Bevezető fizika. k villamosmérnököknek. Kidolgozott példák gyűjteménye. Nagyfalusi Balázs Vida György József. U = 24 V a) t n

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezető fizika. k villamosmérnököknek. Kidolgozott példák gyűjteménye. Nagyfalusi Balázs Vida György József. U = 24 V a) t n"

Átírás

1 Fs F g Fr 3 g Fr Fs g Bevezető fizika k villaosérnököknek F Utolsó ódosítás 05. február 3. :5 α Fsúrl K l Nagyfalusi Balázs Vida György József g h g Q R3 0 Ω A R Ω 0 R 30 Ω É D D É U 4 V a) b) D É c) α α S0 k β t n BME Fizikai Intézet 05 K g Kidolgozott példák gyűjteénye x K K Fs g y F S f

2 Előszó A Budapesti Műszaki és Gazdaságtudoányi Egyeteen a frissen felvett érnökhallgatók körében az utóbbi években egnövekedett az igény a középiskolai fizika összefoglalására, átisétlésére az egyetei tanulányok kezdetén. Így született eg a Bevezető fizika nevű tárgya, aelynek anyaga ár állandósult az évek folyaán. A szerzők az idei őszi félév során úgy döntöttek, hogy az órákhoz készített jegyzeteiknek elkészítik az elektronikus változatát is a félév során. Ezek hétről hétre kikerültek a hallgatósághoz, azonban így a félév végén úgy döntöttünk, hogy egységes forába öntjük a részeket, és így született eg ez a ű. erészetesen előfordulhatnak benne ég hibák (sőt inden bizonnyal vannak ég benne), és ég egy-két helyen bővítésre szorul, de azért hasznos olvasány lehet a tárgy hallgatói és persze inden érdeklődő száára. Budapest, 05. január Nagyfalusi Balázs és Vida György József

3 Bevezető fizika (Vill),. feladatsor Kineatika. A ai órához szükséges eléleti anyag: Alapfogalak (út, sebesség, gyorsulás egyenes vonalú ozgásoknál) Az egyenes vonalú egyenletes ozgás Az egyenes vonalú egyenletesen változó ozgás Mozgások függetlenségének elve szabadesés, hajítások a következő gyakorlat első felében! Órai feladatok: (ha lehet hallgatók oldják eg a feladatokat táblánál) I/.6. feladat: Két helyiség között a kocsik átlagsebessége az egyik irányban v 40 k/h, a ásik irányban v 60 k/h. Mekkora az átlagsebesség egy teljes fordulót figyelebe véve? Az átlagsebesség az teljes egtett út és az ehhez szükséges idő hányadosa. Legyen s a távolság a két település között. Ekkor a teljes egtett út s. Az odaút és a visszaút időtartaa: vagyis az átlagsebesség: v s t t s v t s v, s t + t s s v + s v v +. v I/.39. feladat: Egy test sebessége ost v 0 /s, t 00 ásodperccel ezelőtt v 0 /s volt. Mennyi volt a test átlagos gyorsulása? Az átlaggyorsulás az adott idő alatt történt sebességváltozás és az ehhez szükséges idő hányadosa: a v t v v t 0 s 0 s 00 s 0,4 s. I/.9. feladat: Egy gépkocsi sebességét v 54 k/h-ról v 90 k/h-ra növelte állandó a,6 /s gyorsulással. Mennyi ideig tartott ez, és ekkora utat tett eg a gépkocsi ezalatt? Állandó gyorsulás esetén a sebesség egváltozása egyenlő a indenkori gyorsulással, vagyis: a v t t v a v v a s,6 s 6,5 s. 90 k h 54 k h,6 s Az ezalatt egtett utat a négyzetes úttörvénnyel száolhatjuk x(t) a t + v 0 t + x 0, ahol a a kocsi gyorsulása, v 0 a kezdeti időpontban a sebessége, vagyis 54 k h, és x 0 annak kezdeti pozíciója. Ez utóbbi legyen nulla, hiszen onnan kezdjük el érni a egtett utat a gyorsítás végéig: x(t),6 s (6,5 s) + 54 k h 6,5 s 5. I/.0. feladat: a /s gyorsulással induló gépkocsi elérve a v v 6 /s sebességet egyenletesen ozog tovább. Milyen essze jut az indulástól száított 8 ásodperc alatt? Először száoljuk ki, hogy ennyi időre van szüksége az autónak, hogy elérje a v v sebességet. Mivel a gyorsulás egyenletes, így a v v t t v v a 6 s s 3 s. 3

4 Bevezető fizika (Vill),. feladatsor Kineatika. egoldások Ez alatt az autó s a t s (3 s) 9 távolságot tesz eg. A hátralévő t 8 s 3 s 5 s idő alatt az autó egyenletes ozgást végez. Az ezalatt egtett út: s v v t 6 s 5 s 30. Vagyis a teljes egtett távolság s 39. I/.. feladat: Egy gépkocsi a,8 /s állandó gyorsulással indul, ajd egyenletesen halad tovább, és t 5 ásodperc alatt s 9,4 éter esszire jut. Határozzuk eg a gyorsulás időtartaát! Gyorsítson az autó t ideig. Mivel az autó álló helyzetből indul, így az ezalatt egtett távolság: s a t. Ez idő alatt az autó v v a t sebességre tett szert. Az idő hátralevő részében ekkora sebességgel halad egyenletesen, és s v v t a t (t t ) távot tesz eg. Összefoglalva s s + s a t + a t (t t ) a t + a t t 0 a t at t + s 0,4 s t 4 s t + 9,4 ( t ), 4 s ± { 7 s 3 s (4 ) s 4,4 9,4 s,4 s. A két egoldás közül csak a t 3 s az érteles, hiszen a teljes időtarta 5 s. I/.9. feladat: Az esőcseppek függőleges irányban esnek v eső 6 /s sebességgel. Az esőcseppek nyoai a vonatablakon a vízszintessel α 30 -os szöget bezáró csíkok. Milyen gyorsan egy a vonat? A vonatablakon lévő csíkok az esőcseppek látszólagos sebességvektorával egy irányba utatnak. Az esőcseppek függőleges sebességvektora, illetve a vonat vízszintes sebességvektora egy derékszögű hároszöget határoz eg, ahol a hároszög átfogójának hossza egegyezik a cseppek látszólagos, a vízszintessel 30 -os szöget bezáró sebességvektorának hosszával. A hároszögben a egfelelő szögfüggvényt felírva: tg α v eső v vonat v vonat v eső tg α 6 s tg 30 0,39 s. I/.33. feladat: A folyó szélessége d 00, sebessége v f 3,6 k/h. Hol köt ki a túlsó parton az átkelő csónak, ha a vízhez viszonyított sebességének nagysága v cs 3 /s, iránya a víz folyásának irányára erőleges? A csónak t d v cs s alatt ér át a ásik s partra. Eközben a folyó d v f t 3,6 k h 00 3 s s 00 3 s 66,7 viszi le a csónakot a folyásirányba. ehát a csónak ennyivel lejjebb fog kikötni a túloldalon. I/.37. feladat: v v 7 k/h sebességgel haladó vonaton egy utas a vonat ozgásával ellentétes irányban elindul a vonathoz viszonyított a e 0,8 /s gyorsulással. Háro ásodperc alatt ekkora a pályatesthez viszonyított elozdulása? A pályatesthez viszonyítva az eber egyenletesen gyorsuló ozgást végez. A négyzetes úttörvényt használva: s a e t + v v t 0,8 s 56,4. (3 s) s 3 s I/.5. feladat: Határozzuk eg a v 0 0 /s kezdősebességgel α 30 -os szögben kilőtt test helyzetét a kilövés után 3 ásodperccel! A test vízszintes irányban egyenletes ozgást végez: x(t) v 0x t + x 0, ahol v 0x a kezdősebesség vízszintes koponense: v 0x v 0 cos α. Az x 0 a t 0 pillanatban a test helye. Helyezzük a koordináta-rendszerünket oda, ahonnan elhajítjuk a testet, így x(t 0) 0, vagyis x

5 Függőleges irányban a test egyenletesen gyorsuló ozgást végez. Az y tengely felfelé utat, így a gyorsulás negatív: Bevezető fizika (Vill),. feladatsor Kineatika. y(t) g t + v 0y t + y 0, ahol v 0y a függőleges kezdősebesség: v 0y v 0 sin α, illetve az előzőekhez hasonlóan y 0 itt is nulla. A ozgást leíró két egyenlet tehát: A t 3 s-ban: x(t) v 0 cos α t y(t) g t + v 0 sin α t. x(3 s) 0 s cos 30 3 s 3,77 y(3 s) 0 s (3 s) + 0 s sin 30 3 s 35. I/.4. feladat: h 00 éter agasságban v k/h sebességgel haladó repülőgépről a cél előtt ilyen távolságban kellene kioldani a segélycsoagot ahhoz, hogy a célba csapódjék, ha ne lenne légellenállás? Mekkora lenne a segélycsoag sebessége a becsapódás pillanatában? Függőlegesen a csoag egyenletes gyorsulással ozog, vagyis a agassága az idő függvényében: z(t) g t + h. idő alatt ez a agasság nullára csökken: 0 g h + h 6,3 s. g A csoag vízszintes kezdősebessége egegyezik a repülő sebességével, és ez a csoag ozgása során ne is változik. Eiatt, ha idő alatt ér földet a csoag, akkor az vízszintesen s v 0 távolságot tesz eg. Ez alapján 0 g s hv0 + h s 63,45. g v 0 A függőlegesen szerzett sebessége: v y g 63, /s, vízszintesen pedig aradt v x v 0. Az eredő sebesség nagysága: v vx + vy 8,3 /s. Otthoni gyakorlásra: DRS példatár. kötet.0,.,.3,.30,.3,.4, B, F A feladatok forrása Dér Radnai Soós Fizikai feladatok. 5

6 Bevezető fizika (vill),. feladatsor Kineatika. és Dinaika. A ai órához szükséges eléleti anyag: Röviden beszéljük eg az otthoni felkészülés során felerült kérdéseket. szabadesés, hajítások (kb. 0 perc) Az erő, az erők összegezése; Newton törvényei; testek egyensúlya; töeg, nehézségi erő, súly, súlytalanság. súrlódás Példák órai gyakorlásra: II/.3. feladat: A talaj fölött h 0 30 éter agasságból v 0 0 /s kezdősebességgel kavicsot dobunk függőlegesen fölfelé. Mekkora a kavics sebessége, elozdulása és a egtett út t s, t 3 s; t 3 5 s úlva. A kavics útja a következő. Először felfelé egy, eléri a axiális agasságot, ajd elindul lefelé és eléri a talajt. Ez két nevezetes időpontot jelent, egyet a csúcson (t fel ), és az út végén (t össz ). t fel eghatározható a kezdeti sebességtől, és a lassulásból: t fel v 0 g 0 /s 0 /s s. Ez alapján az első időpontban ég eelkedett. A sebessége v v 0 gt 0 /s 0 /s s 0 /s. A egtett út s v 0 t g t 0 /s s 5, 0 /s ( s) és végig azonos irányban haladt, így az elozdulás egegyezik az úttal. A axiális agasság: s fel v 0 t fel g t 0 /s s 0, 0 /s ( s) tehát összesen H h 0 + s fel 50 agasra jutott, ahonnan a leeséshez szükséges idő eghatározható a H g t le összefüggésből: t le H g 0 s > 3 s, azaz az ötödik ásodpercben ég repülni fog. ehát ásodpercig eelkedett, így t -ig ég -et zuhant. A egtett út: s g s (t t fel ) 0 /s (3 s s) 5, összesen s s fel + s 5. Az elozdulás r s fel s 5. A sebessége ekkor v g(t t fel ) 0 /s, ahol figyelebe vettük, hogy a pozitív irány függőlegesen felfelé választottuk. t 3 időpillanatig t 3 t fel -t zuhan. A keresett értékek: s 3 g s (t 3 t fel ) 0 /s (5 s s) 45, összesen s 3 s fel + s Az elozdulás r s fel s 3 5. A sebessége ekkor v 3 g(t 3 t fel ) 30 /s. II/A. feladat: Egy követ függőlegesen felfelé, egy ásik követ függőlegesen lefelé hajítunk v 0 /s sebességgel, ugyanabban a pillanatban, Mennyi idő úlva lesznek egyástól x 60 éter távolságban? Írjuk fel a két egtett utat a kívülről nézve: x fel v 0 t g t, x le v 0 t + g t. Összegük (aely pont a távolságnak felel eg): x x fel + x le v 0 t, így az eltelt idő: t x v 0,5 s. 6

7 II/.5. feladat: Határozzuk eg a v 0 0 /s kezdősebességgel α 30 -os szögben kilőtt test helyzetét a kilövés után 3 ásodperccel! A test vízszintes irányban egyenletes ozgást végez: x(t) v 0x t + x 0, ahol v 0x a kezdősebesség vízszintes koponense: v 0x v 0 cos α. Az x 0 a t 0 pillanatban a test helye. Helyezzük a koordináta-rendszerünket oda, ahonnan elhajítjuk a testet, így x(t 0) 0, vagyis x 0 0. Függőleges irányban a test egyenletesen gyorsuló ozgást végez. Az y tengely felfelé utat, így a gyorsulás negatív: y(t) g t + v 0y t + y 0, ahol v 0y a függőleges kezdősebesség: v 0y v 0 sin α, illetve az előzőekhez hasonlóan y 0 itt is nulla. A ozgást leíró két egyenlet tehát: A t 3 s-ban: x(t) v 0 cos α t y(t) g t + v 0 sin α t. x(3 s) 0 s cos 30 3 s 3,77 y(3 s) 0 s (3 s) + 0 s sin 30 3 s 35. II/.4. feladat: h 00 éter agasságban v k/h sebességgel haladó repülőgépről a cél előtt ilyen távolságban kellene kioldani a segélycsoagot ahhoz, hogy a célba csapódjék, ha ne lenne légellenállás? Mekkora lenne a segélycsoag sebessége a becsapódás pillanatában? Függőlegesen a csoag egyenletes gyorsulással ozog, vagyis a agassága az idő függvényében: z(t) g t + h. idő alatt ez a agasság nullára csökken: 0 g h + h 6,3 s. g A csoag vízszintes kezdősebessége egegyezik a repülő sebességével, és ez a csoag ozgása során Bevezető fizika (vill),. feladatsor Kineatika. és Dinaika. egoldások ne is változik. Eiatt, ha idő alatt ér földet a csoag, akkor az vízszintesen s v 0 távolságot tesz eg. Ez alapján 0 g s v0 + h s hv 0 g 63,45. A függőlegesen szerzett sebessége: v y g 63, /s, vízszintesen pedig aradt v x v 0. Az eredő sebesség nagysága: v v x + v y 8,3 /s. II/.4. feladat: Milyen erő hat az eldobott kőre? Mekkora a gyorsulása? Nehézségi erő, közegellenállás. F a. II/.3. feladat: A v 0 9 /s sebességgel elütött korong a jégen s 36 út egtétele után áll eg. Mekkora a súrlódási együttható a korong és a jég között? A korong egyenletesen lassult, átlagsebessége v átl v 0 4,5 /s. Ez alapján a egállásig eltelt idő A gyorsulása t a v v 0 t s v átl 36 4,5 /s 8 s. 0 /s 9 /s 8 s 9 8 /s. Newton szerint a F súrl µf nyoó µg, azaz µ a g 9/8 0 0,5. II/.4. feladat: Milyen erők hatnak egy vízszintes lapon és egy lejtőn nyugvó testre? (Készítsen ábrát!) 0 kg töegű testet a vízszintessel α 30 - os szöget bezáró F 0 N erővel húzunk. Mekkora a test gyorsulása, ha a csúszási súrlódási tényező értéke µ 0,? 7

8 Bevezető fizika (vill),. feladatsor Kineatika. és Dinaika. egoldások y x K g α F F súrl g A Newton-törvények, figyelebe véve, hogy függőlegesen ne ozdulunk el: x : y : a F cos α F súrl 0 F sin α g + K A ásodik alapján a kényszererő nagysága: K g F sin α 0 kg 0 /s 0 N sin N, aelyet ár behelyettesíthetünk az elsőbe, hiszen F súrl µk, és a gyorsulásra azt kapjuk, hogy a (F cos α µk) 0 kg (0 N cos 30 0, 90 N) 0,83 /s. II/.. feladat: h 0 agas, α 60 -os lejtő tetejéről csúszik le egy test. Mekkora sebességgel és ennyi idő alatt ér le a lejtő aljára, ha a) a lejtő súrlódásentes, b) a lejtő és a test közötti súrlódási együttható µ 0,5? F s g h K g K a) Írjuk fel a Newton-törvényt a lejtőről lecsúszó testre, a lejtővel párhuzaos és arra erőleges irányban: a g g sin α a K g K g cos α, Mivel a test a lejtőn csúszik, így arra erőlegesen nincsen elozdulás, azaz a 0. Az előző egyenletből adódik, hogy test gyorsulása a lejtő entén a g sin α. A lejtő hossza s s a h sin α, így a lecsúszás ideje: h sin α a sin α h 0 g sin α 0 sin 60 s,63 s, illetve a test sebessége a lejtő alján: v vég a g sin α 0 s sin 60,63 s 4,4 s. b) Ha van súrlódás a lejtőn, akkor a Newtonegyenletek kiegészülnek: a g F s g sin α µk a K g K g cos α, ahol a ásodik egyenletből kifejezhető K, 0 K g cos α K g cos α, ajd az elsőbe helyettesíthető: a g ( sin α µ cos α ). A lecsúszás ideje: h g ( sin α µ cos α ) sin α 0 0 ( s sin 60 0,5 cos 60 ) sin 60,94 s, illetve a test sebessége a lejtő alján: g α v vég a g ( sin α µ cos α ) 0 s ( sin 60 0,5 cos 60 ),94 s,93 s. 8

9 Bevezető fizika (vill),. feladatsor Kineatika. és Dinaika. II/.. feladat: g 50 N súlyú tégla alakú testet satuba fogunk. A satupofák F ny 50 N nagyságú vízszintes erővel nyoják a testet. Az érintkező felületek között µ 0,5 a súrlódási tényező. Mekkora erővel lehet a testet felfelé kihúzni? F II/.3. feladat: Egy α 30 hajlásszögű lejtőre fel akarunk húzni egy F súly 400N súlyú testet. Mekkora erőt kell alkalazni, a) ha a lejtővel párhuzaos irányba húzzuk? b) ha vízszintes irányba húzzuk? A súrlódás elhanyagolható. F F ny F ny F h h F súrl F súrl α α g A tapadási súrlódás axiális értéke F ax tap µf ny 0,5 50 N 75 N. Két satuval ez 50 N erőt jelent. Ezen felül ég ott van a tégla súlya, tehát a háro erő összegét kell az F erőnek ellensúlyoznia. Így a kapott eredény az, hogy F F ax tap Otthoni gyakorlásra: + g 00 N II/.9. feladat: Az esőcseppek függőleges irányban esnek v eső 6 /s sebességgel. Az esőcseppek nyoai a vonatablakon a vízszintessel α 30 -os szöget bezáró csíkok. Milyen gyorsan egy a vonat? II/.8. feladat: 0 agas ház tetejéről /s kezdősebességgel ferdén felfelé elhajítunk egy testet. A vízszintessel bezárt szög 30. Mennyi idő úlva és a háztól ekkora távolságban ér földet, ha a közegellenállástól eltekintünk? (g 0 /s ) II/?. feladat: Egy testet 5 N állandó erővel tudunk egyenletesen felfelé húzni egy α 30 hajlásszögű lejtőn. Ugyanezen a lejtőn lefelé szabadon csúszva a test 5 /s sebességről 5 hosszú úton áll eg. Mekkora a test töege? Mekkora a súrlódási tényező? II/.7. feladat: Mekkora az eelődaru kötelében fellépő húzóerő egy 00 kg töegű gépalkatrész süllyesztésekor, illetőleg eelésekor, ha a gyorsulás nagysága inden esetben /s. A kötél és a végén levő horogszerkezet súlya elhanyagolható. II/.6. feladat: Egy test kelet felé ozog és nyugat felé gyorsul. Lehetséges ez? Milyen irányú az erő? A feladatok forrása Dér Radnai Soós Fizikai feladatok. II/.50. feladat: A gravitációs gyorsulás értéke a Holdon a földi érték egyhatod része. A; Hányszor agasabbra, B; hányszor esszebbre száll az azonos kezdősebességgel ferdén elhajított kő a Holdon, int a Földön? C; Mennyi ideig repül a Holdon a földi repülési időhöz képest? 9

10 Bevezető fizika (vill), 3. feladatsor Dinaika. és Statika A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás egyensúly és feltétele forgatónyoaték A kifejezett töeg: v + v v v 300 kg. 0,6 /s + 0,4 /s 60 kg 0,6 /s 0,4 /s Példák órai gyakorlásra: III/.5. feladat: F 50 N nagyságú erő hat egy testre t 0 s-ig. A test erő irányú sebessége közben v 5 /s-al növekszik. Mekkora a test töege? A feladatot az ipulzustétel segítségével oldjuk eg. Az ipulzustétel: Ft p v. Az erő és sebesség egy egyenesbe esik, így a vektor jelzés elhagyása, és átrendezés után a test töege: F t v 50 N 0 s 5 /s 00 kg. III/3.9. feladat: Állóvízben két csónak halad egyás felé. A vízhez viszonyított sebessége indkét csónaknak ugyanakkora, v 0,6 /s. Aikor egyás ellé érnek, az egyikről a ásikra 60 kg töegű testet tesznek át. Ezután a ásik csónak az eredeti irányában v 0,4 /s sebességgel halad tovább. Mekkora ennek a ásodik csónaknak a töege? (A víz ellenállását elhanyagoljuk.) III/3.4. feladat: A 0 g töegű, v 40 c/s sebességű és a 80 g töegű, v 00 c/s sebességű két test egyással szebe ozog egy egyenes entén. eljesen rugalatlan ütközés után ekkora és ilyen irányú sebességgel ozognak tovább? Jelöljük ki a pozitív irányt úgy, hogy az első test ozgásával egegyező legyen. Az ütközés előtt az összipulzus: utána: p v + v, p ( + )v, és persze tudjuk, hogy a kettőnek eg kell egyeznie. Ezért a sebesség: Legyen az első iránya pozitív, a ásodiké negatív, és legyen az átadás olyan, hogy közben ne változik eg az az első csoag sebessége (pl. oldalra adja át csoagot). Azaz v v ( )v ( + )v v v + v + 0, kg 0,4 /s + 0,08 kg ( /s) 0, kg + 0,8 kg 0,6 /s. v v v + v (v + v ) (v v ) A sebesség előjele alapján a ásodik test sebességének irányában ozognak együttesen. 0

11 Bevezető fizika (vill), 3. feladatsor Dinaika. és Statika egoldások III/3.3. feladat: A 0 kg töegű lövedék a vízszintessel α 30 -os szöget bezáró irányban v 0 40 /s sebességgel hagyja el az ágyú torkolatát. Pályájának legagasabb pontján a lövedék két részre robban szét. Az egyik, egy 4 kg-os darab, éppen a robbanás helye alatt, függőlegesen zuhan a földre. A ásik, 6 kg-os darab sebességének iránya robbanás közben ne változik eg. Hol csapódna be ez a ásik darab, ha ne lenne légellenállás? (g 0 /s ) v 0 III/3.. feladat: Vízszintes irányú, F 8 N nagyságú erővel hatunk az kg töegű testre, aely egy fonállal az 3 kg töegű testhez van kötve az ábrán látható elrendezésben. Mekkora erő feszíti a fonalat, ha a fonál töegétől és a súrlódástól eltekintünk? K K F A kiinduló sebesség koponensei: v 0x v 0 sin α, v 0y v 0 cos α. A kezdeti y irányú sebességgel a legagasabb pontig t idő alatt juthatunk el, aely kiszáolható a gyorsulásból: t v 0y g v 0 cos α. g A robbanásra felírhatjuk az ipulzusegaradást. Előtte volt egy p x v 0x ipulzusú testünk, íg utána csak a -es ozgott vízszintesen, azaz p x 0 + v x. A egaradás iatt: v 0x v x v x v 0x v 0 sin α. A robbanás után a test 0 y irányú sebességgel indul lefelé, és a leékezéshez szükséges idő ugyanakkora, int lentről a tetejéig (gyorsulás, távolság, kezdősebesség egegyezik, ezért az idő is!), azaz t le t. A egtett út vízszintesen összefoglalva: s v xt le v 0 sin α v 0 cos α g 0 kg (40 /s) sin ( 30 ) 6 kg 0 /s /s 456,9 /s. v 0 sin α g III/3.. feladat: Ha az erő és az ellenerő egyenlő nagyságú és ellenkező irányú erők, iért ne seisítik eg egyást? Mert ne ugyanarra hatnak. g g Itt is először felírjuk az egyes testekre a Newtontörvényt függőleges és vízszintes irányban:,x : a x F K,y : a y g,x : a x K,y : a y g. Mivel függőleges elozdulás nincs, így a y a y 0. A két testet összekötő kötél nyújthatatlan, így a két test gyorsulása inden pillanatban ugyanakkora: a x a x a. Ezt egyszerűen eghatározhatjuk, ha összeadjuk a két x irányú egyenletet: a F + 8 N kg + 3 kg,6 s. Ezt felhasználva a kötelet feszítő erő,x egyenlet alapján: K a 3 kg,6 s 4,8 N. III/3.3. feladat: Állócsigán átvetett fonál végein illetve töegű test van. Mekkora gyorsulással ozog az egyik, illetve a ásik test, és ekkora erő hat a ennyezetre, ahová a csigát felfüggesztették? A fonál és a csiga töege elhanyagolható, a fonál ne nyúlik eg, a tengely ne súrlódik, a közegellenállás és a levegőben a felhajtó erő elhanyagolható.

12 Bevezető fizika (vill), 3. feladatsor Dinaika. és Statika egoldások F felf a 3 F r F r K K K F s g F s g K g g Írjuk fel a testekre a kötél entén, illetve a csigára függőleges irányban a Newton-törvényt: : a K g : a g K cs : 0 F felf K K. Mivel a kötél és a csiga ideális, ezért a két kötélerő nagysága egegyezik, K K K. Az első két egyenletből adódik: a + g. Ha az test a nehezebb, akkor arra fog ozogni a rendszer, ha pedig a ásik, akkor visszafelé. A kötélerő: ( ) K (a + g) + g + + g, vagyis a csiga a felfüggesztést erővel húzza. F felf K 4 + g III/3.. feladat: Mennyivel nyúlik eg az ábra szerinti elrendezésben a két test közé iktatott rugó, aikor az összekapcsolt rendszer egyenletesen gyorsuló ozgásban van? A csiga, a rugó és a fonál töegét ne vegyük figyelebe. Legyen kg, a súrlódási együttható µ 0,, a rugóállandó D 4 N/c. g Itt is felírjuk a Newton-törvényeket, figyelebe véve azt, hogy a rendszer csak az asztal felülete entén ozog., : a g K, : 0 0, : a K F r F s,, : 0 g 3, : a F r F s, 3, : 0 g, ahol F s, µ és F s, µ. A erőleges egyenletekből a tartóerőket eghatározva, ajd behelyettesítve a párhuzaos irányokra felírt egyenletekbe:, : a g K, : a K F r µg 3, : a F r µg. A háro egyenlet összegéből: a µ g, 3 elyet visszahelyettesítve az utolsóba: µ g F r µg 3 F r + µ g. 3 Vagyis a rugó egnyúlása: l F r D + µ 3 g D + 0, kg 0 s 3 4 N c 0,0. III/3.9. feladat: A kg töegű kiskocsi vízszintes síkon súrlódás nélkül ozoghat. A kocsira 0,5 kg töegű hasábot helyeztünk, és a hasábot F N vízszintes irányú erővel húzzuk. Mekkora a hasáb, illetve a kocsi gyorsulása, ha közöttük a tapadási súrlódási együttható µ tap 0,5, csúszó súrlódási együttható pedig µ cs 0,0? Mekkora a gyorsulás F 0 N-os húzóerő esetén? (g 0 /s )

13 Bevezető fizika (vill), 3. feladatsor Dinaika. és Statika egoldások K,y Fs K d 3 F K g K,x α g g h 4 Száoljuk ki a axiális tapadási erőt. Ebből kiderül, hogy a kocsi és a test összetapadva arad, vagy egyáshoz képest elozdul. ehát: Ftap µtap µtap g 0,5 0,5 kg 0 /s,5 N, azaz az első esetben F < Ftap, így egyben aradnak. A talajon nincsen súrlódás, így csak az F gyorsító erő száít: F ( + )a, aelyből: a N F 0,4 /s. + 0,5 kg + kg A ásodik esetben F0 > Ftap, azaz külön ozognak. A test ozgásegyenlete: F0 Fs a0, azaz: A felfüggesztési pontra felírva Newton II. törvényét: F0 Fs F 0 µcs g 0 N 0,0 0,5 kg 0 /s 0,5 kg 9,9 /s. a0 x: 0 K cos α K y: 0 K sin α G, ahonnan A kocsira Fs a0, aelyből: a0 A rudak csuklókkal vannak a falhoz és egyáshoz erősítve. Azok entén tetszőleges irányú és nagyságú erők hathatnak. A stabilitás iatt azonban a rudakban itt csak azok tengelyével párhuzaos erők hathatnak. együk ugyanis fel, hogy a felső rúd ne vízszintes erővel hat a test felfüggesztési pontjára. Ha így lenne, akkor a felfüggesztési pont a rúdra szintén ne vízszintes irányban hatna az ellenerejével. Ez az erő pedig azt okozná, hogy a fenti rúd elfordulna a falba rögzített csukló körül, vagyis ne lenne nyugaloban a rendszer. Hasonló gondolatenettel be lehet látni, hogy az alsó rúd is csak a tengelye entén fejthet ki erőt. G 800 N N sin α 5 3 K K cos α 000 N 600 N. 5 K Fs µcs g 0,0 0,5 kg 0 /s kg 0,05 /s, A kocsi lassan elindul hátrafelé. III/5.9. feladat: Az ábrán látható tartón G 800 N súlyú teher függ. Mekkora erők hatnak a rudakban? III/5.6. feladat: Az töegű testet két fonál segítségével, az ábrán látható ódon függesztünk fel. Az asztallapon fekvő test töege 7 kg, az asztal és közötte a súrlódási együttható µ 0,5. Mekkora töeg esetén van egyensúly? VGY &NB 3

14 Bevezető fizika (vill), 3. feladatsor Dinaika. és Statika F s g y K x K Az egyensúly feltétele a testre (): x : K F s 0, y : g 0, K 45 g illetve tudjuk, hogy F s µ. A rögzítési pontra (): x : K x K K cos α K 0, y : K y g K sin α g 0. Az elsőből kifejezhető K F s µ g, aely beírható a ásodik párba. Így K cos α µ g 0, azaz K µ g cos α, és az y-ra vonatkozó egyenlet: A forgás tengelye az a pont, ahol a földre ér a deszka csúcsa. Ha a deszka l hosszú, akkor a súlya l/-nél hat, az eberi erő pedig l-nél. A forgatást jelentő erőleges koponens nagysága g g sin α. Ez alapján a forgatónyoatékunk a deszkára: M 0 g l + F l, ahol figyelebe vettük, ahogy az ellenkező irányú erők ellentétes forgatónyoatékot jelentenek. Az egyensúly feltétele, hogy M 0, azaz: 0 0 g l + F l 0 g + F F g g sin α 400 sin 30 DRS >73 N?? Otthoni gyakorlásra: 3.0, 3.6, 3.5, 3., 3.3, 5.7, N???? A feladatok forrása Dér Radnai Soós Fizikai feladatok. µ g cos α Ebből a keresett töeg: sin α g 0. µ tgα 0,5 7 kg tg45 8 kg. III/5.0. feladat: Egy unkás g 400 N súlyú, hoogén töegeloszlású deszkát egyik végénél fogva a vízszinteshez képest α 30 -os szögben tart. A deszka ásik vége a földön fekszik. Mekkora erő szükséges ehhez, ha az általa kifejtett erő iránya erőleges a deszka egyenesére? α F g g 4

15 Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény A ai órához szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J szakaszokra bontás, határesetben integrálás (W s s Fds), azaz a görbe alatti terület! nehézségi erőtér helyzeti energia: E h gh, ai negatív is lehet (pl. talajszint alatt) kinetikus/ozgási energia: E k v rugó: E r Dx (x a egnyúlás, D a rugóállandó) unkatétel E k W teljesítény (P W t kwh 3600 kj Órai feladatok: ), hatásfok (η hasznos összes ), IV/4.7. feladat: α 30 -os lejtőn valaki egy 0 kilograos bőröndöt tol fel vízszintes irányú erővel h éter agasra. A ozgási súrlódási együttható µ 0,. A bőrönd ozgása egyenletes. Mennyi unkát végez: a) az eber, b) a súrlódási erő, c) a bőröndre ható nehézségi erő, d) a lejtő nyoóereje, e) a bőröndre ható erők eredője? (g 0 /s ) F h F g F g F s g Mivel állandó erők hatnak, így a unkát ki lehet száítani az erő és az elozdulás skaláris szorzataként. A feladat egoldásához először határozzuk eg, hogy ekkora F erőre van szükség. A Newtonegyenleteket felírva azt kapjuk, hogy : s α 0 K g cos α F sin α : 0 F cos α g sin α F s, ahol F s µ K, és K az első egyenletből kifejezhető: K g cos α + F sin α, elyet a ásodik egyenletbe helyettesítve: 0 F cos α g sin α µ (g cos α + F sin α ) F sin α + µ cos α cos α µ sin α g. Szükségünk lesz ég a többi erő nagyságára is: K g cos α + F sin α sin α + µ cos α g cos α + g sin α cos α µ sin α cos α µ cos α sin α + sin α + µ cos α sin α cos α µ sin α g 5

16 Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény egoldások g, cos α µ sin α Fs µk µg. cos α µ sin α tudjuk, hogy a rugóerő Fr (x) D x, ahol x a egnyúlás, és a i erőnk ennek az ellenereje. A unka kiszáolásához először tekintsünk azt a pillanatot, ikor éppen xi -vel van egnyújtva a rugó. Próbáljuk ekkor a rugót ég egy nagyon pici x hosszal ég jobban egnyújtani. Ez olyan kis távolság, hogy ez alatt az erő gyakorlatilag ne változik, végig Fr (x) D xi. Ekkor a unkánk erre a kis x szakaszra: a) Az eber által végzett unka: Weber F s F s cos α sin α + µ cos α h g cos α cos α µ sin α sin α sin , cos 30 cos 30 0, sin 30 cos 30 0 kg 0 s sin ,87 J. W (xi ) Fr (x) x D xi x. A teljes egnyújtásra száolt unkát úgy kapjuk, hogy a l távolságot felosztjuk sok ilyen pici x szakaszra, kiszáoljuk a unkát az egyes szakaszokra, ajd összeadjuk őket. Vegyük észre, hogy az így száított összeg, éppen az Fr (x) függvény alatti terület téglalapösszege. b) A súrlódási erő által végzett unka: Ws F s Fs s µg h cos α µ sin α sin α 0, 0 kg 0 s cos 30 0, sin 30 sin 30 08,87 J. Fx () Fr (x) Fr (xi ) x c) A nehézségi erő unkája h Wg g s gk s g sin α sin α 0 kg J. s d) A lejtő nyoóereje ne végez unkát, hiszen az erőleges az s elozdulásra. e) A bőröndre ható erők eredője nulla, hiszen a bőrönd összgyorsulása nulla. Ennek unkája terészetesen nulla. x x W li N Z l Ennek a unkának a kiszáolásánál az a probléa, hogy az általunk kifejtett erő ne állandó, hiszen xn l x N X W (xi ) li N i Z l N X D xi x i l dw (x) D x dx Dx D ( l) D 0 D ( l) N 500 (0, ),5 J. IV/4.. feladat: Rugós erőérőt l 0 c-rel kihúztunk. Mekkora unkát végeztünk a egnyújtáskor, ha a utató F 50 N nagyságú erőt jelez? F 50 N N D 500. l 0, xi Ha egyre finoítjuk a felosztást, akkor az Fr (x) függvény alatti területet kapjuk a x [0, l] tartoányon. A téglalapösszeg pedig egy integrálásba egy át: Vegyük észre, hogy ezt a korábbi eredényekből is egkapjuk, hiszen ha összeadjuk az összes erő unkáját, akkor is nullát kapunk. Először száoljuk ki a rugó állandóját: IV/4.9. feladat: h0 0 éter ély kútból, éterenként Flánc 0 N súlyú lánccal vizet húzunk fel. A vödör súlya vízzel együtt Fvödör 0 N. Mekkora unka árán tudunk egy vödör vizet felhúzni? VGY &NB 6

17 Miközben húzzuk fel a vödröt a lánc kikerül a kútból és egyre kisebb lesz a súly, ait húzunk. Foralizálva a húzóerő a élység függvényében: F h (h) F vödör + hf lánc, aelyet összegeznünk kell h 0-tól h 0 -ig. Az erőagasság grafikon: F [N] Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény egoldások Aelyből fejezzük ki a sebességet: ( v s ) v0 387,3 /s. s ax IV/4.39. feladat: Az ábrán látható ingát 90 -kal kitérítjük és elengedjük. Az asztal szélén levő, vele egyenlő töegű golyóval teljesen rugalasan ütközik. Határozzuk eg, hogy az asztaltól ilyen távol ér a padlóra a lelökött golyó! W 0 l h 0 0 h A területet feloszthatjuk egy négyzetre (a vödör felhúzásának unkája), és egy kis hároszögre (lánc húzása). A két unka külön a terület alapján: W F vödör h 0 00 J, W (h 0F lánc ) h J. Összesen tehát W W + W 700 J. Megtehetjük azt is, hogy kihasználjuk, hogy az integrálszáítás érteében a unka: W h0 0 F (h)dh h0 [F vödör h + h F lánc 0 (F vödör + hf lánc ) dh ] h J. IV/4.3. feladat: Oldjuk eg a unkatétellel a következő feladatot: v /s sebességű puskagolyó s ax 5 c élyen hatol be a fába. Mekkora volt a sebessége s c élységben? ételezzük fel, hogy a fa fékező ereje állandó. A unkatétel szerint E kin W, kifejtve W F fék s ax, íg E kin 0 v 0. Így a fékezőerő: F fék v 0. s ax Ha csak c-t haladunk, akkor a ozgási energia egváltozása E kin v v 0, íg a unka W F fék s, azaz a unkatétel szerint: v v 0 F fék s v 0 s ax s h A ozgás több részre bontható. Először az inga lelendül ( ), ajd egtörténik az ütközés ( 3), végül pedig a ásodik test leesik (3 4). Ezeket a speciális állapotokat ind összeköti a unkatétel, elyet használhatunk. : Az ingatest lelendül. Válasszuk a helyzeti energia nullszintjét az asztal szintjének. Ekkor a testnek az () pontban van helyzeti energiája, á nincs ozgási energiája, ezzel szeben a () helyzetben helyzeti energiája nincs, cserébe viszont ozgási energiája lett, hiszen v sebességgel ozog. A testre a kötélerő hat, ai sose végez unkát, illetve hat rá a nehézségi erő, annak a unkáját viszont helyzeti energiában vettük figyelebe. Ez alapján a unkatörvény: W ( ) E kin + E pot ( ) 0 v (gl) v gl. 3: Itt történik eg az ütközés. Mivel az ütközés teljesen rugalas, így az ütközés során az energia egarad. Szintén ivel a külső erők unkája nulla, így az ipulzusegaradást is lehet használni. A két törvény: v + 0 v 3 + u 3 7

18 Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény egoldások v + 0 v 3 + u 3, ahol az u-val jelölt tagok a kezdetben álló golyó jellezői. A két egyenlet egyszerűsítve: v v 3 + u 3 v v 3 + u 3, ajd a ásodik egyenlet négyzetre eelve: v v 3 + u 3 + v 3 v 3, és ebből az első egyenletet kivonva: 0 v 3 u 3, tehát vagy az első vagy a ásodik test állni fog az ütközés után. Az ipulzusegaradást kifejező egyenletre pillantva láthatjuk, hogy ha az egyik sebesség nulla, akkor a teljes kezdeti sebességet a ásik test kapja eg. Innen adódik, hogy a kezdetben ozgó golyónak kell egállnia, és a ásiknak ugyanakkora sebességgel továbbhaladnia, hiszen a fordított eset ne lehetséges. ehát v 3 0, u 3 v gl. 3 4: A ozgás utolsó szakaszában egy vízszintes hajítás történik. A leesés ideje h g, ely alatt a test h s u 3 g gl lh utat tesz eg. IV/8.46. feladat: Egy részecske csupán az x tengely entén ozoghat. Az ábrán a részecske potenciális energiájának a helytől való függése látható. A; Ábrázoljuk grafikonon (hozzávetőlegesen) a részecskére ható erőt, int a hely függvényét. B; Feltéve, hogy a részecske valailyen rezgő ozgást végez, legfeljebb ennyi lehet ozgási energiája? E pot Vannak olyan esetek, aikor a erő felírható a potenciális erő segítségével. Ilyen a kapcsolat az, hogy erő ne ás, int görbe eredekségének ellentettje. Nézzük az ábrát. Kezdetben az energia csökken, tehát a eredeksége negatív, vagyis az erő x 0 -ig pozitív lesz. Ott az iniu van, a eredekség és az erő is 0. Ezt követően a függvény növekszik, tehát az erőnek negatívnak kell lennie. A kapott ábra: E 0 F x 0 A rezgő ozgás azt jelenti, hogy rögzített energia ellett különböző helyeken (x) is felvehet ugyanakkora potenciális energiát. Ez az x tengely alatti szakaszra érvényes. A iniális potenciális energia E 0, ha ennél egy kicsit több van akkor abban a agasságban eletszve a függvényt egkapjuk a rezgés két végpontját. A végpontban a sebesség 0 (lásd egy rugó), így a kinetikus energia is. Azonban aikor a köztes szakaszra érünk a potenciális energia lecsökken, és a különbségből lesz a kinetikus energiája. IV/4.4. feladat: g 00 N súlyú testet F 0 N nagyságú erővel eelünk. Mekkora a teljesítény az indulás után ásodperccel? Mekkora az átlagteljesítény az első ásodperc alatt? A pillanatnyi teljesítény P F v. A testre ható erők eredője F e 0 N 00 N 0 N, vagyis a test gyorsulása a 0 N 0 kg. s Kezdetben a test állt, idő elteltével a test sebessége: v( ) a s 4 s s. Mivel ez a sebesség felfelé utat, így egy irányba esik az eelőerővel. A teljesítényünk tehát: P ( s) 0 N 4 s 480 W. Az átlagteljesítény kiszáításához tudnunk kell, hogy hogyan változik a pillanatnyi teljesítény az időben. Az időfüggés a sebességen keresztül történik: x E 0 x 0 x P (t) F v(t) F a t. Mivel a teljesítény az idővel lineáris kapcsolatban áll, így az átlagteljesítény száolható, int a kezdeti és a végállapotban lévő pillanatnyi teljesítény 8

19 szátani közepe: Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény P átl P ( s) + P (0) Otthoni gyakorlásra: 480 W W. IV/4.6. feladat: Mekkora átlagos teljesíténnyel lehet egy 000 kg töegű szeélyautót 0 ásodperc alatt, álló helyzetből 00 k/h sebességre gyorsítani? IV/4.30. feladat: v 0 5 /s kezdősebességgel függőlegesen lefelé hajítunk egy követ. Mennyi idő alatt négyszereződik eg a ozgási energiája? IV/4.3. feladat: Egy ládát állandó sebességgel húzunk vízszintes talajon. Mozgás közben F s 50 N a fellépő súrlódási erő. Milyen esszire húzhatjuk el a ládát W i 0,00 kwh unka árán? IV/4.3. feladat: Egy ejtőernyős kiugrik egy 000 agasságban szálló repülőgépből. (A gép vízszintesen repül, sebessége 00 /s.) Az ejtőernyős sebessége földet éréskor 5 /s. öege az ernyővel együtt 00 kg. Mennyi unkát végzett a közegellenállás? IV/4.9. feladat: Mekkora unkavégzéssel jár egy 4 kg töegű test felgyorsítása vízszintes talajon v v 3 /s sebességre s éter úton, ha a talaj és a test közötti súrlódás együtthatója µ 0,3? (g 0 /s ) IV/D6. feladat: Az ábrán látható 0,0 kg töegű testtel l 7,5 c-rel összenyotuk a D 4 N/ rugóállandójú rugót, ajd a testet elengedtük. A test és a vízszintes felület közti ozgási súrlódási együttható értéke µ 0,5. Mekkora utat tesz eg a test a egállásig? v A feladatok forrása Dér Radnai Soós Fizikai feladatok. 9

20 Bevezető fizika (vill), 5. feladatsor Körozgás A ai órához szükséges eléleti anyag: egyenletes körozgás periódusidő, frekvencia, szögsebesség, kerületi sebesség, centripetális gyorsulás és erő radiális és tangenciális irány kapcsolat az egyenes és körpályán történő ozgás között Órai feladatok: V/6.. feladat: Forgó kerék két ugyanazon sugáron levő pontjának sebessége v 3 /s, illetve v 7 /s. Mekkora a kerék szögsebessége, ha a két pont egyástól való távolsága r 30 c? A kerületi sebességük különböző de szögsebességük azonos, azaz: v r ω (r + r) ω v r ω összevonva v v + r ω, aelyből a szögsebesség: ω v v r 3 /s 7 /s 0,3 0 s. V/6.5. feladat: Mekkora a U-44 utasszállító repülőgép centripetális gyorsulása, ha v 400 k/h sebességgel r 80 k sugarú körívben halad fordulás közben? Ily ódon ennyi időbe telik, aíg északi irányból kelet felé fordul? Mennyi utat tesz eg e fordulás közben? A centripetális gyorsulás: a cp v r ( ) 400 k h /3,6 s k h , 5 /s. A negyedkör alatt egtett út: s rπ 4 az ehhez szükséges idő: t s v 80 k π 4 5,6 k, 5,6 k 88,5 s. 400 k/h V/6.7. feladat: 000 kg töegű gépkocsi dobvidéken halad, egyenletes v 0 7 k/h sebességgel. Az A és B pontokban az út R 00 illetve R 50 sugarú körív, a C pontban vízszintes. a) Határozzuk eg e háro pontban az út által a gépkocsira kifejtett nyoóerő irányát és nagyságát. b) Mennyi lehet a gépkocsi axiális sebessége az A pontban? (g 0 /s ) R R g A g B g a) A C pontban az autó egyenesen halad, függőlegesen ne végez ozgást, így az ilyen irányú gyorsulása nulla. A II. Newton-törvény alapján C g 0 4 N. A gépkocsi az A és a B pontban körpályán halad, iközben az aktuális kerületi sebessége v 0. A körpályán való haladás feltétele, hogy a kocsira ható C 0

21 erők eredője biztosítsa az autónak a centripetális gyorsulást. Az A pontban F cp g A v 0 R A g v kg 600 N. R ( ) 0 ( 0 s s 00 ahol A az út és az autó között fellépő nyoóerő. A B pontban a centripetális gyorsulás ellentétes irányba kell, hogy utasson, így F cp B g v 0 R B g + v kg 8000 N. R ( 0 ( 0 s + s 50 b) Vegyük észre, hogy ha a A kifejezésében, a v 0 sebesség túl nagy, akkor a A akár negatív is lehetne. Ez azonban ne valós egoldás, hiszen a tartóerő csak nyoni tud, húzni ne. Ha ez az eset állna fenn, akkor az azt jelentené, hogy az A pontban az autó ár ne ér hozzá az aszfalthoz, ivel az ár korábban eleelkedett attól. A határeset akkor következik be, aikor a tartóerő éppen nulla. Ekkor a nehézségi erő ég éppen tudja biztosítani a körpályán való aradáshoz szükséges centripetális gyorsulást: g v ax R v ax R g 3,6 s. V/6.0. feladat: Az l hosszúságú fonálra függesztett töegű golyó ingaként leng. A legnagyobb kitérés ϕ ax 30. Mekkora erő hat a fonálban, aikor a) az inga szélső helyzetben van; b) a függőleges helyzeten halad át? Mennyi a gyorsulása az előbbi helyzetekben? ) ) ) Bevezető fizika (vill), 5. feladatsor Körozgás egoldások K h ϕ g l g tg K g g r Az ingatest körozgást végez, vagyis a rá ható erők eredőjének sugárirányú koponense az, ai a test centripetális gyorsulását adja: a cp v l K g cos ϕ. a) A legszélső helyzetben a test sebessége nulla, vagyis az előző egyenlet alapján: K g cos 30. b) A pálya aló pontjában viszont K g + v l A unkatételt felhasználva ezt a sebességet is ki tudjuk száítani. A testre csak a kötélerő és a nehézségi erő hat, elyek közül a kötélerő sose végez unkát, hiszen az indig erőleges a ozgás irányára. A nehézségi erő unkáját pedig a helyzeti energiával fogjuk figyelebe venni. Legyen az egyik állapot az inga axiális kitérése, a ásik pedig az alsó helyzeten való áthaladás. Erre a két pontra felírva a unkatételt: ahonnan 0 W E E E E E v gh gl( cos ϕ) v gl( cos ϕ), K g [3 cos ϕ]. V/6.. feladat: a) Milyen erő hat a Föld körül keringő űrhajóban lebegő űrhajósra? b) Milyen erő hat a Föld felé szabadon eső testre? c) Milyen erő hat a Föld felé zuhanó repülőgépben lebegő pilótára?.

22 Bevezető fizika (vill), 5. feladatsor Körozgás egoldások a, A Föld nehézségi vonzása b, ugyanaz c, ugyancsak a nehézségi vonzás. V/6.5. feladat: Egy gépkocsi v 08 k/h sebességgel halad. Kerekeinek átérője d 75 c. Mekkora a kerekek szögsebessége? Az autó éppen akkora sebességgel halad, int aekkora a kerekei egy pontjának kerületi sebessége. Ez a legegyszerűbben onnan látható be, hogy tudjuk, hogy a kerék az aszfalton tapad, vagyis a kerék legalsó pontja a kocsi ozgása során indig áll. Mivel az autó inden pontja előre felé halad v sebességgel, ezért a kerék külső pontjainak kerületi sebessége olyan kell hogy legyen, hogy a legalsó pont indig álljon, vagyis a kerületi sebességnek is v-nek kell lennie. Így a szögsebesség: ω v d/ k 08 h 37,5 c 80 s. V/6.30. feladat: Egy fonálingát nyugali helyzetéhez képest 90 - kal kitérítünk, ajd elengedünk. Aikor az inga átlendül a függőleges helyzeten, a fonál egy szögbe ütközik. A fonal hosszának hányadrészénél lehet a szög, ha azt akarjuk, hogy a fonál végére kötött test további pályája teljes egészében kör legyen? r 3 l íg a ozgási energia egváltozása: E kin v v. }{{} 0 Másrészt a körozgás feltételéből a centripetális és nehézségi erő egegyezik ebben a pontban: v r g, aelyből v gr. Ezt behelyettesítve a unkatételbe: g(l r ) gr r 0,4l. V/6.39. feladat: Egy űrálloás l 30 hosszú rúddal összekötött két kisebb űrkabinból áll. Milyen szögsebességgel kell az űrálloásnak a rúd középpontján átenő képzelt tengely körül forognia, ha azt akarjuk, hogy az űrkabin lakói a Föld felszínén egszokott súlyú állapotban érezzék agukat? (g 0 /s ) Miközben az űrálloás forog, a kabinok, és így a bennük lévő testek körozgást végeznek. A körozgás során a testek gyorsulnak, ezt a gyorsulást pedig az alátáasztást adó tartóerők biztosítják a testeknek. Az űrkabinban lévő űrhajós azt érzékei, hogy a környezetéhez képest nyugaloban van, illetve az alátáasztás őt nyoja. Az ő szeszögéből ez csak úgy agyarázható, ha őrá hat egy fiktív tehetetlenségi erő (a centripetális erő), elyet ő érez, és ez az, ai őt az alátáasztáshoz nyoja. Ezt a centripetális erőt érezzük úgy, intha az egy esterséges nehézségi erő lenne. Ez az erő egyenlő nagyságú az alátáasztás erejével, vagyis a centripetális erő nagyságával: G esterséges g v l/ l ω g 0 s ω l 30 0,8 s A teljes kör egtételének feltétele, hogy elérjük a kis kör legfelső pontját és az inga átlendüljön rajta. Használjuk a unkatételt. A nehézségi erő unkája: W g(l r ), V/6.33. feladat: Egy r 0,6 éter sugarú göb tetején egy kis golyót elengedünk. A göb tetejétől száítva ilyen agasságban hagyja el a golyó a göböt? (A súrlódástól eltekintünk.)

23 Bevezető fizika (vill), 5. feladatsor Körozgás ϕ g r g t g A göböt akkor hagyja el a golyó, aikor a felület tartóereje egszűnik. Írjuk fel az egyenleteket a radiális és tangenciális koponensekre: r : g cos ϕ r t : a g sin ϕ. v A tetejéről való indulással felírhatjuk a unkatételt is: v 0 g(r r cos ϕ) azaz v gr( cos ϕ), ait behelyettesíthetünk a sugárirányú egyenletbe: g( cos ϕ) g cos ϕ és kifejezhetjük a felület tartóerejét: g( 3 cos ϕ). Ez zérus, ha 3 cos ϕ 0, vagyis ha cos ϕ 3. Azaz a göb agasságához képest h r r cos ϕ r 3 0, agasságnál hagyja el a göböt. Otthoni gyakorlásra: 6.3, 6.4, 6.8, 6.9, 6., 6.4, 6.9, 6.5, 6., 6.6 A feladatok forrása Dér Radnai Soós Fizikai feladatok. 3

24 Bevezető fizika (vill), 6. feladatsor Elektrosztatika A ai órához szükséges eléleti anyag: töltés (Q, [Q] C), tapasztalat (azonos taszít, ellentétes vonz), Coulob-törvény F 4πε 0 }{{} N C Q Q r r r, vákuu perittivitása ε 0 8,85 0 C, relatív perittivitás ε N r q próbatöltésre ható erő elektroos tér (E F q ) erővonalkép, hoogén erőtér unkavégzés W Fs qes, feszültség/potenciálkülönbség (U Es, [U] V) kondenzátor C Q U, [C] F, síkkondenzátor C ε A l, energia, U CU sorosan/párhuzaosan kapcsolt kondenzátor eredő kapacitása Órai feladatok: VI/7.4. feladat: Két pozitív, pontszerű töltés, Q és 4Q, egyástól l távolságban van rögzítve. Hol kell elhelyezni egy pontszerű Q töltést, hogy egyensúlyban legyen? A töltések egegyező előjelűek, tehát indketten vonzani/taszítani fogják a próbatestet. Egyensúly akkor lehet, ha kioltják egyást, ai csak egy vonalba esés esetén valósulhat eg. Q F C x Q F C 4Q Az középsőre ható erők egyensúlyban: F C + F C 0 F C F C 0 Q 4πε 0 x 4Q 4πε 0 (l x) 0, aelyből a következő ásodfokú egyenletet kapjuk: A egoldóképlet szerint: x + 3 lx 3 l 0. x, 3 l ± 4 9 l l l ( ± ) 5, 3... aelyek közül a fizikailag helyes egoldás az x 0,4l. VI/7.6. feladat: Hoogén elektrosztatikus tér pontjaiban a térerősség E 0 5 V/. Mekkora erő hat a térben levő q 0 8 C töltésű kicsi fégolyóra? Mennyi a golyó gyorsulása, ha töege 5 g? A testre a Coulob-erő hat, aely felírható a térerősséggel: F qe 0 8 C 0 5 N C 0 3 N. Newton törvénye értelében az erő alapján a gyorsulás: a F 0 3 N kg 0,4 s. 4

25 VI/7.7. feladat: Síkkondenzátor hoogén elektroos terében a térerősség E 000 N/C. Az ábra szerinti elrendezés esetén, az AD és BC szakaszok c hosszúságúak. a) Mennyi unkát végeznek az elektroos erők, ha Q C pozitív töltés az A pontból a C pontba: az ABC; vagy az ADC; vagy közvetlenül az AC úton ozdul el? b) Mennyivel kisebb a B; C; D; pontban a potenciál, int az A pontban? c) Mennyi a kondenzátor leezei között a feszültség, ha a leezek távolsága 3 c? D C Bevezető fizika (vill), 6. feladatsor Elektrosztatika egoldások A kondenzátor leezei közötti feszültség nagysága V 000 V 3 c 30 V. VI/7.8. feladat: Mekkora sebességre gyorsul fel vákuuban, hoogén elektrosztatikus térben, s úton az eredetileg nyugvó elektroos részecske? ( 0 6 g; Q 0 7 C, E 0 4 V/; s 0 c) Használjuk a unkatételt! Az egyik oldalon külső gyorsító erőként ott van az elektroos tér, íg a ásikon a ozgási energia változásából kijön a sebesség: A A töltésre ható erő: F QE C 000 N/C N, elynek iránya egegyezik az elektroos térerősség irányával, vagyis felfelé utat. Az erő állandó: annak nagysága és iránya független a töltés helyétől. Az AB és a DC egyenesek entén végzett unka nulla, hiszen itt az elozdulás és az erő egyásra erőleges, így a skalárszorzat nulla. Az AD és a BC egyenesek entén pedig az elozdulás párhuzaos az erő irányával, így a unka: B + W AD W BC F AD F AD N c J. Az AC úton végzett unkát hasonlóan száolhatjuk: W AC F AC F AD AC cos α F cos α cos α W AD. QEs v 0 v QEs 0 5 s 447, s. 0 7 C 0 4 N C 0, 0 9 kg VI/7.0. feladat: Mekkora a térerősség és a potenciál egy töör, töltött fégöb belsejében? Mivel a göb ideális vezető, így annak belsejében ne lehet térerősség. Ennek az az oka, hogy ha lenne, akkor a fé belsejében lévő többi töltésre azonnal hatna a Coulob erő, és azok elozdulnának, és azok egészen addig ozognának, íg olyan állapot áll be, hogy ne hat ár rájuk erő. A göbön belül a potenciál pedig állandó. Ennek oka, hogy a göb belsejében a térerősség nulla, abban sehol se eshet feszültség, vagyis seelyik két pont között nincs potenciálkülönbség. A feszültség hoogén térerősség esetében: V E s W Q, E(r) U(r) vagyis az AB szakaszon ne esik feszültség, az AD és az AC szakaszokon pedig r r V AC V AD J C 0 V. R r R r 5

26 Bevezető fizika (vill), 6. feladatsor Elektrosztatika egoldások VI/7.. feladat: Féből készült, töltetlen göbhéj középpontjában +Q pontszerű töltés helyezkedik el. a) Hogyan helyezkednek el a egosztott töltések a göbhéjon? b) Rajzoljuk eg vázlatosan az erővonalakat a göbön belül és kívül! c) Hat-e erő a göbön kívül levő töltésre? d) A göböt lefödve, hogyan változik eg a töltések eloszlása? a) A göbhéj külső és belső felületére töltések fognak felhalozódni. A belső töltésfelhalozódásnak az oka a göb közepén található töltés egosztó hatása, a göbhéj negatív töltései ahhoz közel, íg annak pozitív töltései attól távol szeretnének elhelyezkedni. Kérdés ég, hogy a göbhéj belsejében található-e szabad töltés. Mivel a göbhéj ideális vezető, így annak belsejében ne lehet térerősség. Ennek az az oka, hogy ha lenne, akkor a fé belsejében lévő többi töltésre azonnal hatna a Coulob erő, és azok elozdulnának, és azok egészen addig ozognának, íg olyan állapot áll be, hogy ne hat ár rájuk erő. Ezek ellett ég azt is tudjuk, hogy a töltések irány szerinti eloszlása egyenletes lesz, elynek oka, hogy a probléa göbszietrikus. b) Az erővonalat párhuzaosak az elektroos térerősség irányával, és az erővonalak sűrűsége arányos a térerősség nagyságával. c) Igen Q d) A göbhéj külső felületén az ott felhalozódó pozitív töltések taszítják egyást. Ha földeljük azt a felületet, akkor ezek a töltések ár el tudnak távolodni egyástól, így a felületen egszűnik a töltésfelhalozódás: a felület seleges lesz. VI/7.3. feladat: Sorosan kapcsolunk egy C 4 µf-os és egy C 6 µf-os kondenzátort. Mekkora töltéstől töltődik fel a rendszer U 0 V-ra? Sorosan kapcsolt kapacitások esetén az eredő nagysága: C C + C F F, az eredő C,4 µf. A kondenzátorokra jutó töltés: Q CU,4 µf 0 V 5,8 0 4 C. VI/7.6. feladat: Egy C kapacitású kondenzátorra Q töltést visznek, ajd lekapcsolják a telepről. Hogyan változik a kondenzátor elektrosztatikus energiája, ha leezeit távolítják egyástól? A lekapcsolás után a kondenzátoron levő töltésnek eg kell aradnia. A kondenzátor energiája: E C CU Q C, aelybe behelyettesíthetjük a síkkondenzátorra vonatkozó iseretünket ( C ε A ) l, és így: E C Q εa l. Ez alapján ha leezeket távolítjuk (l nő), akkor az energia is növekedni fog. VI/7.6. feladat: Mekkora eredő kapacitást kapunk, ha C µf és C 3 µf kapacitású kondenzátort a) sorba, b) párhuzaosan kapcsolunk? a, Sorba kapcsolás esetén: ( C + ) ( C C 0 6 F F, µf. b, Ha párhuzaosan kapcsoljuk őket: C C + C µf + 3 µf 5 µf. ) Megj. Ez a példa előrevehető első kondenzátoros példának, aztán a levezetést hozzá el lehet közben ondani. VI/7.7. feladat: Két sorba kötött kondenzátorra, aelyek kapacitása C µf és C 4 µf; U 0 V feszültséget kapcsolunk. Mekkora az egyes kondenzátorokra jutó feszültség? 6

27 A soros kapcsolás iatt indkét kondenzátorra ugyanakkora töltés jut, azaz: C U C U C (U U ) (C + C ) U C U U C C + C U 80 V. 4 µf µf + 4 µf 0 V Bevezető fizika (vill), 6. feladatsor Elektrosztatika 0 V + 6 V 60 µf 36 µf. 80 V 0 V Otthoni gyakorlásra: 7.5, 7., 7.4, 7., 7.3, 7.4, 7.7, 7.8, K6 A feladatok forrása Dér Radnai Soós Fizikai feladatok. A ásik kondenzátorra U U U 0 V 80 V 40 V jut. VI/7.30. feladat: Iseretlen kapacitású, U 80 V-ra feltöltött kondenzátor sarkait összekapcsoljuk egy U 6 V-ra feltöltött, C 60 µf kapacitású kondenzátor sarkaival. Határozzuk eg az iseretlen kapacitást, ha az összekapcsolás után a kondenzátorok közös feszültsége U k 0 V; és összekötéskor az a) egyező pólusokat; b) ellentétes pólusokat kapcsoltuk össze! A ásodik kondenzátorra Q C U 6 V 60 µf 960 µc töltés jut. a, Egyező pólusok összekapcsolása esetén a töltések összeadódnak és indkét kapacitáson azonos feszültség alakul ki. Az összeállítás a párhuzaos kapcsolásra elékeztet. Azaz igaz lesz, hogy: aely tovább fejtve: C C + C Q Q + Q, U k C C U + C U U k (C + C ) C U + C U C U k U C U U k 0 V 6 V 60 µf 4 µf. 80 V 0 V A ost fordítva kötjük össze őket, így a töltések kioltják egyást, azaz a fenti állítások közül ódosul a haradik: Q Q Q, aely hasonlóan továbbvihető: U k C C U C U U k (C + C ) C U C U C U k + U U U k C 7

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N Dinaika feladatok Dinaika alapegyenlete 1. Mekkora eredő erő hat a 2,5 kg töegű testre, ha az indulástól száított 1,5 úton 3 /s sebességet ér el? 2. Mekkora állandó erő hat a 2 kg töegű testre, ha 5 s

Részletesebben

Bevezető fizika informatikusoknak

Bevezető fizika informatikusoknak Fs F g Fr 3 g Fr Fs g Bevezető fizika inforatikusoknak k F Utolsó ódosítás 05. február 3. 3:05 α Fsúrl K l Nagyfalusi Balázs Vida György József g h g + + + + + + Q + + + + + + 3 0 Ω A Ω 0 30 Ω É D D É

Részletesebben

Feladatok a zárthelyi előtt

Feladatok a zárthelyi előtt Feladatok a zárthelyi előtt 05. október 6. Tartalojegyzék. ineatika Utolsó ódosítás 05. október 6. 0:46. ineatika.. Egyenes vonalú ozgások.......... Egyenletes ozgás.......... Gyorsuló ozgás..........

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

1. Kinematika feladatok

1. Kinematika feladatok 1. Kineatika feladatok 1.1. Egyenes vonalú, egyenletes ozgások 1. A kézilabdacsapat átlövője 60 k/h sebességgel lövi kapura a labdát a hatéteresvonal előtt állva. Mennyi ideje van a kapusnak a labda elkapására?

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam 6 Mikola verseny fordulójának egoldásai I kategória Gináziu 9 évfolya ) Adatok: = 45 L = 5 r = M = 00 kg a) Vizsgáljuk a axiális fordulatszáú esetet! r F L f g R Az egyenletes körozgás dinaikai alapegyenletét

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét

Fizika 1 Mechanika órai feladatok megoldása 3. hét Fizika 1 Mechanika órai feladatok egoldása 3. hét 3/1. Egy traktor két pótkocsit vontat nyújthatatlan drótkötelekkel. Mekkora erő feszíti a köteleket, ha indításnál a traktor 1 perc alatt gyorsít fel 40

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás

Elektrosztatika. 1.2. Mekkora két egyenlő nagyságú töltés taszítja egymást 10 m távolságból 100 N nagyságú erővel? megoldás Elektrosztatika 1.1. Mekkora távolságra van egymástól az a két pontszerű test, amelynek töltése 2. 10-6 C és 3. 10-8 C, és 60 N nagyságú erővel taszítják egymást? 1.2. Mekkora két egyenlő nagyságú töltés

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Fizika 1i, 2018 őszi félév, 4. gyakorlat

Fizika 1i, 2018 őszi félév, 4. gyakorlat Fizika 1i, 018 őszi félév, 4. gyakorlat Szükséges előismeretek: erőtörvények: rugóerő, gravitációs erő, közegellenállási erő, csúszási és tapadási súrlódás; kényszerfeltételek: kötél, állócsiga, mozgócsiga,

Részletesebben

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny M3/II. A 006/007. tanévi Országos Középiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója Fizika II. kategóriában A 006/007. tanévi Országos Középiskolai Tanulányi Verseny

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

A testek mozgása. Név:... osztály:...

A testek mozgása. Név:... osztály:... A testek ozgása A) változat Név:... osztály:... 1. Milyen ozgást végez a test akkor, ha a) egyenlő időközök alatt egyenlő utakat tesz eg?... b) egyenlő időközök alatt egyre nagyobb utakat tesz eg?... F

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója Oktatási Hivatal A 007/008. tanévi Országos özépiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója FIZIÁBÓ I. kategóriában A 007/008. tanévi Országos özépiskolai Tanulányi

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m.

Szakács Jenő Megyei Fizika Verseny, I. forduló, 2003/2004. Megoldások 1/9., t L = 9,86 s. = 104,46 m. Szakác enő Megyei Fizika Vereny, I. forduló, 00/004. Megoldáok /9. 00, v O 4,9 k/h 4,9, t L 9,86.,6 a)?, b)?, t t L t O a) A futók t L 9,86 ideig futnak, így fennáll: + t L v O. Az adott előny: 4,9 t L

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk! 3. fizika előadás-dinamika A tömeg a testek tehetetlenségének mértéke. (kilogramm (SI), gramm, dekagramm, tonna, métermázsa, stb.) Annak a testnek nagyobb a tehetetlensége/tömege, amelynek nehezebb megváltoztatni

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 8. évfolya Versenyző neve:... Figyelj arra, hogy ezen kívül ég a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató Oktatási Hivatal A 13/14. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató 1.) Hőszigetelt tartályban légüres tér (vákuu) van, a tartályon kívüli

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói

38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói 38. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2019. március 19. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.

Részletesebben

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét.

EGYSZERŰ GÉPEK. Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. EGYSZERŰ GÉPEK Azok az eszközök, amelyekkel kedvezőbbé lehet tenni az erőhatás nagyságát, irányát, támadáspontjának helyét. Az egyszerű gépekkel munkát nem takaríthatunk meg, de ugyanazt a munkát kisebb

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Fizika minta feladatsor

Fizika minta feladatsor Fizika minta feladatsor 10. évf. vizsgára 1. A test egyenes vonalúan egyenletesen mozog, ha A) a testre ható összes erő eredője nullával egyenlő B) a testre állandó értékű erő hat C) a testre erő hat,

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Gimnázium 9. évfolyam

Gimnázium 9. évfolyam 4 MIKOLA SÁNDOR FIZIKAVERSENY ásodik fordulójának egoldása 5 árcius 7 Gináziu 9 éfolya ) Egy test ízszintes talajon csúszik A test és a talaj közötti csúszási súrlódási együttható µ Egy ásik test α o -os

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :... Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával

Részletesebben

8. Egy r sugarú gömb tetpontjából egy kisméret részecske súrlódás nélkül csúszik le a gravitációs er hatására. Hol hagyja el a gömbfelületet?

8. Egy r sugarú gömb tetpontjából egy kisméret részecske súrlódás nélkül csúszik le a gravitációs er hatására. Hol hagyja el a gömbfelületet? Példák gyakorláshoz 1. Egy testre állandó nagyságú er hat úgy, hogy a pályára az er mindig merleges. Egy adott idpillanatban a test impulzusa 0.2kgm/s és 0.05s alatt az impulzusvektor megváltozását 0.2kgm/s

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek

Részletesebben

5. Körmozgás. Alapfeladatok

5. Körmozgás. Alapfeladatok 5. Körmozgás Alapfeladatok Kinematika, elemi dinamika 1. Egy 810 km/h sebességu repülogép 10 km sugarú körön halad. a) Mennyi a repülogép gyorsulása? b) Mennyi ido alatt tesz meg egy félkört? 2. Egy centrifugában

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

A 2009/2010. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából. II. kategória

A 2009/2010. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából. II. kategória Oktatási Hivatal 9/. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából II. kategória dolgozatok elkészítéséhez minden segédeszköz használható. Megoldandó

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Fizika feladatok október 19.

Fizika feladatok október 19. Fizika feladatok 2014. október 19. Ez a feladatgyűjtemény a villamosmérnök hallgatók korábbi jogos igényének megfelelve, nagy hiányt pótol. A kitűzött feladatok az I. féléves fizika tárgyának anyagához

Részletesebben

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne:

Megoldás: A feltöltött R sugarú fémgömb felületén a térerősség és a potenciál pontosan akkora, mintha a teljes töltése a középpontjában lenne: 3. gyakorlat 3.. Feladat: (HN 27A-2) Becsüljük meg azt a legnagyo potenciált, amelyre egy 0 cm átmérőjű fémgömöt fel lehet tölteni, anélkül, hogy a térerősség értéke meghaladná a környező száraz levegő

Részletesebben

36. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása

36. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása 36. Mikola Sándor Országos Tehetségkutató Fizikaverseny I. forduló feladatainak megoldása A feladatok helyes megoldása maximálisan 10 pontot ér. A javító tanár belátása szerint a 10 pont az itt megadottól

Részletesebben

A statika és dinamika alapjai 11,0

A statika és dinamika alapjai 11,0 FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

37. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói

37. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló március óra A verseny hivatalos támogatói 37. Mikola Sándor Országos Tehetségkutató Fizikaverseny II. forduló 2018. március 20. 14-17 óra A verseny hivatalos támogatói Oktatási Hivatal, Pedagógiai Oktatási Központok I. kategória, Gimnázium 9.

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I.

Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika Megoldandó feladatok: I. Fizika előkészítő feladatok Dér-Radnai-Soós: Fizikai Feladatok I.-II. kötetek (Holnap Kiadó) 1. hét Mechanika: Kinematika 1.5. Mennyi ideig esik le egy tárgy 10 cm magasról, és mekkora lesz a végsebessége?

Részletesebben

Szakács Jenő Megyei Fizika Verseny, I. forduló november 14.

Szakács Jenő Megyei Fizika Verseny, I. forduló november 14. Minden versenyzőnek a számára kijelölt négy feladatot kell megoldania. A szakközépiskolásoknak az A vagy a B feladatsort kell megoldani a következők szerint: A: 9-10. osztályosok és azok a 11-12. osztályosok,

Részletesebben