatával foglalkozik, célja pedig a gondolkodás során használt helyes
RészletesebbenBizonyítási módszerek ÉV ELEJI FELADATOK
Bizonyítási módszerek ÉV ELEJI FELADATOK Év eleji feladatok Szükséges eszközök: A4-es négyzetrácsos füzet Letölthető tananyag: Emelt szintű matematika érettségi témakörök (2016) Forrás: www.mozaik.info.hu
RészletesebbenBevezetés a Formális Logikába Érveléstechnika-logika 7.
Bevezetés a Formális Logikába Érveléstechnika-logika 7. Elemi és összetett állítások Elemi állítások Állítás: Jelentéssel bíró kijelentő mondat, amely információt közöl a világról. Az állítás vagy igaz
RészletesebbenMatematikai logika. Jegyzet. Összeállította: Faludi Anita 2011.
Matematikai logika Jegyzet Összeállította: Faludi Anita 2011. Tartalomjegyzék Bevezetés... 3 Előzmények... 3 Augustus de Morgan (1806-1871)... 3 George Boole(1815-1864)... 3 Claude Elwood Shannon(1916-2001)...
RészletesebbenÍtéletkalkulus. 1. Bevezet. 2. Ítéletkalkulus
Ítéletkalkulus Logikai alapfogalmak, m veletek, formalizálás, logikai ekvivalencia, teljes diszjunktív normálforma, tautológia. 1. Bevezet A matematikai logikában az állításoknak nem a tényleges jelentésével,
RészletesebbenMATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR
MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok
RészletesebbenHalmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések
1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével
RészletesebbenKijelentéslogika I. 2004. szeptember 24.
Kijelentéslogika I. 2004. szeptember 24. Funktorok A természetesnyelvi mondatok gyakran összetettek: további mondatokból, végső soron pedig atomi mondatokból épülnek fel. Az összetevő mondatokat mondatkonnektívumok
RészletesebbenI. Matematikai logika
I. Matematikai logika Az előző években már hallhattunk róla, hogy a gondolkodás tudománya a logika már az ókorban is megjelent, mert a tudományok fejlődése szükségessé tette. Fontossága miatt itt is utalunk
Részletesebben1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenDiszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint
RészletesebbenAZ INFORMATIKA LOGIKAI ALAPJAI
AZ INFORMATIKA LOGIKAI ALAPJAI Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 4. gyakorlat Interpretáció A ϱ függvényt az L (0) = LC, Con, Form nulladrendű nyelv egy
RészletesebbenÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)
ÍTÉLETKALKULUS SZINTAXIS ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA) jelkészlet elválasztó jelek: ( ) logikai műveleti jelek: ítéletváltozók (logikai változók): p, q, r,... ítéletkonstansok: T, F szintaxis szabályai
RészletesebbenRacionális számok: Azok a számok, amelyek felírhatók két egész szám hányadosaként ( p q
Szóbeli tételek matematikából 1. tétel 1/a Számhalmazok definíciója, jele (természetes számok, egész számok, racionális számok, valós számok) Természetes számok: A pozitív egész számok és a 0. Jele: N
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenOszthatósági problémák
Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 017. ősz 1. Diszkrét matematika 1. középszint. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenPredikátumkalkulus. 1. Bevezet. 2. Predikátumkalkulus, formalizálás. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Nézzük meg a következ két kijelentést: Minden almához tartozik egy fa, amir l leesett. Bármely
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 2. forduló haladók II. kategória Megoldások és javítási útmutató 1. Az a b pozitív egészek és tudjuk hogy a 2
Részletesebben25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel
5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMegoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
RészletesebbenArany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek
RészletesebbenSZÁMÍTÁSTUDOMÁNY ALAPJAI
SZÁMÍTÁSTUDOMÁNY ALAPJAI INBGM0101-17 Előadó: Dr. Mihálydeák Tamás Sándor Gyakorlatvezető: Kovács Zita 2017/2018. I. félév 2. gyakorlat Az alábbi összefüggések közül melyek érvényesek minden A, B halmaz
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
RészletesebbenA logikai következmény
Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel
RészletesebbenCsikós Pajor Gizella Péics Hajnalka ALGEBRA. Bolyai Farkas Alapítvány Zenta 2011.
Béres Zoltán Csikós Pajor Gizella Péics Hajnalka ALGEBRA elméleti összefoglaló és példatár Bolyai Farkas Alapítvány Zenta 0. Szerzők: Béres Zoltán, középiskolai tanár, Bolyai Tehetséggondozó Gimnázium
RészletesebbenAz Országos Középiskolai Tanulmányi Verseny tanévi második fordulójának feladatmegoldásai. x 2 sin x cos (2x) < 1 x.
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi második fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Oldja meg a következő egyenlőtlenséget, ha x > 0: x 2 sin
Részletesebben1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a
1. 1. hét 1.1. Alapfogalmak Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a (2, 3) Egyenes normál vektora egy pontban: egy olyan vektor
RészletesebbenLOGIKA ÉS ÉRVELÉSTECHNIKA
LOGIKA ÉS ÉRVELÉSTECHNIKA ELTE TáTK Közgazdaságtudományi Tanszék Logika és érveléstechnika NULLADREND LOGIKA 1. Készítette: Szakmai felel s: 2011. február Készült a következ m felhasználásával: Ruzsa
RészletesebbenAz egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:
Bevezető matematika kémikusoknak., 04. ősz. feladatlap. Ábrázoljuk számegyenesen a következő egyenlőtlenségek megoldáshalmazát! (a) x 5 < 3 5 x < 3 x 5 < (d) 5 x
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenA matematikai logika alapjai
A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenArany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/01-ös tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. Adott az alábbi két egyenletrendszer:
RészletesebbenKövetkezik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.
Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges
RészletesebbenAz informatika logikai alapjai
Az informatika logikai alapjai Várterész Magda DE, Informatikai Kar PTI BSc és informatikatanár hallgatók számára 2017. A logika szó hétköznapi jelentése: rendszeresség, következetesség Ez logikus beszéd
RészletesebbenBOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
RészletesebbenEgyenletek, egyenlőtlenségek, egyenletrendszerek I.
Egyenletek, egyenlőtlenségek, egyenletrendszerek I. DEFINÍCIÓ: (Nyitott mondat) Az olyan állítást, amelyben az alany helyén változó szerepel, nyitott mondatnak nevezzük. A nyitott mondatba írt változót
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
RészletesebbenDiszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
RészletesebbenMindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
RészletesebbenÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenBizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
RészletesebbenMatematikai logika NULLADRENDŰ LOGIKA
Matematikai logika NULLADRENDŰ LOGIKA Kijelentő mondatokhoz, melyeket nagy betűkkel jelölünk, interpretáció (egy függvény) segítségével igazságértéket rendelünk (I,H). Szintaxisból (nyelvtani szabályok,
RészletesebbenKisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Részletesebben352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm
5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88
RészletesebbenMATEMATIKA A 10. évfolyam
MATEMATIKA A 10. évfolyam 1. modul Logika Készítette: Vidra Gábor Matematika A 10. évfolyam 1. modul: Logika Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A képességfejlesztés
RészletesebbenHatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
RészletesebbenÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)
Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA
RészletesebbenHalmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk
RészletesebbenKOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
Részletesebben2019/02/11 10:01 1/10 Logika
2019/02/11 10:01 1/10 Logika < Számítástechnika Logika Szerző: Sallai András Copyright Sallai András, 2011, 2012, 2015 Licenc: GNU Free Documentation License 1.3 Web: http://szit.hu Boole-algebra A Boole-algebrát
Részletesebben3. előadás. Programozás-elmélet. A változó fogalma Kiterjesztések A feladat kiterjesztése A program kiterjesztése Kiterjesztési tételek Példa
A változó fogalma Definíció Legyen A = A 1 A 2... A n állapottér. A pr Ai projekciós függvényeket változóknak nevezzük: : A A i pr Ai (a) = a i ( a = (a 1, a 2,..., a n ) A). A változók jelölése: v i =
RészletesebbenMatematika szóbeli érettségi témakörök 2017/2018-as tanév
Matematika szóbeli érettségi témakörök 2017/2018-as tanév 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, LOGIKA, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége,
RészletesebbenArany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók
RészletesebbenPredikátumkalkulus. Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. Vizsgáljuk meg a következ két kijelentést.
Predikátumkalkulus Predikátumkalkulus alapfogalmai, formalizálás, tagadás, logikailag igaz formulák. 1. Bevezet Vizsgáljuk meg a következ két kijelentést. Minden almához tartozik egy fa, amir l leesett.
RészletesebbenArany Dániel Matematikai Tanulóverseny 2012/2013-as tanév 1. forduló haladók III. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 0/03-as tanév. forduló haladók III. kategória Megoldások és javítási útmutató. Egy kör kerületére felírjuk -től 3-ig az egészeket
RészletesebbenAz 1. forduló feladatainak megoldása
Az 1. forduló feladatainak megoldása 1. Bizonyítsa be, hogy a kocka éléből, lapátlójából és testátlójából háromszög szerkeszthető, és ennek a háromszögnek van két egymásra merőleges súlyvonala! Megoldás:
RészletesebbenBarangolás a nagyotmondók földjén Logika 3. feladatcsomag
Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,
Részletesebbenilletve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
RészletesebbenAz R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
RészletesebbenBevezetés a matematikába (2009. ősz) 1. röpdolgozat
Bevezetés a matematikába (2009. ősz) 1. röpdolgozat 1. feladat. Fogalmazza meg a következő ítélet kontrapozícióját: Ha a sorozat csökkenő és alulról korlátos, akkor konvergens. 2. feladat. Vezessük be
RészletesebbenNagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenÉrettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
RészletesebbenOsztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
RészletesebbenSZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:
SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:
RészletesebbenMatematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.
RészletesebbenMit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? Mit tanultunk eddig? 4/14/2014. propozicionális logikát
roozicionális logikát roozicionális logikát Legfontosabb logikai konnektívumok: roozíció=állítás nem néztünk a tagmondatok belsejébe, csak a logikai kacsolatuk érdekelt minket Legfontosabb logikai konnektívumok:
RészletesebbenMATEMATIKA I. JEGYZET 1. RÉSZ
MATEMATIKA I. JEGYZET 1. RÉSZ KÉZI CSABA GÁBOR Date: today. 1 KÉZI CSABA GÁBOR 1. Logikai állítások, műveletek 1.1. Definíció. Matematikai értelemben állításnak nevezünk egy olyan kijelentést, melynek
RészletesebbenISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12
2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1
RészletesebbenA III. forduló megoldásai
A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak
RészletesebbenAz ellenpéldával történő cáfolás az elemi matematikában
Az ellenpéldával történő cáfolás az elemi matematikában Tuzson Zoltán, Székelyudvarhely Ismeretes, hogy a logika a helyes gondolkodás törvényeit leíró tudomány, ezért más tudományágakban sem nélkülözhető.
RészletesebbenAz osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
RészletesebbenIII. Vályi Gyula Emlékverseny december
III. Vályi Gyula Emlékverseny 1996. december 14 15. VI osztály A feladatok szövege után öt lehetséges válasz (A, B, C, D és E) található, amelyek közül csak pontosan egy helyes. A helyes válasz betűjelét
RészletesebbenXXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.
XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután
RészletesebbenEgészrészes feladatok
Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges
RészletesebbenVII.A. Oszthatóság, maradékos osztás Megoldások
VIIA Oszthatóság, maradékos osztás Megoldások 11 Igen, mert a 4x = 8 egyenlet megoldható a természetes számok halmazában: x = 2 12 Nem, mert a 4x = 10 egyenlet nem oldható meg a természetes számok halmazában
Részletesebben