II.4. LÓVERSENY. A feladatsor jellemzői

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "II.4. LÓVERSENY. A feladatsor jellemzői"

Átírás

1 II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok. Egyszerű kombinatorikai feladatok. Százalékszámítás. A kombinatorikus gondolkodásmód, valamint a modellalkotás és szövegértés fejlesztése. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés Motiváltság + Gondolkodás + Önismeret, önértékelés + Ismeretek rendszerezése + A matematika épülésének elvei + Ismerethordozók használata Felhasználási útmutató A feladatmegoldás során javasoljuk, hogy csoportmunkában vitassák meg a problémákat és a megoldási utakat. Ha az 1. a) és az 1. b) feladat közötti különbség nem világos, akkor nyomatékosítsuk, hogy a lótulajdonosoknak a bevétel szempontjából csak az számít, hányadik helyre futottak be a lovaik, de az nem, hogy melyik hányadik helyre. Vonhatunk párhuzamot is az autóverseny és a lóverseny között (például a Forma-1 versenysorozatban nemcsak a pilóták, hanem az istállók, azaz a csapatok is versenyeznek egymással, a csapatok pontjai a pilótáik pontjainak összegével egyenlők). A kombinatorikus gondolkodás, modellalkotás, a leszámlálások végiggondolása az alapvető sokkal fontosabb, mint a permutációk, illetve variációk eseteinek beazonosítása az egyes feladatoknál. Inkább a gondolkodás fejlesztésére törekedjünk, ne a sablonok használatára. Közös megbeszélésnél nézzük végig a különféle megoldásokat; csoportmunkánál különösen biztassuk a diákokat többféle megoldás, illetve reprezentáció kidolgozására. Mutasson a tanár is minél többféle megoldást. A diákok (és a tanár is) mondják el, hogyan gondolkodtak. Ebből látható, helyes-e az okoskodásuk, a többiek is tanulhatnak belőle. A faábra nemcsak szemléletes, de hasznos és tananyag is (gráfok). A kis számokkal, próbálgatással történő leszámlálási mód pozitívan értékelendő, különösen, ha ebből kiindulva elmozdulás történik a modellalkotás, absztrahálás irányába. A kom- II. Kombinatorika, gráfok II.4. Lóverseny 1.oldal/7

2 binatorikus gondolkodás fejlődése tetten érhető abban, ha az egyik feladat tanulságait, módszereit a feladatsor további részében alkalmazni tudja a diák azonos módon, alkalmas módosítással vagy összetett probléma megoldásának részeként. A feladatok kipróbálhatók más (kisebb v. nagyobb) számokkal, akár valóságos adatokkal is. A feladatsorhoz visszatérhetünk a valószínűségszámítás témakörnél, amikor az egyes istállók, illetve az egyes lovak nyerési valószínűségeit számítjuk ki, illetve esélykalkulációt végzünk. A feladatsor a későbbi valószínűségszámítási, esélykalkulációs témakörök előzményének tekinthető (ott újból elővehető vagy megemlíthető). A 2.d) feladat nehéz az átlagos diák számára, csak a legjobbaknak ajánljuk a megoldását. A feladatsorban szóba kerülnek a lóversennyel kapcsolatos egyes fogadási módok is. Érdemes megvitatni a kapott eredmények alapján, hogy mennyire éri meg ezt a fajta szerencsejátékot játszani hosszú távon. Érdemes figyelmeztetni a diákokat a szerencsejáték szenvedélyre is mint egyfajta betegségre (lásd Dosztojevszkij A szerencsejátékos című novelláját). Az online fogadások elterjedése tovább rontja a helyzetet, ugyanis az átutalások miatt a pénz konkrét használata nem érződik annyira, így még könnyebb hatalmas veszteségeket szenvedni. II. Kombinatorika, gráfok II.4. Lóverseny 2.oldal/7

3 LÓVERSENY Feladat sor Egy helyi bajnokságon két istálló indít paripákat. Az Aranypatkó két paripát (Szellőt és Cukorbabát), a Gyémántnyereg istálló pedig egy paripát (Kincsemet). Mindegyik paripa kitűnő állapotban van, zsokéik tapasztalt versenyzők, így egyforma esélyekkel indulnak. A versenyeken a befutási sorrendet mindig egyértelműen eldöntik, holtverseny nem alakulhat ki. 1. a) Ha minden lovat megkülönböztetünk, hányféle befutási sorrend lehetséges? b) A tulajdonosoknak sokszor csak az számít, hogy lovaik jól szerepeljenek, de az már nem érdekli őket, hogy az istállón belül milyen sorrend alakul ki. Ebből a szempontból nézve hányféle befutási sorrend lehetséges? A verseny előírásai szerint a jó megkülönböztethetőség érdekében a zsokék színes inget és sapkát viselnek, melyek színe eltér a többiekétől. (Egy zsokénak viszont lehet azonos színű az inge és a sapkája.) A zsokék ingének és sapkájának színét az istálló színei közül választják ki. Az Aranypatkó istálló színei a vörös és a sárga, a Gyémántnyereg istálló színei a fehér és a kék. 2. a) Hányféleképpen öltöztetheti fel a Gyémántnyereg istálló a zsokéját? b) Hányféleképpen öltöztetheti fel az Aranypatkó istálló a két zsokéját? (A zsokékat megkülönböztetjük egymástól!) c) Hányféle színösszeállításban folyhat a verseny, mindhárom zsokét tekintve? (Két színösszeállítást akkor tekintünk különbözőnek, ha legalább az egyik zsokénak valamelyik ruhadarabja a két összeállításban nem ugyanolyan színű.) d)* Hogyan alakulna a válasz az a), b) és c) kérdések esetén, ha mindkét istállónak 3-3 saját színe lenne? II. Kombinatorika, gráfok II.4. Lóverseny 3.oldal/7

4 Az öttusa lovas számában öt zsoké indul. Az istállóban öt ló áll felkantározva. Sorsolással döntik el a viták elkerülése végett, hogy mely zsoké mely lovon fog versenyezni. A versenyen hazánkat Nagy András képviseli. Tudja, hogy az induló lovak között szerepel Kincsem, aki ugyan nem a híres versenyló, Kincsem leszármazottja, de nagyon rutinos, eredményes versenyző. Ezért András örülne, ha Kincsemet lovagolhatná. 3. a) Hányféleképpen sorsolhatják ki a lovakat a zsokék között (vagyis hányféleképpen párosíthatók össze a lovak és a zsokék)? b) Az összes eset hány százalékában jön ki úgy a ló-zsoké párosítás, hogy András Kincsemet lovagolja? 4. A lóversenyen a fogadóirodában sokféle fogadást lehet kötni. Ha Kincsemet TÉT-re teszem meg, akkor arra fogadtam, hogy ő nyerni fog. Ha Kincsemet HELY-re teszem meg, akkor arra fogadtam, hogy benne lesz az első háromban. Ha Kincsemet és Jópofát (ebben a sorrendben) BEFUTÓ-ra teszem meg, akkor arra fogadtam, hogy Kincsem lesz az első és Jópofa a második. Tegyük fel, hogy a versenyen összesen hat ló indul, köztük a két említett ló. a) Kincsemet tétre fogadtam. Hány olyan befutási sorrend van, amikor nyerek? b) Kincsemet és Jópofát befutóra fogadtam ebben a sorrendben. Hány olyan befutási sorrend van, amikor nyerek? c) Kincsemet helyre fogadtam. Hány olyan befutási sorrend van, amikor nyerek? d) Kincsemet tétre, Jópofát helyre fogadtam (külön-külön). Hány olyan befutási sorrend van, amikor mindkét fogadásommal nyerek? Hány olyan befutási sorrend van, amikor nyerek? e) Kincsemet és Jópofát megtettem tétre, helyre, befutóra oda-vissza (azaz minden lehetséges sorrendben) külön-külön fogadásokban. Hány fogadást kötöttem összesen? II. Kombinatorika, gráfok II.4. Lóverseny 4.oldal/7

5 MEGOLDÁSOK 1. a) Első megoldás Három ló indul. Az első helyre beér közülük valamelyik, ez háromféleképpen történhet. A második helyre az előzőtől függetlenül a maradék két paripa valamelyike ér be, ez kétféleképpen történhet. Az első két helyre tehát féleképpen érhetnek be a zsokék. A harmadik helyre a harmadik, utolsó paripa fut be. Az első három helyre tehát ! 6 -féle befutási sorrendet kaphatunk. Második megoldás (faábra) S: Szellő, C: Cukorbaba, K: Kincsem jelölésekkel: 1. hely 2. hely 3. hely Ez összesen ! 6 különbözőféle befutási sorrend. Harmadik megoldás SCK, SKC, CSK, CKS, KSC, KCS. Ez hat különböző befutási sorrend. b) Első megoldás Az a) feladatnál láttuk, hogy ha az egyes istállók által indított lovak helyezési sorrendjeit egymás között megkülönböztetjük, akkor 3! = 6-féle befutási sorrend alakulhat ki. Most azonban a tulajdonosok szempontjából az egyazon istállóból indított lovakat nem kell megkülönböztetni (akár elláthatjuk őket az istállók nevével). Az első istálló két lovat indított, ezek befutási sorrendje 2! = 2-féle lehet. A másik istálló egy lovat indított, ez egyféleképp futhat be. Mivel az istállókon belül a lovak egymás közötti sorrendjét 3! 6 nem vesszük figyelembe, így a tulajdonosok szempontjából 3-féle sorrend lehetséges. 2! 2 Megjegyzés: készülhet a megoldás az ismétléses permutációk számának meghatározásával is. Második megoldás Jelöljük a lovakat az őket küldő istállók kezdőbetűivel: A, A, G. Ekkor a következő sorrendek adódnak a tulajdonosok szempontjából: AAG, AGA, GAA. Ez a tulajdonosok szempontjából nézve adódó háromféle lehetséges befutási sorrend. Megjegyzés: készülhet a megoldás faábra segítségével is. 2. a) A zsoké sapkája és inge is kétféle színű lehet, így az összes lehetőségek száma 2 2 = 4. (Ezek akár fel is sorolhatók.) II. Kombinatorika, gráfok II.4. Lóverseny 5.oldal/7

6 b) Vegyük észre, hogy az egyik zsoké felöltöztetése már megadja, hogy a másik milyen színeket viselhet, hiszen a ruhadarabok színének különböznie kell a másikétól. Tehát itt is csak 4 lehetőség van. c) Mindkét istálló négyféleképpen öltöztetheti a zsokéit, ezek bármelyike bármelyik másikkal párosítható, így a lehetőségek száma 4 4 = 16. d) Módosított a) kérdés: a zsoké sapkája is inge is 3-3-féle színű lehet, így a lehetőségek száma 3 3 = 9. Módosított b) kérdés: az első zsoké felöltöztetése itt is 9-féleképpen történhet. A második zsoké sapkájának színére 2 lehetőségünk marad (az a két szín, amit nem használtunk fel az első zsoké sapkájánál), így az ő ruháját 2 2 = 4-féleképpen színezhetjük ki. Ez így összesen 9 4 =36-féle színezést jelent a két zsokéra nézve. Módosított c) kérdés: hasonlóan ez eredeteihez a két istálló zsokéinak ruhájára kapott lehetőségeket összeszorozva a lehetőségek száma 9 36 = a) Az első zsoké az öt ló valamelyikét kapja (ez ötféle lehetőség). A második zsoké a maradék négy ló valamelyikét (ez újabb négyféle lehetőség), a harmadik zsoké a fennmaradó három ló valamelyikét, a negyedik a fennmaradó két ló valamelyikét, az ötödik zsoké a maradék egy lovat kapja. Ez összesen ! eset. Vagyis öt zsokéhoz öt lovat 5!-féleképpen lehet párosítani. Az eredmény öt zsoké (vagy öt ló, azaz öt különböző elem) ismétlés nélküli sorrendjeinek (permutációinak) számával egyenlő: P 5 = 5! = 120. b) Első megoldás Használjuk az előző feladat eredményeit. Ha András Kincsemet lovagolja, akkor a többi (négy) zsoké a maradék négy lovon osztozik. Ez az előző feladat alapján P 4 = 4! = 24- féleképp történhet. (Négy elem ismétlés nélküli permutációinak számát kell tehát megadni.) András tehát az összes lehetséges 120 esetből 24 esetben lovagolja Kincsemet. P4 4! 1 100% 100% 100% 0,2 100% 20%. András tehát az összes eset 20%- P 5! 5 5 ában lovagolja Kincsemet. Második megoldás (valószínűségszámítási meggondolásokkal) Mivel 5 ló van, és András mindegyiket egyforma eséllyel kapja, ezért az esetek 5 1 részében, azaz 20%-ában lovagolja Kincsemet. 4. a) Kincsemnek kell lennie az elsőnek, és mögötte a többi ló mindegy, milyen sorrendben fut be. Tehát a lehetőségek száma 1 5! = 120. b) Kincsem az első, Jópofa a második, a többi ló mindegy, milyen sorrendben fut be. Ez összesen 1 1 4! = 24 lehetőséget jelent. c) Ha Kincsem az első, akkor 120 lehetőség van [ld. a) feladat]. Ha Kincsem a második, illetve harmadik, akkor ugyancsak lehetőség van (Kincsemet eggyel, illetve kettővel lejjebb toljuk a végeredményben a többiekhez képest). Ez tehát összesen 360 lehetőség. II. Kombinatorika, gráfok II.4. Lóverseny 6.oldal/7

7 d) Számoljuk meg először azt, hogy hány esetben nyerek mindkét fogadásommal! Ha Kincsem az első és Jópofa a második, akkor ez 24 befutási sorrendet jelent [ld. b) feladat]. Ugyanennyit kapunk, ha Kincsem az első és Jópofa a harmadik (a második helyezett Jópofát és a harmadik helyezettet felcserélem minden sorrendben). Mindkét fogadásommal nyerek tehát összesen 48 befutási sorrendben. A tét fogadásommal nyerek, ha Kincsem az első, az összesen 120 lehetőséget jelent [lásd a) feladat]. A hely fogadásommal nyerek 360 befutási sorrendben [lásd c) feladat]. Ez tehát összesen 480 befutási sorrend, de kétszer számoltuk azokat, amelyekben mindkét fogadásommal nyerek. Így összesen = 432 olyan befutási sorrend van, amikor valamelyik fogadásommal nyerek. e) Tétre két fogadásom van, helyre is, befutóra is, ez összesen hat fogadás. II. Kombinatorika, gráfok II.4. Lóverseny 7.oldal/7

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői

XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek

Részletesebben

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői

V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,

Részletesebben

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői

IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére

Részletesebben

I.2. ROZSOMÁK. A feladatsor jellemzői

I.2. ROZSOMÁK. A feladatsor jellemzői I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél

Részletesebben

V.3. GRAFIKONOK. A feladatsor jellemzői

V.3. GRAFIKONOK. A feladatsor jellemzői V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,

Részletesebben

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői

IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek

Részletesebben

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői

VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai

Részletesebben

III.7. PRÍM PÉTER. A feladatsor jellemzői

III.7. PRÍM PÉTER. A feladatsor jellemzői III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős

Részletesebben

I.4. BALATONI NYARALÁS. A feladatsor jellemzői

I.4. BALATONI NYARALÁS. A feladatsor jellemzői I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 16. lecke: Kombinatorika (alapfeladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

III.4. JÁRŐRÖK. A feladatsor jellemzői

III.4. JÁRŐRÖK. A feladatsor jellemzői III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:

Részletesebben

I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői

I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete.

Részletesebben

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői

VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-

Részletesebben

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői

VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör

Részletesebben

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői

VII.4. RAJZOLGATUNK II. A feladatsor jellemzői VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ

KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája

Részletesebben

Szerencsejátékok. Elméleti háttér

Szerencsejátékok. Elméleti háttér Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük.

Definíció n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. 9. Kombinatorika 9.1. Permutációk n egymástól megkülönböztethető elem egy sorrendjét az n elem egy (ismétlés nélküli) permutációjának nevezzük. n elem ismétlés nélküli permutációinak száma: P n = =1 2

Részletesebben

VI.8. PIO RAGASZT. A feladatsor jellemzői

VI.8. PIO RAGASZT. A feladatsor jellemzői VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.

Részletesebben

VII.3. KISKOCKÁK. A feladatsor jellemzői

VII.3. KISKOCKÁK. A feladatsor jellemzői VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

VI.3. TORPEDÓ. A feladatsor jellemzői

VI.3. TORPEDÓ. A feladatsor jellemzői VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont

Részletesebben

XI.4. FŐZŐCSKE. A feladatsor jellemzői

XI.4. FŐZŐCSKE. A feladatsor jellemzői XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát! 1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két

Részletesebben

II.3. DOMINÓ GRÓF. A feladatsor jellemzői

II.3. DOMINÓ GRÓF. A feladatsor jellemzői II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 17. lecke: Kombinatorika (vegyes feladatok) Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, 3.1.

Részletesebben

I.1. OLIMPIA. A feladatsor jellemzői

I.1. OLIMPIA. A feladatsor jellemzői I.1. OLIMPIA Tárgy, téma A feladatsor jellemzői Halmazok, adatok kezelése, logikai kijelentések vizsgálata. Előzmények Cél Halmaz fogalma, Venn-diagram, állítások igazságtartalma. A tanulók legyenek képesek

Részletesebben

VII.2. RAJZOLGATUNK. A feladatsor jellemzői

VII.2. RAJZOLGATUNK. A feladatsor jellemzői VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,

Részletesebben

Kombinatorika gyakorló feladatok

Kombinatorika gyakorló feladatok Kombinatorika gyakorló feladatok Egyszerűbb gyakorló feladatok 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

Minden feladat teljes megoldása 7 pont

Minden feladat teljes megoldása 7 pont Postacím: 11 Budapest, Pf. 17. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. nap NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Minden feladat teljes megoldása 7 pont 1. Hat futó: András, Bence, Csaba,

Részletesebben

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8.

Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8. Pálmay Lóránt Matematikai Tehetségkutató Verseny 2016. január 8. Fontos információk: Az alábbi feladatok megoldására 90 perced van. A feladatokat tetszőleges sorrendben oldhatod meg. A megoldásokat indokold,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer

Játék a szavakkal. Ismétléses nélküli kombináció: n különböző elem közül választunk ki k darabot úgy, hogy egy elemet csak egyszer Játék a szavakkal A következőekben néhány szóképzéssel kapcsolatos feladatot szeretnék bemutatni, melyek során látni fogjuk, hogy egy ábrából hányféleképpen olvashatunk ki egy adott szót, vagy néhány betűből

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 1. MA3-1 modul. Kombinatorika Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 1. MA3-1 modul Kombinatorika SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

ARCHIMEDES MATEMATIKA VERSENY

ARCHIMEDES MATEMATIKA VERSENY Ismétléses permutáció: ha az elemek között van olyan, amelyik többször is előfordul, az elemek egy sorba rendezését ismétléses permutációnak nevezzük. Tétel: ha n elem között p 1, p 2, p 3, p k darab megegyező

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

VII.6. KISKOCKÁK. A feladatsor jellemzői

VII.6. KISKOCKÁK. A feladatsor jellemzői VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit.

Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. Külön futamban futnak és külön is értékeljük az Országos Bajnokság és az Amatőr Futam résztvevőit. A verseny rendezője: Magyar Atlétikai Szövetség megbízásából a Szombathelyi Egyetemi Sportegyesület Közreműködő

Részletesebben

A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi

Részletesebben

Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a

Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a 1. Micimackó vendégségbe megy Malacka szülinapjára. A Malacka egy játékot ajánl Micimackónak: valahányszor Micimackó megeszik egy csupor mézet, a Malacka annyi tallért ad a Micimackónak, amennyi éppen

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

Permutáció (ismétlés nélküli)

Permutáció (ismétlés nélküli) Permutáció (ismétlés nélküli) Mi az az ismétlés nélküli permutáció?... 1. Három tanuló, András, Gábor és Róbert együtt mennek az iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat Absztrakt algebra Bogya Norbert Bolyai Intézet 2014. április 23. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2014. április 23. 1 / 23 Tartalom 1 1.

Részletesebben

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A

Halmazok. A és B különbsége: A \ B. A és B metszete: A. A és B uniója: A Halmazok Érdekes feladat lehet, amikor bizonyos mennyiségű adatok között keressük az adott tulajdonsággal rendelkezők számát. A következőekben azt szeretném megmutatni, hogy a halmazábrák segítségével,

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 22. lecke: A teljes valószínűség tétele és a Bayes-tétel Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc

Próbaérettségi 2004 MATEMATIKA. PRÓBAÉRETTSÉGI 2004. május EMELT SZINT. 240 perc PRÓBAÉRETTSÉGI 2004. május MATEMATIKA EMELT SZINT 240 perc A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

MATEMATIKA II. A VIZSGA LEÍRÁSA

MATEMATIKA II. A VIZSGA LEÍRÁSA MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása

Részletesebben

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb.

1. FELADATSOR MEGOLDÁSAI. = 6. Ezek a sorozatok a következők: ab, ac, ba, bc, ca, cb. 1. FELADATSOR MEGOLDÁSAI Elméleti áttekintés Ismétlés nélküli variáció. Egy n elemű halmazból képezhető k elemű sorozatok száma, ha a sorozatok nem tartalmaznak ismétlődést n! (1 = n (n 1... (n k (n k

Részletesebben

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás

MATEMATIKA FELADATGYŐJTEMÉNY 2. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás Soós Luca és Szári Laura MATEMATIKA FELADATGYŐJTEMÉNY. osztályos tanulásban akadályozott tanulók részére TÉMA: alapmőveletek - összeadás 0. 0.. Ő. JÁTÉK A FORMÁKKAL Nézd meg jól a képet! Mit gondolsz,

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Bevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget!

Bevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget! Bevezetés A megoldásokat a feladatsor végén találod! 1. Hencidát út köti össze Kukutyimmal, Boncidával, Lustafalvával és Dágványoshetyével. Boncidáról Álmossarokra is vezet út. Lustafalvát út köti össze

Részletesebben

II. A VIZSGA LEÍRÁSA

II. A VIZSGA LEÍRÁSA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Definíció, illetve tétel kimondása I. II. Egy téma összefüggő kifejtése Definíció közvetlen alkalmazása I. II. 45 perc 135 perc megadott

Részletesebben

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői

IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai

Részletesebben

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői

II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét

Részletesebben

23. Kombinatorika, gráfok

23. Kombinatorika, gráfok I Elméleti összefoglaló Leszámlálási alapfeladatok 23 Kombinatorika, gráfok A kombinatorikai alapfeladatok esetek, lehetőségek összeszámlálásával foglalkoznak Általában n jelöli a rendelkezésre álló különbözőfajta

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 088 Budapest VIII., Bródy Sándor u. 6. Postacím: 4 Budapest, Pf. 76 Telefon: 7-8900 Fa: 7-890 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 05. április. NEGYEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Alkossunk, játsszunk együtt!

Alkossunk, játsszunk együtt! SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák

Részletesebben

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 1. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

NT Matematika 11. (Heuréka) Tanmenetjavaslat

NT Matematika 11. (Heuréka) Tanmenetjavaslat NT-17302 Matematika 11. (Heuréka) Tanmenetjavaslat A Dr. Gerőcs László Számadó László Matematika 11. tankönyv a Heuréka-sorozat harmadik tagja. Ebben a segédanyagban ehhez a könyvhöz a tizenegyedikes tananyag

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

Tábla, Projektorral kivetített tananyag. Az óra menete. 1. Mikor eredményes egy vállalkozás készletgazdálkodása?

Tábla, Projektorral kivetített tananyag. Az óra menete. 1. Mikor eredményes egy vállalkozás készletgazdálkodása? Osztály 10A. Tantárgy Üzleti tevékenység tervezése gyakorlat Téma: A készletek elemzésének tervezésének, valamint a leltáreredmény mutatószámai Tanítási egység Forgási sebesség mutatói Felhasznált irodalom

Részletesebben

KOMBINATORIKA Permutáció

KOMBINATORIKA Permutáció Permutáció 1) Három tanuló, András, Gábor és Miklós együtt megy iskolába. Hányféle sorrendben léphetik át az iskola küszöbét? Írja fel a lehetséges sorrendeket! 2) Hány különböző négyjegyű számot alkothatunk

Részletesebben

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Gyõrffy Magdolna Tanmenetjavaslat A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA! Dinasztia Tankönyvkiadó Kft., 2004 1 ÍRTA: GYÕRFFY MAGDOLNA TIPOGRÁFIA: KNAUSZ VALÉRIA

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

ATLÉTIKAI DIÁKOLIMPIA TÖBBPRÓBA ÉS EGYÉNI MEGYEI BAJNOKSÁGAINAK V E R S E N Y K I Í R Á S A

ATLÉTIKAI DIÁKOLIMPIA TÖBBPRÓBA ÉS EGYÉNI MEGYEI BAJNOKSÁGAINAK V E R S E N Y K I Í R Á S A ATLÉTIKAI DIÁKOLIMPIA TÖBBPRÓBA ÉS EGYÉNI MEGYEI BAJNOKSÁGAINAK V E R S E N Y K I Í R Á S A II-III-IV. korcsoport 1. A bajnokság célja: A megyebajnoki cím eldöntése. Versenyalkalom biztosítása a 2000-2001-2002-2003-2004-2005-ben

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

A versenyt a Magyar Diáksport Szövetség a Magyar Öttusa Szövetséggel együttműködésben

A versenyt a Magyar Diáksport Szövetség a Magyar Öttusa Szövetséggel együttműködésben Kéttusa A versenyt a Magyar Diáksport Szövetség a Magyar Öttusa Szövetséggel együttműködésben hirdeti meg. 1. A verseny célja: A futás, és úszás, mint az egészséges életmód kialakításának egyik eleme,

Részletesebben

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A)

(2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A) A póker matematikája Mostanában egyre közkedveltebb kártyajáték lett a (Holdem) Poker, melynek az is oka lehet, hogy a televízióban megjelent a nagyobb versenyek közvetítése. Mint minden kártyajátékban,

Részletesebben

TÁJÉKOZTATÓ 2012/13 tanév

TÁJÉKOZTATÓ 2012/13 tanév Angol általános nyelvi tárgyak Angol Kezdő 1 (A1) Angol Kezdő 2 (A1) TÁJÉKOZTATÓ 2012/13 tanév Kezdőknek, újrakezdőknek A tanfolyam célja az angol nyelv alapjainak megismerése korszerű tananyagokkal, beszéd

Részletesebben

Gyarmati Dezső Sport Általános Iskola. Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY

Gyarmati Dezső Sport Általános Iskola. Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY Gyarmati Dezső Sport Általános Iskola Tanulásmódszertan HELYI TANTERV 5-6. OSZTÁLY KÉSZÍTETTE: Molnárné Kiss Éva MISKOLC 2015 Összesített óraterv A, Évfolyam 5. 6. 7. 8. Heti 1 0,5 óraszám Összóraszám

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben