VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE"

Átírás

1 Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, +0+v, 5 krp VII. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE. Szerkezeti-mechanikai modellezés Vas László Mihály Felhasznált források Irodalom. Bodor G.-Vas L.M.: Polimer anyagtudomány. Kézirat. BME, Bp Halász L.-Zrínyi M.: Bevezetés a polimerfizikába. Műszaki K., Bp Ward I.M.-Hadley D.W.: An Introduction to the Properties of Solid Polymers. J.Wiley&Sons, Chichester, Varga J.: Műanyagok fizikája. BME MTKI, Bp Strobl G.: The Physics of Polymers. Concepts of Understanding their Structures and Behaviour. Springer Verlag, Berlin Ponomarjov Sz.D.. szerk.: Szilárdsági számítások a gépészetben. 7. kötet. Stabilitás, gumi elemek. Műszaki K. Bp Vas L.M.: Idealizált statisztikus szálkötegcellák és alkalmazásuk szálas szerkezetek, kompozitok modellezésére. MTA doktori értekezés. Bp Eisele U.: Introduction to Polymer Physics. Springer-Verlag Verlag, Berlin 990. Ajánlott irodalom 9. Oswald T.A.-Menges G.: Materials Science of Polymers for Engineers. Hanser Pub., New York, Li Sh.-Wang G.: Micromechanics and Nanomechanics. World Scientific Pub. Co., Singapore Menges G.: Werkstoffkunde der Kunststoffe. C.Hanser Verlag, München,

2 Mechanikai viselkedés modellezése. Fenomenológiai (jelenségleíró) modellezés Lineárisan rugalmas (LE, lineárisan elasztikus) modellek (fémek, illetve polimerek igen kis deformációja esetén); Lineárisan viszkoelasztikus (LVE) modellek (polimerek viszonylag kis deformációja esetében); Nemlineárisan rugalmas (NLE, nemlineárisan elasztikus) modellek (fémek és polimerek nagy deformációja és monoton növekvő vagy csökkenő terhelése esetében); Nemlineárisan viszkoelasztikus (NLVE) modellek (polimerek nagy deformációja és tetszőleges terhelésmódja mellett). Szerkezeti-mechanikai modellezés Elasztomerek statisztikus polimerháló modellje; Erősen orientált lineáris polimerek statisztikus szálkötegcella modellje; Egyéb modellek Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje. Polimer lánc statisztikája. Láncvégtávolság várható értéke és szórása: n n E( h) E( ai ) i i h h T { E(cosα ), E(cos β ), E(cosγ )} 0 i E( h ) E h E( hx + hy + hz ) E( hx ) nl i i D T ( h) E( hh ) Tehetetlenségi sugár: Kovariancia mátrix n n J mori ri R m nmo n i i 4

3 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje. Polimer lánc statisztikája. Szabadon kapcsolt lánc szórása (a független komponensek miatt itt a kovariancia mátrix diagonális ): T C E( hh ) E( h ); E( h ); E( h ) h x y z T E( h h) trch E( hx + hy + hz ) nl Vegyértékszögek hatása: + cosθ E( h ) nl nl cosθ Rotáció energiaminimumainak (gátló) hatása: + cosθ E( h ) nl σ nl Q nl cosθ + cosϕ σ cosϕ L nl nele Statisztikusan ekvivalens szabadon kapcsolt lánc (l e, n e ): h nl Q nele Mért: L, h h le L L ne le Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje. Polimer lánc statisztikája. A láncvégtávolság sűrűségfüggvénye r x + y + z D-s bolyongás h l l x o n P b b ( x + y + z ) f ( x, y, z) ϕ( x) ϕ( y) ϕ( z) e π x ϕ( x) e σ π σ nl σ b ( x h < x + dx, y h < y + dy, z h < z + dz) f ( x, y, z dv x y z )

4 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje. Polimer lánc statisztikája 4. A láncvégtávolság sűrűségfüggvénye h h hx + hy + hz P b b r ( r h < r + dr) fh( r) dr f ( r)4π r dr e 4π r dr π Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje. Modell-feltételek () A térháló reguláris, azaz a hálópontok közötti ágak egyforma hosszúak; () Deformálatlan állapotú polimerben a hálóágak végponttávolságai az egyedi láncra vonatkozó normális (Gauss) eloszlással írhatók le; () A deformáció során nincs térfogatváltozás; (4) A láncágak mikroszkopikus és a polimer test makroszkopikus deformációja lokálisan azonos, azaz a test makroszintű deformációjának arányában változik a hálópontok távolsága is; (5) A háló deformációja az ideális entrópia-rugalmasságon alapul. Kiegyenesített hálóágak Göngyölödött hálóágak

5 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 4.a. Műszaki és valódi feszültség Húzás: -irányban (y-tengely) Nyúlásarány: λ li i l0i Térfogatállandóság λ λλ Keresztmetszet (i-irányra merőleges): Aoi lojlok; A A l l A λ λ oi i j k oi j k λi ( i j k; i, j, k {,,} Műszaki feszültség: Valódi feszültség: F f i i Aoi F σ i i λi fi Ai Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 4.b. Deformálatlan háló entrópiája Hálóág entrópiája (dω a mikroállapotok száma): b b ( x + y + z ) dω N e dxdydz π s o k ln dω C kb ( x + y + z ) N[ hálóág / mm ] b C k ln NdV π A deformálatlan polimerháló entrópiája: b So sodω sonfdv N + R R π R b ( x + y + z ) [ C kb ( x + y z )] e dxdydz S o N C k

6 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 4.c. Deformált háló entrópiája Deformált hálóág entrópiája: s k ln Ω C kb Deformált háló entrópiája: ( λ x + λ y + λ z ) l λ i i l0i x' xλ y' yλ z' zλ b S sdω snfdv N R R π R k S N C ( λ + λ + λ ) A deformált háló entrópiaváltozása: b ( x + y + z ) [ C kb ( λ x + λ y + λ z )] e dxdydz [ + λ + λ ] k S S So N λ Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 5. A gumi nagyrugalmas potenciálja A gumi feszültség-nyúlás összefüggése σ σ G σ σ G [ λ λ ] [ λ λ ] Alkalmazás egytengelyű húzásra Hiperelasztikus anyag Neo-Hooke törvénye (Rivlin) G [ λ + λ + λ ] [ λ + λ + ] W NkT F T S λ W W W dw dλ + dλ + dλ λ λ λ λ λλ W fi λi σi λi fi σσ G λ Gλ λ λ λ σ f f G λ λ λ 0,5 λ,

7 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 6. Valós elasztomeren mért és modellezett eredmények Mért Modell Modell Mért Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje Összefoglalás () A hálóág láncvégtávolság vektora (h) D-s normális eloszlású (k,, ) Szabadon kapcsolt láncmodell statisztikusan ekvivalens lánc: ( ) ( ) h h α β γ E( h) 0 E ( h ) nl ; h; h l e i l cos i; cos i; cos i h h D ( h k ) nl / () A polimerháló modell feltételezései a) Reguláris háló; b) Láncvégtávolság eloszlása: h k ~N(0; nl ); c) Egyenletes eloszlású deformáció d) Térfogatállandóság; e) Csak entrópiarugalmas deformáció ébred () Nyúlásarány, valódi és műszaki feszültség λk l k / lok f k Fk / Aok σ k Fk / Ak λk fk λ λλ Deformálatlan : xk Deformált : xk λk xk (4) A gumi nagyrugalmas potenciálja S ( s s o ) fdv R (5) A gumi feszültség-deformációs összefüggése Mooney-Rivlin formula σ σ G σ σ G s o k ln dω k ln Nf ( x) dv s k ln dω k ln Nf ( x ) dv [ λ λ ] [ λ λ ] G F T S Egytengelyű húzás (Neo-Hooke törvény): W [ λ + λ + λ ] W λk σ σ G λ λ fλ λ λk W fk λk 4 7

8 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 7. hálóág ρ N cm M n ρ deformálatlan polimer sűrűsége Mn hálóágak számszerinti átlagos molekulatömege Valós polimer háló tulajdonságai eltérések a modelltől Geometriai jellemzők Elhanyagolások Mechanikai jellemzők Nem csak entrópia-, hanem energiarugalmas deformáció is fellép Viszkoelasztikus viselkedés hiszterézis A szabadon kapcsolt polimerlánc nyújtott állapotában is érvényes (n>>) az alábbi f(r) sűrűségfüggvény: f ( r) shl ( z) ln n zl ( z) ln n z + C L ( z) r z nl C r x + y + z l nπ z z r a lánc kiterjedése, a láncvégtávolság L - inverz Langevin függvény L ( w) cthw z L ( z) w w Kuhn W. Grün F.: Kolloid Z. 0. (94) p48. 5 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 8. Az entrópiarugalmasság invariánsát (I ) az energiarugalmas viselkedés hozzávételéhez a második invariánssal (I ) kiegészítve, a gumi szakadásáig terjedően pontos leírást adó összefüggés (a térfogatállandóság miatt I 0) kapható az alábbi, ún. Rivlin-féle potenciálból: i j W W ( I, I) cij II i, j 0 I λ + λ + λ I λ λ + λλ + λλ I λ λλ Polinomiális hiperelasztikus modell (Green-féle alakváltozási tenzor invariánsai) Ha csak c 0, c 0 0, úgy a gumi egytengelyű húzására vonatkozó Mooney- Rivlin v. általánosított Neo-Hooke modell: c W c σ σ I + c 0 I c0 λ 0,5 λ,5...,0 λ λ Még több taggal A gumi viselkedése szakadásig leírható

9 Szerkezeti-mechanikai modellezés. Elasztomerek polimerháló modellje 9. A térhálós polimerekre egyfajta módon kiterjesztett van der Waals egyenletet (mint a polimer feldolgozásban használt Spencer-Gilmore egyenletet) alkalmazza az ún. Kilian-egyenlet, amely szoros kapcsolatban áll a Mooney-Rivlin egyenlettel is: Λ σ σ EΛ m cλ Λm Λ Λ λ λ σ valódi húzófeszültség Λ m van der Waals paraméter (terjedelem), maximális nyújthatóság (Λ Λ m ) c van der Waals paraméter, a hálóláncok közötti kölcsönhatásához Összefüggés a Mooney-Rivlin egyenlet paramétereivel: E a C0 ; Λm E a C0 Λm Szerkezeti-mechanikai modellezés. Hiperelasztikus anyagmodellek A lineárisan rugalmas modell nemlineáris kiterjesztése > Saint-Venant Kirchoff modell Az anyag szerkezeti tulajdonságaiból kiinduló mechanikai anyagmodellek: > Neo-Hooke modell (Rivlin, 948) > Arruda-Boyce modell (99) (kocka-elemben 8 átlós lánc) Megfigyelt viselkedés fenomenológiai leírása: > Mooney-Rivlin modell (95) (általánosított Neo-Hooke Hooke) > Polinomiális modell (Rivlin-Saunders, 95) > Ogden modell (97) > Yeoh modell (99) (redukált polinomiális modell) Fenomenológiai és szerkezeti-mechanikai modellek kombinációja: >Kilian modell (van der Waals modell)(98) > Gent modell (996)

10 Szerkezeti-mechanikai modellezés. Erősen orientált polimerek. A Prevorsek-féle szerkezetmodell és blokk-formája Molekulaláncok, mint szálak Ward I.M.: Journal of the Textile Institute, Vol.86. No.. (995) Szerkezeti-mechanikai modellezés. Erősen orientált polimerek. Szál (molekulalánc) deformációja x-irányú nyújtásra D D

11 IDEALIZÁLT SZÁLKÖTEGCELLÁK RENDSZERE Idealizált szálkötegcellák - Alaptípusok Szálak: lineárisan rugalmasak (E-típus), tökéletesen hajlékonyak és egy véletlen szakítónyúlás értéknél ( ) elszakadnak. Idealizált szálkötegcellák, mint szálosztályok: mechanikai állapot, geometriai helyzet és a befogás szerint. ε Szakadás ε+ Szakadás εo>0 εo<0 ε Szakadás ε Szakadás ε b Csúszás 0 u S εs E-köteg u 0 u S< εs u S>εS u EH-köteg 0 u b u S u bl ES-köteg u 0 u B> ET-köteg u Szerkezeti-mechanikai modellezés. Erősen orientált polimerek. Idealizált szálkötegek, mint a statisztikus szerkezeti és mechanikai tulajdonságokat megjelenítő modellelemek

12 IDEALIZÁLT SZÁLKÖTEGCELLÁK RENDSZERE Szálkötegcellák várható köteghúzóerő folyamata E-köteg EH-köteg ES-köteg Normált kötegerő; FH, FT 0,75 0,5 0,5 ET-köteg AE0,; VE0,; ET0,; ST0,; Ca0; Cb0 Szál E-köteg ET-köteg (FL) ET-köteg (FT) 0 0 0,5,5 Normált kötegnyúlás, z Szerkezeti-mechanikai modellezés. Erősen orientált polimerek polimerek A Prevorsek-féle orientált szerkezet Takayanagi blokkmodelljének törtlineáris kötegszakítógörbe-közelítéseközelítése

Polimer anyagtudomány

Polimer anyagtudomány Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPT5071, 3+0+1v, 5 krp V. POLIMEREK MECHANIKAI VISELKEDÉSÉNEK MODELLEZÉSE 1. Vas László Mihály 1 Felhasznált

Részletesebben

II. POLIMEREK MORFOLÓGIAI SZERKEZETE

II. POLIMEREK MORFOLÓGIAI SZERKEZETE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp II. POLIMEREK MORFOLÓGIAI SZERKEZETE Vas László Mihály Felhasznált források Irodalom

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Pere Balázs október 20.

Pere Balázs október 20. Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?

Részletesebben

VI. POLIMEREK TÖRÉSI VISELKEDÉSE

VI. POLIMEREK TÖRÉSI VISELKEDÉSE Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG04, 3+0+1v, 5 krp VI. POLIMEREK TÖRÉSI VISELKEDÉSE Vas László Mihály 1 Felhasznált források Irodalom

Részletesebben

PhD DISSZERTÁCIÓ TÉZISEI

PhD DISSZERTÁCIÓ TÉZISEI Budapesti Muszaki és Gazdaságtudományi Egyetem Fizikai Kémia Tanszék MTA-BME Lágy Anyagok Laboratóriuma PhD DISSZERTÁCIÓ TÉZISEI Mágneses tér hatása kompozit gélek és elasztomerek rugalmasságára Készítette:

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3

BME Gépészmérnöki Kar 3. vizsga (112A) Név: 1 Műszaki Mechanikai Tanszék január 11. Neptun: 2 Szilárdságtan Aláírás: 3 BME Gépészmérnöki Kar 3. vizsga (2A) Név: Műszaki Mechanikai Tanszék 2. január. Neptun: 2 Szilárdságtan Aláírás: 3. feladat (2 pont) A vázolt befogott tartót a p intenzitású megoszló erőrendszer, az F

Részletesebben

Gyakorlati példák Dr. Gönczi Dávid

Gyakorlati példák Dr. Gönczi Dávid Szilárdságtani számítások Gyakorlati példák Dr. Gönczi Dávid I. Bevezető ismeretek I.1 Definíciók I.2 Tenzoralgebrai alapismeretek I.3 Bevezetés az indexes jelölésmódba I.4 A lineáris rugalmasságtan általános

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok. Határfelület-kohézió-adhézió

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok. Határfelület-kohézió-adhézió Tulajdonság [ ] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) XI. előadás: Határfázisok a polimertechnikában, többkomponensű polimer rendszerek Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T.

Részletesebben

Végeselem analízis. 1. el adás

Végeselem analízis. 1. el adás Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Ajánlott segédanyagok Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2018. április 11. Ajánlott

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Tematika. Ajánlott segédanyagok

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Tematika. Ajánlott segédanyagok Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) IX. előadás: Polimerek alakemlékező tulajdonsága Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 10. Tematika

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

KOMPOZITLEMEZ ORTOTRÓP

KOMPOZITLEMEZ ORTOTRÓP KOMPOZITLEMEZ ORTOTRÓP ANYAGJELLEMZŐINEK MEGHATÁROZÁSA ÉS KÍSÉRLETI IGAZOLÁSA Nagy Anna anna.nagy@econengineering.com econ Engineering econ Engineering Kft. 2019 H-1116 Budapest, Kondorosi út 3. IV. emelet

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április 03.

Részletesebben

Fogorvosi anyagtan fizikai alapjai 6.

Fogorvosi anyagtan fizikai alapjai 6. Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

Evans-Searles fluktuációs tétel

Evans-Searles fluktuációs tétel Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel. A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Bemutatkozás. Számonkérés σ [MPa] Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) VIII. előadás: Polimerek anyagtudománya, alapfogalmak Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu 2019. április

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató

Nemlineáris anyagviselkedés peridinamikus modellezése. Ladányi Gábor, PhD hallgató Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Tartalom Bevezetés Motiváció A peridinamikus anyagmodell Irodalmi áttekintés Korábbi kutatási eredmények

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z

1. FELADATSOR. x = u + v 2, y = v + z 2, z = z. u y + z. u x + y. v x + y. v y + z. w x + y. w y + z 1. FELADATSOR 1-0: Írjuk le az R3 euklideszi tér Riemann-metrikáját az u, v, z koordináták használatával, ahol x = u + v, y = v + z, z = z. Megoldás. (L. Gy.) 1. változat: Az eredeti metrika a x, x x,

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA

HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA CONTINUUM MECHANICS BACKGROUND OF HYPERELASTIC MATERIAL MODELS, OPTIMIZATION POSSIBILITY

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban!

1.1. Feladatok. x 0 pontban! b) f(x) = 2x + 5, x 0 = 2. d) f(x) = 1 3x+4 = 1. e) f(x) = x 1. f) x 2 4x + 4 sin(x 2), x 0 = 2. általános pontban! . Egyváltozós függgvények deriválása.. Feladatok.. Feladat A definíció alapján határozzuk meg a következő függvények deriváltját az x pontban! a) f(x) = x +, x = 5 b) f(x) = x + 5, x = c) f(x) = x+, x

Részletesebben

Energiatételek - Példák

Energiatételek - Példák 9. Előadás Húzott rúd potenciális energiája: Hooke-modell: σ = Eε Geom. hetséges Geometriai egyenlet: + geom. peremfeltételek: u εx = ε = x u(0) = 0 ul () = 0 du dx Energiatételek Példák = k l 0 pudx l

Részletesebben

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s

= e i1 e ik e j 1. tenzorok. A k = l = 0 speciális esetben e az R egységeleme. A. e q 1...q s. = e j 1...j l q 1...q s 3. TENZORANALÍZIS Legyen V egy n-dimenziós vektortér, V a duális tere, T (k,l) V = V V V V a (k, l)-típusú tenzorok tere. Megállapodás szerint T (0,0) V = R (általában az alaptest). Ha e 1,..., e n V egy

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Gyakorló feladatok I.

Gyakorló feladatok I. Gyakorló feladatok I. a Matematika Aa Vektorüggvények tárgyhoz (D D5 kurzusok) Összeállította: Szili László Ajánlott irodalmak:. G.B. Thomas, M.D. Weir, J. Hass, F.R. Giordano: Thomas-féle KALKULUS I.,

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 2015 Egyenletek a hengerkoordináta-rendszerben (HKR) SP = OQ = r z QP = z e r = cos ϕ e x + sin ϕ e y e ϕ = sin ϕ

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar

KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA. Anyagmérnök BSc Szak Évfolyamszintű tárgy. Miskolci Egyetem. Gépészmérnöki és Informatikai Kar KOMMUNIKÁCIÓS DOSSZIÉ MECHANIKA Anyagmérnök BSc Szak Évfolyamszintű tárgy Miskolci Egyetem Gépészmérnöki és Informatikai Kar Műszaki Mechanikai Intézet 1. Tantárgyleírás Tantárgy neve: Mechanika Tantárgy

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp

Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp Budapesti Műszaki és Gazdaságtudományi Egyetem Polimertechnika Tanszék Polimer anyagtudomány BMEGEPTMG20, 2+0+1v, 4 krp IV. POLIMEREK MECHANIKAI TULAJDONSÁGAI Vas László Mihály 1 Felhasznált források Irodalom

Részletesebben

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015

Rugalmasságtan. Műszaki Mechanikai Intézet Miskolci Egyetem 2015 Rugalmasságtan Műszaki Mechanikai Intézet attila.baksa@uni-miskolc.hu Miskolci Egyetem 05 Példák (folyt.) 5. feladat Fajlagos térfogatváltozás DDKR-ben és HKR-ben. dv = [ e x e y e z]dxdydz dv = [( a x

Részletesebben

Kvázisztatikus határeset Kritikus állapot Couette-teszt

Kvázisztatikus határeset Kritikus állapot Couette-teszt Wacha András Kvázisztatikus határeset Kritikus állapot Couette-teszt 2006. november 9. Kvázisztatikus határeset GDR_MiDi. On dense granular flows. Eur. Phys. J. E 14. pp 341-365 (2004). Dimenziótlan paraméterek

Részletesebben

A gumi fizikája Az Alkalmazott fizika I. előadás

A gumi fizikája Az Alkalmazott fizika I. előadás A gumi fizikája Az Alkalmazott fizika I. előadás alapján Bogár Eszter Eleonóra 2016. január 16. 1. Bevezetés A gumi egy érdekes anyag. Rendkívül rugalmas, olcsó az előállítása és rengeteg különböző tárgyat

Részletesebben

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax)

y = y 0 exp (ax) Y (x) = exp (Ax)Y 0 A n x n 1 (n 1)! = A I + d exp (Ax) = A exp (Ax) exp (Ax) III Az exp (Ax mátrixfüggvény módszere Ha y = ay, y( = y, a = állandó y = y exp (ax d dx [exp (Ax] = Y = AY, Y ( = Y, Y (x = exp (AxY exp (Ax = I + n= A n x n (n! = A A n x n, n! ] A n x n I + = A exp

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25)

I. feladatsor. 9x x x 2 6x x 9x. 12x 9x2 3. 9x 2 + x. x(x + 3) 50 (d) f(x) = 8x + 4 x(x 2 25) I. feladatsor () Határozza meg az alábbi függvények határozatlan integrálját: (a) f(x) = (b) f(x) = x + 4 9x + (c) f(x) = (d) f(x) = 6x + 5 5x + f(x) = (f) f(x) = x + x + 5 x 6x + (g) f(x) = (h) f(x) =

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Fémek szerkezete és tulajdonságai Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Bevezetés

Részletesebben

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek

Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Bevezetés az algebrába 2 Differencia- és differenciálegyenlet-rendszerek Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI

KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI KÉPLÉKENYALAKÍTÁS ELMÉLETI ALAPJAI ANYAGMÉRNÖK ALAPKÉPZÉS KÉPLÉKENYALAKÍTÁSI SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIA

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Differenciaegyenletek

Differenciaegyenletek Differenciaegyenletek Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2009/10 tanév, I. félév Losonczi László (DE) Differenciaegyenletek 2009/10 tanév, I. félév 1 / 11

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek

Részletesebben

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em.

Műanyagok Pukánszky Béla - Tel.: Műanyag- és Gumiipari Tanszék, H ép. 1. em. Műanyagok Pukánszky Béla - Tel.: 20-15 Műanyag- és Gumiipari Tanszék, H ép. 1. em. Tudnivalók: előadás írott anyag kérdések, konzultáció vizsga Vizsgajegyek 2003/2004 őszi félév 50 Jegyek száma 40 30 20

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható

merevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.

Részletesebben

Nemlineáris anyagviselkedés peridinamikus modellezése

Nemlineáris anyagviselkedés peridinamikus modellezése Nemlineáris anyagviselkedés peridinamikus modellezése Ladányi Gábor, PhD hallgató ladanyi@uniduna.hu Témvezető: Dr. Gonda Viktor Kutatási beszámoló 2018.06.22. Tartalom Bevezetés Motiváció A peridinamikus

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén

Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Példa: Normálfeszültség eloszlása síkgörbe rúd esetén Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 20. Az 1. ábrán vázolt síkgörbe rúd méretei és terhelése ismert.

Részletesebben

Vasúti teherkocsi tömbkerekek hőterhelése és törésmechanikája

Vasúti teherkocsi tömbkerekek hőterhelése és törésmechanikája JUHÁSZ Gábor István, OROSZVÁRY László BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Gép- és Terméktervezés Tanszék Vasúti teherkocsi tömbkerekek hőterhelése és törésmechanikája XVII. econ Konferencia

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v)

Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) Anyagtudomány BMEGEMTMK02, 4 krp (2+0+1/v) XI. előadás: Határfázisok a polimertechnikában, többkomponensű polimer rendszerek Előadó: Dr. Mészáros László Egyetemi docens Elérhetőség: T. ép.: 307. meszaros@pt.bme.hu

Részletesebben

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31 Lineáris leképezések Wettl Ferenc 2015. március 9. Wettl Ferenc Lineáris leképezések 2015. március 9. 1 / 31 Tartalom 1 Mátrixleképezés, lineáris leképezés 2 Alkalmazás: dierenciálhatóság 3 2- és 3-dimenziós

Részletesebben

MÁGNESES TÉR HATÁSA KOMPOZIT GÉLEK ÉS ELASZTOMEREK RUGALMASSÁGÁRA

MÁGNESES TÉR HATÁSA KOMPOZIT GÉLEK ÉS ELASZTOMEREK RUGALMASSÁGÁRA UDAPESTI MUSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Fizikai Kémia Tanszék MTA-ME Lágy Anyagok Laboratóriuma MÁGNESES TÉR HATÁSA KOMPOZIT GÉLEK ÉS ELASZTOMEREK RUGALMASSÁGÁRA PhD disszertáció Készítette: Varga

Részletesebben

Példa: Háromszög síkidom másodrendű nyomatékainak számítása

Példa: Háromszög síkidom másodrendű nyomatékainak számítása Példa: Háromszög síkidom másodrendű nyomatékainak számítása Készítette: Dr. Kossa Attila kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék. február 6. Határozzuk meg az alábbi ábrán látható derékszögű háromszög

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

MUNKA- ÉS ENERGIATÉTELEK

MUNKA- ÉS ENERGIATÉTELEK MUNKA- ÉS ENERGIAÉELEK 1. előadás: Alapfogalmak; A virtuális elmozdulások tétele 2. előadás: Alapfogalmak; A virtuális erők tétele Elmozdulások számítása a virtuális erők tétele alapján 3. előadás: Az

Részletesebben

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra

Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás robotra Budapesti M szaki És Gazdaságtudományi Egyetem Gépészmérnöki Kar M szaki Mechanikai Tanszék Denavit-Hartenberg konvenció alkalmazása térbeli 3DoF nyílt kinematikai láncú hengerkoordinátás és gömbi koordinátás

Részletesebben

Negyedik fejezet. meglehetősen nagy, de az is lehet, hogy az X szín 5 évvel ezelőtt elő sem fordult. Tehát két. P (a ξ b, c η d)

Negyedik fejezet. meglehetősen nagy, de az is lehet, hogy az X szín 5 évvel ezelőtt elő sem fordult. Tehát két. P (a ξ b, c η d) Negyedik fejezet Többdimenziós eloszlások Több valószínűségi változó együttes vizsgálatához nem elegendő az egyes változók eloszlásának ismerete. Ez a tény jól érzékelhető a következő hétköznapi életből

Részletesebben

Polimerek vizsgálatai

Polimerek vizsgálatai SZÉCHENYI ISTVÁN EGYETEM ANYAGTUDOMÁNYI ÉS TECHNOLÓGIAI TANSZÉK Polimerek vizsgálatai DR Hargitai Hajnalka Rövid idejű mechanikai vizsgálat Szakítóvizsgálat Cél: elsősorban a gyártási körülmények megfelelőségének

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Polimerek vizsgálatai 1.

Polimerek vizsgálatai 1. SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek vizsgálatai 1. DR Hargitai Hajnalka Szakítóvizsgálat Rövid idejű mechanikai vizsgálat Cél: elsősorban

Részletesebben

RENDSZERTECHNIKA 8. GYAKORLAT

RENDSZERTECHNIKA 8. GYAKORLAT RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.

Részletesebben

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11

5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11 Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4

Részletesebben

FELVÉTELI VIZSGA, szeptember 12.

FELVÉTELI VIZSGA, szeptember 12. BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR FELVÉTELI VIZSGA, 08. szeptember. Írásbeli vizsga MATEMATIKÁBÓL FONTOS TUDNIVALÓK: A feleletválasztós feladatok,,a rész esetén egy

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

Ejtési teszt modellezése a tervezés fázisában

Ejtési teszt modellezése a tervezés fázisában Antal Dániel, doktorandusz, Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szabó Tamás, egyetemi docens, Ph.D., Miskolci Egyetem Robert Bosch Mechatronikai Tanszék Szilágyi Attila, egyetemi adjunktus,

Részletesebben