I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői"

Átírás

1 I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete. Cél A skatulya-elvvel kapcsolatos matematikai ismeretek elmélyítése. Ezzel kapcsolatos öszszefüggések felismerése, alkalmazása gyakorlati feladatokban. Egyszerű kombinatorikai problémák felismerésének fejlesztése. A skatulya-elvvel kapcsolatos néhány téves gondolat tisztázása. A modellalkotás és a szövegértés fejlesztése. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés + Motiváltság + Gondolkodás + Önismeret, önértékelés Ismeretek rendszerezése + A matematika épülésének elvei Ismerethordozók használata Felhasználási útmutató Érdemes a feladatokat szóban ismertetni, szabad, mesélős stílusban, ezzel is kedvet csinálva a gondolkozáshoz. Javasoljuk, hogy az osztályokban használjanak ténylegesen pénzérméket, az ezekkel végzett próbálkozások segítik a feladatok megoldását. A feladatok megoldásához a páros munkaformát ajánljuk. Ha az első feladatot a többség megoldotta, érdemes közös megbeszélést tartani. Ez után minden pár haladhat a saját tempójában, mikor megoldottak egy feladatot, kapják a következőt. Fontos, hogy a skatulya-elv bevezetésénél megértsék a gyerekek, hogy nem a legrosszabb esetek kereséséről szól ez a téma. Ez a félreértés az ilyen feladatok esetében rendszeresen előfordul. Ennek megfelelően az első feladat három alkérdését érdemes nagyon alaposan megbeszélni. A hibás megoldás, mint oly sok matematikai feladat esetén, itt is sok mindenből eredhet. Érdemes kideríteni, hogy melyik tanulónál keletkezett a hiba figyelmetlenségből, és melyiknél azért, mert mechanikusan gondolkodva próbálta a feladatokat megoldani, és nem értette meg a lényeget. I. Halmazok, logikai műveletek I.5. Lolka és Bolka 1.oldal/5

2 LOLKA ÉS BOLKA Feladat sor VAN APRÓD? Lolka és Bolka csokit szeretnének venni egy automatából, és ehhez édesapjuktól kérnek pénzt. Mivel nem árulják el, hogy mire is kell valójában az apró, ezért apjuk úgy dönt, hogy csak egy-egy pénzérmét ad fiainak. Arra viszont ügyelni akar, hogy az érmek értéke egyforma legyen. Pénztárcájában 3 db 200 Ft-os, 5 db 100 Ft-os, 8-8 db 50 Ft-os és 20 Ft-os, 12 db 10 Ft-os és 6 db 5 Ft-os van. (Az apa minden esetben véletlenszerűen veszi ki az érméket a tárcájából.) 1. a) Legalább hány darab pénzérmét kell kivennie Lolka és Bolka édesapjának a pénztárcájából, hogy biztosan legyen köztük két egyforma érme? b) Mi a helyzet, ha 2-2, illetve ha 3-3 egyforma érmét szeretne fiainak adni? (Ez másképpen fogalmazva azt jelenti, hogy legalább hány darab pénzérmét kell kivennie ahhoz, hogy biztosan legyen közte négy, illetve hat egyforma érme.) c) A fiúknak nem volt szerencséje, mert egy-egy 5 Ft-os érmét kaptak a kezükbe. Ezzel nem tudtak mit kezdeni (hiszen a csoki drágább volt), ezért visszaadták a pénzt, és apjuk vissza is tette ezeket a többihez. De most már kíváncsiak lettek, hogy milyen fajta érmék vannak a pénztárcában. Hány darab pénzérmét kell az édesapjuknak látatlanban kivennie a pénztárcából, ha az összes különböző fajtát meg szeretné mutatni a fiainak? (Persze ő tudja, hogy milyen érmék vannak a tárcában.) d) Lolka és Bolka látta, hogy a pénzérmékből telne az áhított csokira, ami 70 Ft-ba kerül. Ezért elárulták, mit is szeretnének venni valójában, és kértek 3 db 20 és 1 db 10 Ft-ost. Most legalább hány darab érmét kell az édesapjuknak kivennie látatlanban a pénztárcából, hogy ezek biztosan közte legyenek? MÁS TÉSZTA Lolka és Bolka az iskolában megfigyelték, hogy hétfőnként mindig tésztát kapnak ebédre. Ezek a következő fajták lehetnek: mákos, diós, grízes, krumplis vagy káposztás tészta. Hétről hétre ezek egymásutánjában azonban nem találtak szabályszerűséget, vagyis előfordulhat az is, hogy akár több egymást követő hétfőn azonos ízesítésű tésztát kapnak, de az is, hogy valamelyik tésztafajta sokáig nem kerül az asztalra. Tehát véletlenszerűnek tekinthető, hogy mikor melyik ízesítésű tésztát főzik. 2. a) Hány hétnek kell eltelnie ahhoz, hogy biztosak legyenek abban, hogy már három hétfőn is előfordult ugyanaz az étel? b) Mind a kettőjüknek a grízes tészta a kedvence. Hány hétből áll az az időtartam, amelynek letelte után már biztosan kijelenthetik: háromszor is a kedvenc tésztánkat kaptuk ebédre? I. Halmazok, logikai műveletek I.5. Lolka és Bolka 2.oldal/5

3 SZÁMOLOK VELED 3. a) Bolka, a kisebbik fiú, nehéz házi feladatot kapott az iskolában. Sehogy sem boldogult vele, ezért bátyjához fordult segítségért. A feladat a következőképpen szólt: legalább hány számot kell véletlenszerűen felírni egy lapra, hogy biztosan legyen köztük kettő, amelyek különbsége osztható tízzel? b) Lolka az a) kérdésben feladott feladatot könnyedén megoldotta, és segített öccsének is rájönni a megoldásra. A megoldás közben azonban felmerült egy kérdés benne: vajon hány számot kell felírni akkor, ha azt szeretné elérni, hogy a két szám különbsége héttel osztható legyen? c) Miután megoldották ezt a feladatot is, Lolkának egy újabb ötlete támadt, mert ők éppen a prímszámokról tanultak az iskolában: vajon mi a helyzet akkor, ha csak tíznél nagyobb prímszámokat írhatnak a lapra? Legkevesebb hány számot kell most leírniuk ahhoz, hogy biztosan legyen kettő, amelyek különbsége osztható tízzel? I. Halmazok, logikai műveletek I.5. Lolka és Bolka 3.oldal/5

4 MEGOLDÁSOK 1. Összesítő táblázat az érmékről: Érték darab a) Tekintsünk hat nagy dobozt (mindegyikre ráírva a megfelelő névérték: 200, 100, 50 stb.), és képzeljük azt, hogy az apa által elővett érméket ezekbe osztjuk szét, persze az értéküknek megfelelően. (A dobozokat a később használatos terminológia miatt akár már itt is nevezhetjük skatulyáknak.) Vagyis hat dobozunk (skatulyánk) van, így hét érme esetén biztosan lesz két egyforma, hiszen ha minden dobozban legfeljebb egy érme lenne, akkor összesen legfeljebb hat érménk lenne. Fontos még, hogy ez a legkisebb szám, hiszen hat érme esetén elképzelhető, hogy minden érméből pontosan egy darab van minden egyes dobozban. b) Az első kérdés esetén a helyzet hasonló, mint az a) kérdésben, csak most négy egyforma érmére van szükség. Most is hat skatulya van. (Ugyanazok, mint az előbb.) Ha 19 érmét kiveszünk, akkor lesz olyan skatulya, amiben négy érme van, hisz ha mindben legfeljebb három lenne, akkor összesen 18 érme lenne a kivettek között. 18 érme pont ezért nem feltétlenül elég. (Ne érveljünk a legrosszabb eset fogalmával, mert nincs értelme. Illetve ha definiálni akarjuk, hogy egy eset rosszabb, mint a másik, akkor feleslegesen elbonyolítjuk a feladatot.) A második rész egy kicsit trükkösebb, ugyanis mechanikusan 31-et kapunk. (Hat skatulya, ha 31 érme van, akkor az egyikben biztosan van hat. Ez igaz is, de az adott feladatban nem ez a legkisebb szám, hisz a 200-asnak megfelelő skatulyában nem lehet öt darab érme, csak három, mert ebből a típusból nincs több érménk.) A helyes megoldás tehát 31-nél kettővel kevesebb, azaz 29. c) A válasz: 40. Ennyi érme esetén biztos, hogy mindből választottunk, hiszen akkor két érme maradt benn, de minden fajtából több van, mint kettő, így minden fajtából van már kinn. 39-nél még nem biztos, hogy mindent látunk, hiszen ha pont a 3 darab 200 Ft-os maradt benn, akkor azokat nem látjuk. d) A válasz 37. Ennyi biztos elég, hisz ekkor 5 érme marad benn. Világos, hogy ekkor kint van legalább 3 db 20-as és legalább 7 db 10-es. Márpedig ekkor lesz 3 darab 20-as és egy 10-es. 36 nem feltétlenül elég, hiszen ha épp 6 darab 20-as marad benn, akkor csak kettő lesz kinn. 2. a) Most öt skatulyánk van, nevezetesen a tésztafajták. Ezekbe kell dobálni a heteket. 11 hét esetén nyilván az egyikben legalább három lesz, hisz ha mindben legfeljebb kettő volna, akkor az legfeljebb tíz volna összesen. Ennél kevesebb esetén nem lehetünk biztosak a háromszori előfordulásban. I. Halmazok, logikai műveletek I.5. Lolka és Bolka 4.oldal/5

5 b) Beugratós kérdés!!! Nincs ilyen időtartam, hiszen az is előfordulhat, hogy egyáltalán nem kapnak grízes tésztát. 3. a) 11 elég, hisz a számok utolsó számjegye (10-es maradéka) alapján tíz skatulyánk van. Ha valamelyikbe kettő esik, akkor a különbség biztos osztható 10-zel. Ez 11 szám esetén nyilván fennáll, kevesebbnél pedig nem feltétlenül. b) Ez egy lényegesen nehezebb kérdés, hisz itt már a hetes maradékosztályok jelentik a kupacokat, nem adódik olyan természetesen az előző típusú gondolat. Ily módon nyilván 8 a megoldás az előző kérdésnek megfelelően. c) Mivel a tíznél nagyobb prímek utolsó jegye csak négyféle lehet (1, 3, 7, 9), és ezek mind lehetnek is, így öt számra van szükség. Indoklás, mint az előző két esetben. I. Halmazok, logikai műveletek I.5. Lolka és Bolka 5.oldal/5

III.7. PRÍM PÉTER. A feladatsor jellemzői

III.7. PRÍM PÉTER. A feladatsor jellemzői III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős

Részletesebben

I.2. ROZSOMÁK. A feladatsor jellemzői

I.2. ROZSOMÁK. A feladatsor jellemzői I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél

Részletesebben

I.4. BALATONI NYARALÁS. A feladatsor jellemzői

I.4. BALATONI NYARALÁS. A feladatsor jellemzői I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.

Részletesebben

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek

Részletesebben

XI.4. FŐZŐCSKE. A feladatsor jellemzői

XI.4. FŐZŐCSKE. A feladatsor jellemzői XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan

Részletesebben

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

V.3. GRAFIKONOK. A feladatsor jellemzői

V.3. GRAFIKONOK. A feladatsor jellemzői V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

I.1. OLIMPIA. A feladatsor jellemzői

I.1. OLIMPIA. A feladatsor jellemzői I.1. OLIMPIA Tárgy, téma A feladatsor jellemzői Halmazok, adatok kezelése, logikai kijelentések vizsgálata. Előzmények Cél Halmaz fogalma, Venn-diagram, állítások igazságtartalma. A tanulók legyenek képesek

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

VI.8. PIO RAGASZT. A feladatsor jellemzői

VI.8. PIO RAGASZT. A feladatsor jellemzői VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.

Részletesebben

II.3. DOMINÓ GRÓF. A feladatsor jellemzői

II.3. DOMINÓ GRÓF. A feladatsor jellemzői II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének

Részletesebben

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK!

MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! MATEMATIKA C 9. évfolyam 4. modul OSZTOZZUNK! Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 4. MODUL: OSZTOZZUNK! TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

VII.3. KISKOCKÁK. A feladatsor jellemzői

VII.3. KISKOCKÁK. A feladatsor jellemzői VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája

Részletesebben

II.4. LÓVERSENY. A feladatsor jellemzői

II.4. LÓVERSENY. A feladatsor jellemzői II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk.

Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Óravázlat 2. osztályos matematika Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Oktatási cél: Pénzhasználat, pénzváltás. Játék a játékpénzzel párokban. Megismerési képességek

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2016/2017-es tanév első (iskolai) forduló Haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 016/017-es tanév első iskolai) forduló Haladók II. kategória Megoldások és javítási útmutató 1. A k valós paraméter értékétől függően

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2009/2010-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 009/00-es tanév első (iskolai) forduló haladók II.

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a

Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a 1. Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a Malacka annyi tallért ad a Micimackónak, amennyi éppen

Részletesebben

es tanév 3-4. osztályos kategória

es tanév 3-4. osztályos kategória ISKOLA NEVE:. CSAPAT NEVE: TELEPÜLÉS:. 2016-2017-es tanév 3-4. osztályos kategória 1. feladat a természet közelről Barbi nagyon szereti a természetet, az állatokat, növényeket. Rengeteg időt tud eltölteni

Részletesebben

VII.6. KISKOCKÁK. A feladatsor jellemzői

VII.6. KISKOCKÁK. A feladatsor jellemzői VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Számelméleti alapfogalmak

Számelméleti alapfogalmak 1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =

Részletesebben

VII.2. RAJZOLGATUNK. A feladatsor jellemzői

VII.2. RAJZOLGATUNK. A feladatsor jellemzői VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam

ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.

Részletesebben

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

MATEMATIKA C 6. évfolyam

MATEMATIKA C 6. évfolyam MATEMATIKA C 6. évfolyam 1. modul KŐ, PAPÍR, OLLÓ ÉS A SNÓBLI Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 1. MODUL: KŐ, PAPÍR, OLLÓ TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész

Minta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához

Részletesebben

MATEMATIKA C 9. évfolyam

MATEMATIKA C 9. évfolyam MATEMATIKA C 9. évfolyam 6. modul GONDOLKODOM, TEHÁT VAGYOK Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 6. MODUL: GONDOLKODOM, TEHÁT VAGYOK TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

A skatulya-elv Béres Zoltán (Szabadka, Zenta)

A skatulya-elv Béres Zoltán (Szabadka, Zenta) A skatulya-elv Béres Zoltán (Szabadka, Zenta) Ez a 205. november 28-i komáromi előadás kibővített, javított, újraszerkesztett és megoldásokkal ellátott feladatsora Alapfeladatok. Van 4 skatulyám és 5 gyufaszálam.

Részletesebben

MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY

MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY MATEMATIKA C 6. évfolyam 6. modul CSUPA TALÁNY Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 6. MODUL: TALÁNY TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):

Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész

Részletesebben

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA

0643. MODUL SZÁMELMÉLET. Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. MODUL SZÁMELMÉLET Törzsszám (prímszám), összetett szám, prímtényezős felbontás KÉSZÍTETTE: PINTÉR KLÁRA 0643. Számelmélet Törzsszám (prímszám), összetett szám, prímtényezős felbontás Tanári útmutató

Részletesebben

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás.

Következik, hogy B-nek minden prímosztója 4k + 1 alakú, de akkor B maga is 4k + 1 alakú, s ez ellentmondás. Prímszámok A (pozitív) prímszámok sorozata a következő: 2, 3, 5, 7, 11, 13, 17, 19,... 1. Tétel. Végtelen sok prímszám van. Első bizonyítás. (Euklidész) Tegyük fel, hogy állításunk nem igaz, tehát véges

Részletesebben

Az olvasási képesség szerepe a matematikai gondolkodás fejlődésében. Steklács János Kecskeméti Főiskola Humán Tudományok Intézete steklacs@gmail.

Az olvasási képesség szerepe a matematikai gondolkodás fejlődésében. Steklács János Kecskeméti Főiskola Humán Tudományok Intézete steklacs@gmail. Az olvasási képesség szerepe a matematikai gondolkodás fejlődésében Steklács János Kecskeméti Főiskola Humán Tudományok Intézete steklacs@gmail.com Vázlat Számolás és olvasás Szöveges feladatok Az olvasási

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr

Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Dr. Csóka Géza: Tehetséggondozás az általános iskola 4-6. osztályában Tehetséggondozás az általános iskola 4-6. osztályában Dr. Csóka Géza, Győr Kilencedik éve vezetek győri és Győr környéki gyerekeknek

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Építések, kirakások (geometria és kombinatorika)

Építések, kirakások (geometria és kombinatorika) Matematika A 1. évfolyam Építések, kirakások (geometria és kombinatorika) 25. modul Készítették: Szabóné Vajna Kinga Harzáné Kälbli Éva Molnár Éva matematika A 1. ÉVFOLYAM 25. modul építések, kirakások

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

Számelmélet. 1. Oszthatóság Prímszámok

Számelmélet. 1. Oszthatóság Prímszámok Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen

Részletesebben

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.

1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b. 1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy

Részletesebben

23. Kombinatorika, gráfok

23. Kombinatorika, gráfok I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta

Részletesebben

NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra

NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra A matematikatanítás célja, hogy lehetővé tegye a tanulók számára a környező világ térformáinak, mennyiségi viszonyainak, összefüggéseinek

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző

SET. Például: SET mert: Szín: 3 egyforma. Alak: 3 egyforma. Darab: 3 egyforma. Telítettség: 3 különböző 1 SET A SET játékszabályairól röviden, már ha valaki nem ismerné: Hogy néznek ki a kártyalapok? Minden kártyán van egy ábra, aminek 4 jellemzője van. Minden kategória további három különböző lehetőséget

Részletesebben

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Telefon: 7-8900 Fax: 7-8901 4. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. 9 kg mogyorót vásároltunk,

Részletesebben

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}

2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N} 2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó

Részletesebben

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2014. NOVEMBER 22.) 3. osztály

BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2014. NOVEMBER 22.) 3. osztály 3. osztály Panna és Anna boltosat játszanak. Kétféle játékpénzt készítettek elő: 2 garast érőt és 5 garast érőt. Mindkettőjüknek van bőven mindkét fajta pénzből. Anna kételkedik, hogy vásárlóként minden

Részletesebben

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013 1 Kedves Kollégák! Tanmenet javaslatunkkal segítséget kívánunk nyújtani

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR

1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött

Részletesebben

Tanulói feladatok értékelése

Tanulói feladatok értékelése Tanulói feladatok értékelése FELADATLEÍRÁS: TÉMA: A Méhkirálynő című mese feldolgozása 2. d osztály ALTÉMA:Készítsünk árnybábokat! FELADAT: Meseszereplők megjelenítése árnybábokkal A FELADAT CÉLJA: Formakarakterek

Részletesebben

Matematika tanmenet 2. osztály részére

Matematika tanmenet 2. osztály részére 2. osztály részére 2014-2015. Izsáki Táncsics Mihály Általános Iskola és Alapfokú Művészeti Iskola Készítette: Molnárné Tóth Ibolya Témakörök 1. Témakör: Év eleji ismétlés /1-24. óra/..3-5. oldal 2. Témakör:

Részletesebben

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?

4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva? PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.

Részletesebben

Útmutató a Matematika 1. tankönyv használatához

Útmutató a Matematika 1. tankönyv használatához Útmutató a Matematika 1. tankönyv használatához ELŐSZÓ Kedves Tanító Kollégák! Ebben a rövid útmutatóban összefoglaljuk azokat a szerintünk alapvető tudnivalókat, amelyek az 1. évfolyam matematikaóráinak

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben