VII.6. KISKOCKÁK. A feladatsor jellemzői

Save this PDF as:
Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VII.6. KISKOCKÁK. A feladatsor jellemzői"

Átírás

1 VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek térlátóknak és másoknak. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben + Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés + Motiváltság + Gondolkodás + Önismeret, önértékelés + Ismeretek rendszerezése A matematika épülésének elvei + Ismerethordozók használata + Felhasználási útmutató A feladatsor megoldásához jól felhasználhatók kiskockák (esetleg csak a tanári asztalon, ahonnan a rászorulók bármennyit elvihetnek). Érdemes lenne mondjuk dobókockák öszszeragasztgatásával modelleket készíteni hozzá. Ha van az iskolának például kétféle színű kiskockája, akkor a lyukas ábrákat ki lehet rakni úgy, hogy az egyik színű kocka a lyuk. Lehet kockacukorral is dolgozni. Mivel a feladatok részben egymásra épülve nehezednek, így javasoljuk a diákoknak, hogy sorban oldják meg azokat. Lehet kiscsoportban (2 3 fő) is dolgozni. A 4. feladat, az 5.b) utolsó feladata és a 6. lehet házi feladat is. A feladatok beosztását a gyerekek igényeihez, felkészültségéhez és gyorsaságához érdemes igazítani. Az 1. feladat megoldásához sokféle gondolatmenet elvezethet. Lehetőség szerint a tanulók különböző gondolatmeneteit beszéljük meg, és esetleg egészítsük ki. Mivel a fontos gondolatok fokozatosan, a nehezedő feladatokon keresztül jönnek elő, így időben észre kell venni azt, ha valaki már az egyszerű feladatnál is megakad. Ilyenkor lehet, hogy még könnyebb példán keresztül kell eljutnia a horpasztási, a kanyarodási vagy az eltolási invarianciához (2., 3. és 4. feladat). Az 5. feladat a) része készíti elő a b) feladatot. A b) utolsó két kérdése nehéz, még a rétegelési stratégia is mély, alapos végiggondolást igényel, nem beszélve a logikai szitára hasonlító rudas megoldásról. Az 5.c), 6. inkább csak ízelítő, kedvcsináló az önálló keresgéléshez, kutatáshoz az interneten. A feladatok jól differenciálják majd a gyerekeket, de mindenki számára van megoldható feladat. A nagyon jóknak könnyű további nehezebb feladatot, általánosításra vonatkozó kérdést adni. VII. Térgeometria VII.6. Kiskockák 1.oldal/9

2 KISKOCKÁK Feladat sor A RÚD 1. Az alábbi testek 1 cm élhosszúságú kockákból állnak. a) Mekkora a testek felszíne? A 1 = A 2 = A 3 = A 4 = A 5 = b) Mekkora lenne a 20 kockából álló rúd felszíne? c) Írd le szövegesen, hogyan lehet kiszámolni a rúd felszínét, akármennyi kockából is áll! d) Add meg a számolást megkönnyítő képletet! Mekkora az n. rúd felszíne? e) Hány kockából áll az a test, aminek 2006 cm 2 a felszíne? f) András szerint van olyan rúd, amelynek 352 cm 2 a felszíne. Igaza van Andrásnak? VIVA LA CUBE 2. Az alábbi testek 2 cm élhosszúságú kockákból állnak. (A harmadik test az elsőből úgy készült, hogy egy kockát elvettünk, a negyedik test a másodikból úgy készült, hogy minden csúcsnál 1 kockát elvettünk.) Mekkora a testek térfogata és felszíne? K ÍGYÓ 3. Az alábbi testek 3 cm élhosszúságú kockákból állnak. Mekkora a testek felszíne? a) VII. Térgeometria VII.6. Kiskockák 2.oldal/9

3 b) c) 4. A testeket 6,38 cm élhosszúságú kiskockákból építettük. Melyiknek nagyobb a felszíne? K UKUCS 5. Az alábbi testek hány darab egységkockákból állnak? (A járatok egyenesen végigmennek a kockákban.) a) I. II. III. VII. Térgeometria VII.6. Kiskockák 3.oldal/9

4 b) c) I. II. III. 6. Nézz utána, ki volt Oscar Reutersvärd (pl. az Interneten)! VII. Térgeometria VII.6. Kiskockák 4.oldal/9

5 MEGOLDÁSOK 1. a) A 1 = 6 cm 2, A 2 = 10 cm 2, A 3 = 14 cm 2, A 4 = 18 cm 2, A 5 = 22 cm 2. b) A 20 = 82 cm 2. c) d) Négy gondolatmenet, négy képlet: I. gondolatmenet A rudak felszíne rendre 4 cm 2 -rel nő. Ez azért van, mert egy újabb kocka hozzáillesztésével egy lap eltűnik, és 5 új lap beépül a felszínbe. Így például a 20 kockás rúd felszínét úgy lehet kiszámolni, hogy az eredeti 6 cm 2 -hez hozzáadunk 19-szer négyet. A n = (n 1). II. gondolatmenet A rúd két végén álló kockának öt lapja, a belsőknek négy-négy lapja látszik. Így a felszínt mindig lehet úgy számolni, hogy a végfelszínhez (mindig 10 cm 2, kivéve az első testet) hozzáadjuk a belsők felszínét, azaz a kockák darabszámánál kettővel kevesebbszer négyet. A n = (n 2). III. gondolatmenet A rúd két vége az 2 cm 2, a rúd alja, oldalai és teteje ugyanolyan, területük annyi négyzet területe (annyi cm 2 ), ahány kockából áll a rúd. Így 4-szer kell venni a kockák számát és még hozzá kell adni kettőt. A n = 4n + 2. IV. gondolatmenet Ha a kockák külön állnának, akkor annyiszor 6 cm 2 lenne a felszín, ahány kocka van. Mivel az összeillesztésnél mindig 2 cm 2 elvész, így le kell vonni annyiszor 2 cm 2 -t, ahány illesztés van. Az illesztések száma pedig eggyel kevesebb a kockák számánál. A n = 6n 2 (n 1). Természetesen mind a négy képlet algebrailag ugyanazt adja. A III. a leghasználhatóbb. e) Akármelyik gondolatmenetet, képletet használhatjuk (visszafelé kell számolni, azaz egy kis egyenletet lebontogatni). A legkevésbé a IV. kényelmes. Például a III. összefüggéssel számolva: 2006 = 4n + 2, ahonnan n = 501. f) Direkt: A III. képlet alapján csak a néggyel osztva 2 maradékot adó felszínértékek jöhetnek szóba. A 352 nem ilyen, így ilyen test nincs. Andrásnak nem volt igaza. Indirekt: Ha a rúd n db kockából áll, akkor a 352 = 4n + 2-ből kiszámolva n = 87,5, vagyis n nem lesz egész szám, azaz feltéve, hogy van ilyen test ellentmondásra jutunk. Tehát nincs ilyen test. Andrásnak nem volt igaza. 2. A kockák éle rendre 4 cm és 6 cm. Használjuk az A = 6a 2 és a V = a 3 képleteket! V 1 = 64 cm 3, A 1 = 96 cm 2, illetve V 2 = 216 cm 3, A 2 = 216 cm 2. A sarokkockák elvétele a felszínt nem változtatja. Egy kiskocka térfogata 8 cm 3. V 3 = 56 cm 3, A 3 = 96 cm 2, illetve V 4 = (27 8) 8 = 152 cm 3, A 4 = 216 cm 2. VII. Térgeometria VII.6. Kiskockák 5.oldal/9

6 3. a) A kocka egy lapja most 9 cm 2 területű. A 9 kockából álló rúd felszíne 1. alapján = 342 cm 2. Ez nem változik meg a kanyargásoktól. b) A 9 kockából álló első test felszíne A = = 38 9 = 342 cm 2. Ez nem változik meg a tologatásoktól. Vagyis ugyanannyi, mint a 9 kockából álló rúdé. c) Mindegyik test felszíne ugyanakkora, mint a 13 kockából álló rúdé, azaz A = ( ) 9 = 486 cm A két test felszíne egyenlő. A második test az elsőből olyan eltolások végrehajtásával származtatható, amelyek a felszínt nem változtatják meg. Mindenhol egy négyzetoldalnyi kapcsolódási terület áthelyezése történt csak. 5. a) I. Lehetséges megszámlálások: = 13 vagy = 13 vagy = 13 db kiskocka. II. Lehetséges megszámlálások: = 33 vagy = 33 vagy = 33 db kiskocka. (6 darab 7 hosszúságú rúd összeillesztve, az illesztésnél 1-1 kocka kipottyan kétszer számoltuk.) VII. Térgeometria VII.6. Kiskockák 6.oldal/9

7 III. Lehetséges megszámlálások: = 20 db kiskocka vagy = 20 db kiskocka. (12 három kockából álló rúd összeillesztve, az illesztésnél 2 2 kocka kipottyan a csúcskockákat ugyanis háromszor számoltuk.) b) I. 5 3 (3 5 2) = 112 db kiskocka. [Az a) feladat I. teste hiányzik a kockából.] II. 1. megoldás Bontsuk a kockát 5 rétegre! A kiskockák száma: 3 (25 4) = 81. II. 2. megoldás 5 3 ( ) = 81 db kiskocka Az ös kockából 12 db 5 hosszú rúd hiányzik. A 8 db belső találkozásnál három rúd fut össze. Ha öt válaszolnánk minden találkozást 3-szor vonnánk ki. Ezért kell 2 8-cal kevesebbet kivonni. (Másképp: az alakban írva a visszapótlást is jelezhetjük [logikai szita].) VII. Térgeometria VII.6. Kiskockák 7.oldal/9

8 III. 1. megoldás Bontsuk a kockát 5 rétegre! A kiskockák száma: 2 (25 3) = 88. III. 2. megoldás A kockából 9 rúd hiányzik. Mindhárom lapközépen áthaladó csak egymással találkozik a középső kockában. A többi 6 rúd páros találkozásokat generál; mindegyik 2 másikkal találkozik. Így a páros találkozások száma: 6 2 : 2 = 6. Így a kiskockák száma: 5 3 ( ) = 88. c) Ilyen testeket (legalábbis, amit látni vélünk) kockákból nem lehet összeállítani (amenynyiben úgy záródnak, ahogy azt az ábra sejteti). Lehetetlen testek. 6. Lehetetlen alakzatokkal már korábban is foglalkozott a nyugati művészet, de igazán markánsan csak Oscar Reutersvärd munkáiban jelent meg 1934-től. Még középiskolás diák, amikor véletlenül rajzolt egy paradox ábrát. S noha matematikai enciklopédiákban nem talált semmiféle utalást erre a különleges geometriai alakzatra, a következő években folytatta a tér logikájának ellentmondó ábrák készítését. Eljátszott a paradox kombinációkban álló kockákkal, megalkotta a végtelen lépcsőt és az ördögvillát, ami kicsit különbözött a ma ismert alaktól. VII. Térgeometria VII.6. Kiskockák 8.oldal/9

9 Az ördögvilla mai változata Reutersvärd: Végtelen lépcső 1958-ban vált tudatossá benne, hogy amiket kisfiúként rajzolt, valójában lehetetlen tárgyak. Ekkor szerzett ugyanis tudomást egy cikkből arról, hogy tőle függetlenül Lionel Penrose is felfedezte a végtelen lépcsőt. Elmélyedt hát a paradox alakzatok témájában, s azóta több mint 2500 lehetetlen ábrát rajzolt. ( VII. Térgeometria VII.6. Kiskockák 9.oldal/9

VII.3. KISKOCKÁK. A feladatsor jellemzői

VII.3. KISKOCKÁK. A feladatsor jellemzői VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek

Részletesebben

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői

VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula

Részletesebben

I.4. BALATONI NYARALÁS. A feladatsor jellemzői

I.4. BALATONI NYARALÁS. A feladatsor jellemzői I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

VI.8. PIO RAGASZT. A feladatsor jellemzői

VI.8. PIO RAGASZT. A feladatsor jellemzői VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.

Részletesebben

I.2. ROZSOMÁK. A feladatsor jellemzői

I.2. ROZSOMÁK. A feladatsor jellemzői I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél

Részletesebben

III.7. PRÍM PÉTER. A feladatsor jellemzői

III.7. PRÍM PÉTER. A feladatsor jellemzői III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős

Részletesebben

V.3. GRAFIKONOK. A feladatsor jellemzői

V.3. GRAFIKONOK. A feladatsor jellemzői V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan

Részletesebben

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-

Részletesebben

I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői

I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete.

Részletesebben

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!

1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! 1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3

Részletesebben

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...

a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?... Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

VII.2. RAJZOLGATUNK. A feladatsor jellemzői

VII.2. RAJZOLGATUNK. A feladatsor jellemzői VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

VI.9. KÖRÖK. A feladatsor jellemzői

VI.9. KÖRÖK. A feladatsor jellemzői VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

Kompetencia Alapú Levelező Matematika Verseny

Kompetencia Alapú Levelező Matematika Verseny Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő

Részletesebben

MATEMATIKA C 5. évfolyam 2. modul A KOCKA

MATEMATIKA C 5. évfolyam 2. modul A KOCKA MATEMATIKA C 5. évfolyam 2. modul A KOCKA Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 2. MODUL: A KOCKA TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Szemléletfejlesztés,

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

XI.4. FŐZŐCSKE. A feladatsor jellemzői

XI.4. FŐZŐCSKE. A feladatsor jellemzői XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető

Részletesebben

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont

1 pont Az eredmény bármilyen formában elfogadható. Pl.: 100 perc b) 640 cl 1 pont 2012. január 28. 8. évfolyam TMat1 feladatlap Javítókulcs / 1 Javítókulcs MATEMATIKA FELADATOK 8. évfolyamosok számára, tehetséggondozó változat TMat1 A javítókulcsban feltüntetett válaszokra a megadott

Részletesebben

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések

Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Matematika 5. osztály Téma: Geometriai vizsgálatok, szerkesztések Az óra címe: Testek ábrázolása Az órát tartja: Tóth Zsuzsanna Előzetes ismeretek: Ponthalmazok síkban és térben (pont, vonal, egyenes,

Részletesebben

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

II.3. DOMINÓ GRÓF. A feladatsor jellemzői

II.3. DOMINÓ GRÓF. A feladatsor jellemzői II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének

Részletesebben

Kedves Kollégák! Kedves Szülõk!

Kedves Kollégák! Kedves Szülõk! Kedves Kollégák! Kedves Szülõk! Az OKOS(K)ODÓ című kiadványunkat elsõsorban Az én matematikám című 1. osztályos tankönyvcsaládhoz készítettük. Természetesen használható más tankönyvek mellé, mert feladatsorai

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8.

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8. Pálmay Lóránt Matematikai Tehetségkutató Verseny 2016. január 8. Fontos információk: Az alábbi feladatok megoldására 90 perced van. A feladatokat tetszőleges sorrendben oldhatod meg. A megoldásokat indokold,

Részletesebben

KÉSZÍTSÜNK ÁBRÁT évfolyam

KÉSZÍTSÜNK ÁBRÁT évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.

Részletesebben

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára

Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára

Részletesebben

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája

Részletesebben

1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt?

1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? 1. Egy italautomatában hétféle rostos üdítő kapható. Hányféle sorrendben vehet Anna a rostos üdítőkből három különbözőt? A) 35 B) 210 C) 343 D) 1320 E) 1728 2. Hány olyan háromjegyű természetes szám van,

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.

b) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is. Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros

Részletesebben

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra) Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

835 + 835 + 835 + 835 + 835 5

835 + 835 + 835 + 835 + 835 5 Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az

Részletesebben

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az

Részletesebben

Feladatlap 8. oszály

Feladatlap 8. oszály Feladatlap 8. oszály Algebrai kifejezések... 2 Négyzetgyök, Pitagorasz-tétel... 5 Geometriai feladatok... 7 Függvények, sorozatok... 8 Térgeometria... 9 Statisztika, valószínűségszámítás... 10 Geometriai

Részletesebben

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?

1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge? Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

SZÁMTANI SOROZATOK. Egyszerű feladatok

SZÁMTANI SOROZATOK. Egyszerű feladatok SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.

Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2. 5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység

Részletesebben

VI.7. PITI PÉLDÁK. A feladatsor jellemzői

VI.7. PITI PÉLDÁK. A feladatsor jellemzői VI.7. PITI PÉLDÁK Tárgy, téa Pitagorasz tétele. Előzények A feladatsor jellezői Hároszög, téglalap, négyzet kerülete és területe, Pitagorasz-tétel, négyzetgyök fogala, irracionális száok Cél A Pitagorasz-tétel

Részletesebben

PISA2000. Nyilvánosságra hozott feladatok matematikából

PISA2000. Nyilvánosságra hozott feladatok matematikából PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

MATEMATIKA C 5. évfolyam 1. modul DOMINÓ

MATEMATIKA C 5. évfolyam 1. modul DOMINÓ MATEMATIKA C 5. évfolyam 1. modul DOMINÓ Készítette: Köves Gabriella MATEMATIKA C 5. ÉVFOLYAM 1. MODUL: DOMINÓ TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A tudatos

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Térszemlélet fejlesztése matematika órán eszközökkel, játékosan. - Tanulási problémás gyermekek segítése

Térszemlélet fejlesztése matematika órán eszközökkel, játékosan. - Tanulási problémás gyermekek segítése Térszemlélet fejlesztése matematika órán eszközökkel, játékosan - Tanulási problémás gyermekek segítése Tanulási problémás gyermekek ellátása tanórán Differenciálás, kevesebb feladat, más számkör Egyéni

Részletesebben

II.4. LÓVERSENY. A feladatsor jellemzői

II.4. LÓVERSENY. A feladatsor jellemzői II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.

Részletesebben

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!

I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok! Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. A 23-as szám című misztikus filmben

Részletesebben

Kombinatorika - kidolgozott típuspéldák

Kombinatorika - kidolgozott típuspéldák Kombinatorika - kidolgozott típuspéldák az összes dolgot sorba rakjuk minden dolog különböző ismétlés nélküli permutáció Hányféleképpen lehet sorba rakni n különböző dolgot? P=1 2... (n-1) n=n! például:

Részletesebben

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info Nagy Erika Matekból Ötös 5. osztályosoknak www.matek.info 1 Készítette: Nagy Erika 2009 Javított kiadás 2010 MINDEN JOG FENNTARTVA! Jelen kiadványt vagy annak részeit tilos bármilyen eljárással (elektronikusan,

Részletesebben

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez

Feladatok a MATEMATIKA. standardleírás 2. szintjéhez Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Számelmélet, algebra Számfogalom kialakítása Segítséggel képes a számokat tízesek és egyesek összegére bontani

Részletesebben

Feladatgyűjtemény matematikából

Feladatgyűjtemény matematikából Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes

Részletesebben

IX. PANGEA Matematika Verseny II. forduló 8. évfolyam

IX. PANGEA Matematika Verseny II. forduló 8. évfolyam 1. Melyik állítás igaz a szabályos háromszögre? A) Három szimmetriatengelye van, és középpontosan is szimmetrikus. B) Három szimmetriatengelye van, de középpontosan nem szimmetrikus. C) Egy szimmetriatengelye

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

A feladat sorszáma: Standardszint: 4-6. Szöveges feladatok. Szöveges feladatok. Szöveges feladatok

A feladat sorszáma: Standardszint: 4-6. Szöveges feladatok. Szöveges feladatok. Szöveges feladatok A feladat sorszáma: 23-28. Standardszint: 4-6. A standard(ok), amelye(ke)t a feladattal mérünk: Számtan, számelmélet, algebra Szöveges feladatok Képes kevés segítséggel megoldani egyszerű szöveges feladatokat

Részletesebben

MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK

MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK 0593. MODUL MÉRÉSEK, GEOMETRIAI SZÁMÍTÁSOK Gyakorló feladatok KÉSZÍTETTE: TÓTH LÁSZLÓ, PUSZTAI JULIANNA 0593. Mérések, geometriai számítások Gyakorló feladatok Tanári útmutató 2 MODULLEÍRÁS A modul célja

Részletesebben

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály

IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat2 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat2 JVÍTÁSI-ÉRTÉELÉSI ÚTMUTTÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Általános iskola Matematika Évfolyam: 1 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Halmazok összehasonlítása

Részletesebben

Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ

Szerb Köztársaság FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA. a 2017/2018-as tanévben TESZT MATEMATIKÁBÓL UTASÍTÁS A TESZT MEGÍRÁSÁHOZ Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA

Részletesebben

Gyakorlat. Szokol Patricia. September 24, 2018

Gyakorlat. Szokol Patricia. September 24, 2018 Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0,

PRÓBAÉRETTSÉGI FELADATSOR:MATEMATIKA, KÖZÉP SZINT. 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, FELADATSOR I. rész Felhasználható idő: 45 perc 1.1.) Jelölje a négyzetekbe írt i vagy h betűvel, hogy az állítás igaz vagy hamis k > 0, 1 a) b) k = k 4 16 5 10 4 k = k 5 1..) Az alábbi állítások közül

Részletesebben

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag

Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Síkbeli és térbeli alakzatok 1.3 Képzeld el, építsd meg! Síkbeli és térbeli alakzatok 3. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 év sokszög, szabályos sokszög egybevágó lap, él, csúcs párhuzamos,

Részletesebben

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető!

Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! 1 Az egyes feladatok részkérdéseinek a száma az osztály felkészültségének és teherbírásának megfelelően (a feladat tartalmához igazodva) csökkenthető! Szerkesztette: Huszka Jenő 2 A változat 1. Az ABCDEFGH

Részletesebben

Bizonyítási módszerek ÉV ELEJI FELADATOK

Bizonyítási módszerek ÉV ELEJI FELADATOK Bizonyítási módszerek ÉV ELEJI FELADATOK Év eleji feladatok Szükséges eszközök: A4-es négyzetrácsos füzet Letölthető tananyag: Emelt szintű matematika érettségi témakörök (2016) Forrás: www.mozaik.info.hu

Részletesebben

Tanulmányi verseny. Matematika. 4. osztály

Tanulmányi verseny. Matematika. 4. osztály Klebelsberg Intézményfenntartó Központ Tanulmányi verseny Matematika 4. osztály A verseny időpontja: 2016. november 17. Kedves Versenyző! Szeretettel köszöntünk versenyünkön! Kérlek, figyelmesen olvasd

Részletesebben

MATEMATIKA 1-2.osztály

MATEMATIKA 1-2.osztály MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.

Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018. Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály Két polcon összesen 72 könyv található. Miután az első polcról a másodikra áttettünk 14 könyvet, mindkét polcon ugyanannyi könyv lett. Hány könyv volt eredetileg az első polcon? A végén 36 könyv

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve

Részletesebben

Logikai szita (tartalmazás és kizárás elve)

Logikai szita (tartalmazás és kizárás elve) Logikai szita (tartalmazás és kizárás elve) Kombinatorika 5. előadás SZTE Bolyai Intézet Szeged, 2016. március 1. 5. ea. Logikai szita két halmazra 1/4 Középiskolás feladat. Egy 30 fős osztályban a matematikát

Részletesebben

I.1. OLIMPIA. A feladatsor jellemzői

I.1. OLIMPIA. A feladatsor jellemzői I.1. OLIMPIA Tárgy, téma A feladatsor jellemzői Halmazok, adatok kezelése, logikai kijelentések vizsgálata. Előzmények Cél Halmaz fogalma, Venn-diagram, állítások igazságtartalma. A tanulók legyenek képesek

Részletesebben