HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA"

Átírás

1 HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA CONTINUUM MECHANICS BACKGROUND OF HYPERELASTIC MATERIAL MODELS, OPTIMIZATION POSSIBILITY OF MOONEY- RIVLIN S MATERIAL PERMANENTS HURI Dávid 1, MANKOVITS Tamás 2 egyetemi hallgató 1, adjunktus 2 Debreceni Egyetem Műszaki Kar 4028 Debrecen, Ótemető u Kivonat: Jelen cikk összefoglalja a gumiszerű anyagok számítási lehetőségeit. A dolgozat második része bemutatja az NX NASTRAN megoldó által használt kontinuummechanikai összefüggéseket. Végül egy gumirugó végeselemes analízisének optimalizálási lehetőség kerül bemutatásra. Kulcsszavak: végeselem-módszer, gumirugó, Mooney-Rivlin anyagmodell Abstract: This paper presents the calculation possibilities for elastic materias. Continuum mechanics to be used for The NX NASTRAN solver which is also presented. Finally a finite element analysis of a rubber spirng is evaluted as a numerical example. Keywords: finite element method, rubber spring, Mooney-Rivlin material model 1. BEVEZETÉS A rugóknak nagyon jelentős szerepe van a gépészetben, és ez tovább bővül, ha fém helyett elasztikus anyagot használunk az adott feladatra. Ha egy tengelyszimmetrikus gumi tömbön nyomó igénybevétellel munkát végzünk, azt belső deformációs munka alakjában felhalmozza majd a terhelés megszűnése után újra külső mechanikai munkává tudja alakítani a tömb speciális alakkiképzése nélkül, akkor ezt a rugót anyagrugónak nevezzük. Ilyen esetben jellemzően progresszív rugókarakterisztikát kapunk, ami következtetni enged minket a tervezési nehézségekre. További problémát okoz, hogy a gumi rugalmasságát nagymértékben befolyásolja a tömb alakja, anyaga valamint alakváltozásának mértéke is. Fontos jellemzője a nagy fajlagosmunka-felvétel ami nagy pontosságot követel számításaink során [1]. A gépészetben az évek alatt elterjedt kézi számítások csak elhanyagolások útján, kis alakváltozások esetére (ε < 25%), korábban már felvett diagramokkal és tapasztalati tényezőkkel számíthatóak statikus terhelésekre. Ezen okok miatt mindig is megoldatlan probléma maradt a gumirugók tervezésének feladata. Azonban a számítógépes végeselemes szoftverek megjelenésével, soha nem látott lehetőségek nyíltak meg a gumiszerű anyagok analízisében. Cikkemben bemutatom a már ismert számításokat, majd összehasonlítom az általam használt végeselemes szoftver analízisének eredményeivel.

2 2. MÉRETEZÉS NYOMÓ IGÉNYBEVÉTELRE HAGYOMÁNYOSAN Az acéloknál jól ismert Hooke-törvény gumi esetén csak a τ nyírófeszültségre érvényes, a σ húzónyomó feszültségeket bonyolult elméleti összefüggések írják le. Nyomásnak kitett gumitömbben a feszültség eloszlása inhomogén. Az igénybevétel karakterisztikája progresszív, de azt a műszaki gyakorlatban a számítások megkönnyítése miatt a valóságot jól megközelítő egyenessel helyettesítik. A közelítő egyenest úgy vették fel, hogy nulla és 20%-as deformációnál megegyezzen a valós rugókarakterisztika értékével, így az egyenlete: F = f A E h ahol F a nyomóerő, f a rugóút, A a gumirugó nyomást átadó felülete, h a magassága végül E pedig a gumirugó látszólagos rugalmassági modulusza. A látszólagos E -modulusz függ a G- nyírómodulusztól és a gumi alakjától is. Az alaki függést a k alaki tényezővel vesszük figyelembe: k = (2) ahol A a deformációban gátolt, A pedig a deformációban résztvevő szabad felület. Szakirodalmakban találunk olyan diagramokat (1.ábra), melyek megteremtik a kapcsolatot E k között különböző keménységű gumik esetén. Ezen modulusz bevezetésével a számítás egyszerűvé válik és a közelítésből származó hiba nem jelentős 25%-os deformációig. (1) 1. ábra E k kapcsolata különböző Shore leménységekre 3. GUMISZERŰ ANYAGOK VÉGESELEMES LEÍRÁSÁHOZ ALKALMAZOTT KONTINUUM-MECHANIKAI ALAPOK A FEMAP 9.3 szoftver NASTRAN megoldója a gumiszerű anyagok vizsgálatához a mechanikában jól ismert elméleti alapokat tartalmazza. Ahhoz, hogy egy nagy alakváltozásra képes alkatrészt szimulálni tudjunk, tisztában kell lennünk az ide vonatkozó kontinuummechanikai háttérrel. A 2. ábra egy nagy alakváltozásra képes rugalmas testet ábrázol a t = 0 és t = t időpillanatban. A test nyomó igénybevételnek van kitéve, a mechanikai modellje pedig ideális állapotot modellez.

3 2. ábra rugalmas szilárd test nyomásának ideális esete Az ábra alapján kifejezhető a fajlagos megnyúlás, a három koordinátatengely irányában ε = ΔL L = L L L (3) ε = ε = ΔD D A deformáció meghatározására szolgáló nyúlási arányt (λ) bevezetve [2] = D D D (4) ahol ε < 0 λ = L L = L + L L L = 1 + L L L = 1 + ε (5) λ = λ = D D = D + D D D ahol ε, ε > 0, így nyomás esetén a nyúlási arány a három főirányban = 1 + D D D = 1 + ε = 1 + ε (6) λ = λ λ = λ λ = λ (7) A kapcsolatot a pillanatnyi és az azonosító állapot között az F az alakváltozási gradiens, szolgáltatja [3] dr = F dr (8)

4 Azonban az általunk tárgyalt ideális esetben a deformáció alatt nincs szögtorzulás, így a mátrixa leegyszerűsödik: λ 0 0 F = 0 λ 0 (9) 0 0 λ A gumi molekulájának elasztikus tulajdonságát legjobban az egységnyi térfogatra vonatkoztatott deformációs energia sűrűséggel lehet jellemezni W = W (J) + W (C) (10) ahol, W (J) a térfogatváltozásból származó deformációs energia sűrűség, míg W (C) a térfogatállandóságból származó deformációs energia sűrűség. A nemlineáris feladatokban tehát W függvénye C-nek azaz a jobboldali Cauchy-Green alakváltozási tenzornak, mely a kontinuum elem alakváltozási állapotának leírására szolgál, továbbá felírható C = F F (11) majd a mátrixszorzást elvégezve λ 0 0 C = 0 λ 0 (12) 0 0 λ Ahhoz, hogy általánosan kezelhető legyen a feszültség-deformáció összefüggése, feltételezem, hogy az anyag rugalmas tulajdonságai deformálatlan állapotban izotropok (azaz a vizsgált anyag minden irányban azonos tulajdonsággal bír és a deformáció alatt térfogata változatlan). Így a deformáció jellemzésére C három fő skalár invariánsa használható, melyek rendre I = λ + λ + λ (13) I = λ λ + λ λ + λ λ (14) I = detc = λ λ λ (15) A gumira jellemző, hogy közel összenyomhatatlan anyagként viselkedik, így alakváltozása során térfogata nem változik. Ezért felírható a nyúlás arányokra az alábbi összefüggés így következik, hogy λ λ λ = 1 (16) I = 1 (17) azaz a deformáció két független értékkel, I és I -vel jellemezhető. Ebből következik, hogy a W deformációs energiasűrűség csak ezen két változó függvénye W = f(i ; I ) (18)

5 A gumitest deformálatlan állapotára felírható az alábbi összefüggés így, λ = λ = λ = 1 (19) I = I = 3 (20) ahhoz, hogy fennállhasson az alábbi egyenlőség W = 0 (21) a deformációs energiasűrűség változóit módosítanom kell, így függvénye a W = f(i 3; I 3) (22) Az alakváltozás nemlineáris elméletének segítségével a W (C) deformációs energia sűrűséget kifejeztem. Ebből kiindulva különböző anyagmodellek definiálásával, a W egységnyi térfogatra vonatkoztatott deformációs energia sűrűség számítható. Ezt a kontinuummechanikai hátteret használva, a végeselemes diszkretizáció után a szoftver képes arra, hogy alakváltozási- és feszültségi állapotot számoljon a megfelelő peremfeltételek mellett. 4. HIPERELASZTIKUS ANYAGOK ANALÍZISE FEMAP 9.3-AL A hiperelasztikus anyagok az NX Nastran speciális, Advanced Nonlinear (solution 601 és 701) megoldó moduljában érhetőek el. Az alkalmazható anyagmodellek a Mooney-Rivlin, Ogden, Arruda- Boyce, Hyperfoam, és a Sussman-Bathe. Ezen anyagmodellek csak 2D-s térfogati és 3D-s térfogati elemek használata esetén elfogadottak [4]. 4.1 Mooney-Rivlin anyagmodell Ez esetben a térfogatváltozásból származó deformációs energia sűrűség W (J) = 1 2 κ(j 1) (23) ahol κ az ún. térfogati rugalmassági modulusz. Míg a térfogatállandóságból származó deformációs energia sűrűség W = C (I 3) + C (I 3) + C (I 3) + C (I 3)(I 3) + C (I 3) + C (I 3) + C (I 3) (I 3) + C (I 3)(I 3) + C (I 3) (24) ahol, C Mooney-Rivlin anyagállandók. Láthatjuk, hogy a Mooney-Rivlin anyagtörvény leírásához használható 9 C állandó, és a κ Bulk modulusz. De nem feltétlenül szükséges ennyire magasrendű anyagtörvényt alkalmazni. Ha úgy választunk, hogy csak C 0 akkor a neo-hookean anyagtörvényt kapjuk. Megkaphatjuk a hagyományos kétváltozós Mooney-Rivlin anyagtörvényt, ha úgy választunk, hogy csak C 0 és C 0 W = C (I 3) + C (I 3) (25)

6 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 Ha feltételezzük, hogy κ = akkor az előző két állandó segítségével leírható a rugalmassági és nyírási modulusz: G = 2(C + C ) (26) E = 6(C + C ) (27) A κ Bulk modulusz az anyag összenyomhatóságát fejezi ki. Ha értéke nagyobb mint 2000 akkor összenyomhatatlan anyagot feltételezünk. Nagysága 601-es megoldó alakalmazása esetén, számítható közel összenyomhatatlan (ν = 0,499) anyagra: κ = 2G(1 + 2ν) 3(1 2ν) ahol G a nyírási rugalmassági modulusz, ν a Poisson-tényező (28) 4.2 Ogden anyagmodell Ez esetben a térfogatállandóságból származó deformációs energia sűrűség W = μ λ α + λ + λ 3 W = f(i 3; I 3)W = 0 (29) ahol μ és α az Ogden anyagállandók. Láthatjuk, hogy az Ogden anyagtörvény leírásához 19 állandó használható: μ, α, n = 1,,9 és a bulk modolusz. Ha úgy választunk, hogy a μ, α 0 csak n = 1,2,3 esetén akkor a hagyományos 3 változós Ogden anyagtörvényt kapjuk meg. Ha feltételezzük, hogy κ = akkor a rugalmassági és nyírási modulusz leírható az alábbi összefüggésekkel: G = 1 2 μ α (30) E = 3 2 μ α (31) A bulk moduluszra érvényesek a Mooney-Rivlin anyagtörvénynél elmondottak. 4.3 Arruda-Boyce anyagmodell W = N 1 2 (I 3) N (I 9) N (I 27) N (I ) N I 243 (32) ahol N egy anyagállandó, N egy paraméter mely képviseli a kapcsolatot az anyagi láncok között.

7 4.4 Hyperfoam anyagmodell W = μ λ α + λ + λ J 1 β (33) ahol az anyagállandók a μ, α, β, n = 1,, N ig. N maximális értéke 9. Ez az anyagmodell erősen összenyomható elasztomerekhez lett létrehozva, így ha a bulk modulusz nagy (nagyobb mint 10), más anyagmodellt kell alkalmazni. 4.5 Sussman-Bathe anyagmodell 5. NUMERIKUS PÉLDA W = w(e ) + w(e ) + w(e ) (34) Numerikus példának egy egyszerűen kezelhető hengeres gumi alkatrészt vettem melynek átmérője D = 25,3mm vastagsága pedig h = 17,8mm. A próbatest előírt elmozdulással lett összenyomva a szoftverben, melynek hatására a létrejött alakváltozást a 3.ábra szemlélteti 5.1 Anyagmodell optimalizálása 3. ábra Alakváltozás FEMAP-ban 5 mm-nél Egy optimalizálási lehetőséget fogok bemutatni Mooney-Rivlin anyagmodellre. Célom olyan C és C anyagállandók felvétele melyek helyesen írják le az anyag viselkedését nyomásra. Az optimalizálás lépései rendre: - Vizsgálatunk tárgyát egy 32 Shore A keménységű gumi képezi, melynek rugókarakterisztikája hagyományos méretezési módszerrel számítható. - Közel összenyomhatatlan állapotra a κ = 250 értéket veszem fel

8 - Felveszem C és C anyagállandók értékét úgy, hogy teljesüljön az alábbi egyenlőség C C = 4 (35) - Próbafuttatással felveszem a rugókarakterisztikát 20%-as deformációig - Mindaddig változtatom a C és C értékét, míg a 20%-as deformációhoz tartozó nyomóerő közel azonos nem lesz a hagyományos módszerrel számított értékkel - Így anyagállandókat rendelhetek adott Shore keménységű gumianyagokhoz 5.2 Eredmények 4. ábra Optimalizálás során felvett rugókarakterisztikák Végeselemes futtatásokkal az optimalizálást elvégezve, különböző keménységű gumidarabokra a rugókarakterisztikák az alábbi képet mutatják 5. ábra optimalizált rugókarakterisztikák

9 így, az alábbi összefüggések állapíthatóak meg Shore A[ ] C [MPa] C [MPa] 32 0,259 0, ,436 0, ,586 0, ,736 0, ,92 0,23 1. táblázat anyagállandók értékei Nagyobb alakváltozást modellezve, jól látszik a rugókarakterisztika progresszív jellege, és jelentős eltérések figyelhetőek meg a hagyományos számítás, és a végeselemes analízissel felvett karakterisztikák között 5. ÖSSZEFOGLALÁS 6. ábra Rugókarakterisztikák 40%-os összenyomásig Feldolgozva az NX NASTRAN által gumiszerű anyagokra alkalmazott kontinuummechanikai hátteret, az anyagmodellek és állandóik definiálása érthetővé vált. Optimalizálással sikerült anyagállandókat megállapítani Mooney-Rivlin anyagmodell esetén, és a végeselemes analízisből kiderült, hogy a valóságot reprezentáló rugókarakterisztika érhető el nyomó igénybevételre. KÖSZÖNETNYILVÁNÍTÁS A cikkben ismertetett kutató munka a TÁMOP-4.2.2/B-10/ jelű projekt részeként - az Új Magyarország Fejlesztési Terv keretében az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. 6. FELHASZNÁLT IRODALOM [1] DR. BARTHA ZOLTÁN, Gumiipari Kézikönyv I. kötet, Budapest, 1988 [2] MSC. SOFTWARE, Nonlinear Finite Element Analysis of Elastomers [3] BONET, J., WOOD R.D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, [4] NX NASTRAN 7.1, Advanced Nonlinear Theory and Modeling Guide

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Seres Noémi Doktorandusz BME Tartalom Téma: öszvérfödémek együttdolgoztató kapcsolatának numerikus modellezése, nyírt együttdolgoztató

Részletesebben

Műszerezett keménységmérés alkalmazhatósága a gyakorlatban

Műszerezett keménységmérés alkalmazhatósága a gyakorlatban Műszerezett keménységmérés alkalmazhatósága a gyakorlatban Rózsahegyi Péter laboratóriumvezető Tel: (46) 560-137 Mob: (30) 370-009 Műszaki Kockázatmenedzsment Osztály Mechanikai Anyagvizsgáló Laboratórium

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Innocity Kft. terméktervezés, szerszámtervezés öntészeti szimuláció készítés + 3 6 / 7 0 / 4 2 1 8-407. w w w. i n n o c i t y.

Innocity Kft. terméktervezés, szerszámtervezés öntészeti szimuláció készítés + 3 6 / 7 0 / 4 2 1 8-407. w w w. i n n o c i t y. terméktervezés, szerszámtervezés öntészeti szimuláció készítés I n n o c i t y K u t a t á s i é s I n n o v á c i ó s T a n á c s a d ó K f t 2 6 0 0 V á c, P e t ő f i S á n d o r u. 5 5 / A + 3 6 /

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

Különböző szűrési eljárásokkal meghatározott érdességi paraméterek változása a választott szűrési eljárás figyelembevételével

Különböző szűrési eljárásokkal meghatározott érdességi paraméterek változása a választott szűrési eljárás figyelembevételével Különböző szűrési eljárásokkal meghatározott érdességi paraméterek változása a választott szűrési eljárás figyelembevételével Varga Péter 1, Barányi István 2, Kalácska Gábor 3 1 Óbudai Egyetem Bánki Donát

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

MŰANYAGOK TULAJDONSÁGAI

MŰANYAGOK TULAJDONSÁGAI MŰANYAGOK TULAJDONSÁGAI Törésszimuláció alkalmazása a tervezésben A műanyagok deformációját, tönkremenetelét az anyagjellemzők figyelembevételével több lépésben lehet szimulálni. Sok terület például a

Részletesebben

Számítógéppel segített folyamatmodellezés p. 1/20

Számítógéppel segített folyamatmodellezés p. 1/20 Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől

Részletesebben

Korszerű végeselemes optimalizálási eljárások összehasonlítása különböző gyártástechnológia segítségével előállított alkatrészek esetén

Korszerű végeselemes optimalizálási eljárások összehasonlítása különböző gyártástechnológia segítségével előállított alkatrészek esetén Korszerű végeselemes optimalizálási eljárások összehasonlítása különböző gyártástechnológia segítségével előállított alkatrészek esetén haller Gusztáv Széchenyi István Egyetem Dr. Veress Árpád Széchenyi

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából Dr SZABÓ Imre SZABÓ Attila GEOSZABÓ Bt IMRE Sándor TRELLEBORG Kft XVII. Országos Környezetvédelmi Konferencia

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Újdonságok 2015 Budapest

Újdonságok 2015 Budapest Újdonságok 2015 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 10 4. Terhek 12 5. Számítás 15 6. Méretezés és eredmények 16 7. Dokumentáció 20 2. oldal 1. Általános Új lehetőségek a Forgatás

Részletesebben

A forgácsolás alapjai

A forgácsolás alapjai A forgácsolás alapjai Dr. Igaz Jenő: Forgácsoló megmunkálás II/1 1-43. oldal és 73-98. oldal FONTOS! KÉREM, NE FELEDJÉK, HOGY A PowerPoint ELŐADÁS VÁZLAT NEM HELYETTESÍTI, CSAK ÖSSZEFOGLALJA, HELYENKÉNT

Részletesebben

Diplomamunkám felépítése

Diplomamunkám felépítése Üregek távolhatása gránitos kőzetkörnyezetben Tóth Szilvia Konzulensek: Dr. Török Ákos, BME Építőanyagok és Mérnökgeológia Tanszék Poromb Péter, Mott MacDonald Magyarország Kft. Diplomamunkám felépítése

Részletesebben

KALIBRÁCIÓS MÓDSZER SZEMCSÉS HALMAZOK MIKROMECHANIKAI JELLEMZŐINEK MEGHATÁROZÁSÁHOZ

KALIBRÁCIÓS MÓDSZER SZEMCSÉS HALMAZOK MIKROMECHANIKAI JELLEMZŐINEK MEGHATÁROZÁSÁHOZ XX. Fiatal Műszakiak Tudományos Ülésszaka, 2015. Kolozsvár, 271 274. http://hdl.handle.net/10598/28634 Műszaki tudományos közlemények 3. KALIBRÁCIÓS MÓDSZER SZEMCSÉS HALMAZOK MIKROMECHANIKAI JELLEMZŐINEK

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Közönséges differenciálegyenletek megoldása Mapleben

Közönséges differenciálegyenletek megoldása Mapleben Közönséges differenciálegyenletek megoldása Mapleben Differenciálegyenlet alatt egy olyan egyenletet értünk, amelyben a meghatározandó ismeretlen egy függvény, és az egyenlet tartalmazza az ismeretlen

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL

EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL EGY NÖVEKEDÉSI MODELL VIZSGÁLATA NUMERIKUS MÓDSZEREKKEL Stagl Ádám I. évfolyam, pénzügy és számvitel szak Kaposvári Egyetem Gazdaságtudományi Kar, Kaposvár Matematika és Fizika Tanszék Konzulens: Dr. Kövér

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

FELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN. 1. eset (R=100) GEOMETRIA MEGADÁSA

FELADAT LEÍRÁSA MEGOLDÁS ANSYS-BAN. 1. eset (R=100) GEOMETRIA MEGADÁSA FELADAT LEÍRÁSA Határozzuk meg meg az alábbi bevágott lemezek AB szakaszain az y-irányú feszültségek eloszlását. Vizsgáljuk meg miképpen változik a feszültséggyűjtő hatás a lekerekítési sugár csökkentésével!

Részletesebben

Tevékenység: Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit!

Tevékenység: Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit! Olvassa el a bekezdést! Gyűjtse ki és tanulja meg a lemezalakító technológiák jellemzőit! 2.1. Lemezalakító technológiák A lemezalakító technológiák az alkatrészgyártás nagyon jelentős területét képviselik

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben

szigetel & véd Gummiwerk KRAIBURG Relastec GmbH KRAIBUR G

szigetel & véd Gummiwerk KRAIBURG Relastec GmbH KRAIBUR G szigetel & véd Gummiwerk KRAIBURG Relastec GmbH K KRAIBUR G K KRAIBUR G SZIGETEL & VÉD tartalom 4 6 8 10 12 14 16 szigetelés comfort whisper color standard rubber estra szigetel & véd CSENDET ÉS NYUGALMAT

Részletesebben

SOLIDWORKS SIMULATION

SOLIDWORKS SIMULATION SOLIDWORKS SIMULATION Alkalmazzon piacvezető innovációkat kockázatok nélkül Biztosítsa a megfelelő kilépőcsatornaméretezést az áramlástani (Flow) szimulációval Ellenőrizze a rezonanciát a ventilátor és

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

PÁLYÁZAT. a SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR KUTATÁSI FŐIRÁNY pályázati felhívásához

PÁLYÁZAT. a SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR KUTATÁSI FŐIRÁNY pályázati felhívásához PÁLYÁZAT a SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR KUTATÁSI FŐIRÁNY pályázati felhívásához 1. A pályázó kollektíva vezetőjének adatai: Neve: Kuczmann Miklós Telefonszáma: 3462 e-levelezési Dátum:

Részletesebben

A szimuláció mint a műanyag-feldolgozás segédeszköze

A szimuláció mint a műanyag-feldolgozás segédeszköze A MÛANYAGOK FELDOLGOZÁSA 2.2 A szimuláció mint a műanyag-feldolgozás segédeszköze Tárgyszavak: fröccsöntés; szimuláció; zsugorodás; vetemedés, előrejelzés; Cadmould; Moldflow; számítógépes program; PP,

Részletesebben

horonycsapos fugaképzés ipari padlószerkezetekhez

horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM horonycsapos fugaképzés ipari padlószerkezetekhez BAUTEC FUGAFORM - XL, FUGAFORM - XDL Ipari padlók tervezése, kivitelezése

Részletesebben

ÜVEG FIZIKAI TULAJDONSÁGAI,

ÜVEG FIZIKAI TULAJDONSÁGAI, ÜVEG FIZIKAI TULAJDONSÁGAI, ÜVEGTERMÉKEK Erdélyi Tamás egyetemi tanársegéd BME Építészmérnöki é kar Szilárdságtani és Tartószerkezeti Tanszék 2013. február 28. Tematika alkal om 1. 2. 3. 4. 5. nap 02.28.

Részletesebben

Antennatervező szoftverek. Ludvig Ottó - HA5OT

Antennatervező szoftverek. Ludvig Ottó - HA5OT Antennatervező szoftverek Ludvig Ottó - HA5OT Miről lesz szó? Megismerkedünk a számítógépes antenna modellezés alapjaival, és történetével Gyakorlati példákon keresztül elsajátítjuk az alapvető fogásokat

Részletesebben

(11) Lajstromszám: E 008 612 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 008 612 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000008612T2! (19) HU (11) Lajstromszám: E 008 612 (13) T2 MAGYAR KÖZTÁRSASÁG Szellemi Tulajdon Nemzeti Hivatala EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 76412 (22) A bejelentés

Részletesebben

Géprajz gépelemek II. II. Konzultáció (2014.03.22.)

Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Forgó alkatrészek oldható kötőelemei (a nem oldható tengelykötéseket a tk.-ből tanulni) Ékkötés Az ék horonyszélességének illesztése laza D10 A tengely

Részletesebben

2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE. Tömörítetlen sűrűség

2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE. Tömörítetlen sűrűség 2.9.34. Porok tömörítetlen és tömörített sűrűsége Ph.Hg.VIII. - Ph.Eur.7.6-1 2.9.34. POROK TÖMÖRÍTETLEN ÉS TÖMÖRÍTETT SŰRŰSÉGE Tömörítetlen sűrűség 01/2013:20934 Tömörítetlen sűrűségnek nevezzük a tömörítetlen

Részletesebben

Energetikai rendszer CAD/CAE tervezése

Energetikai rendszer CAD/CAE tervezése Energetikai rendszer CAD/CAE tervezése Varga Bálint 1,3, Dr. Mikó Balázs 2,3 1 intézeti mérnök, varga.balint@bgk.uni-obuda.hu 2 főiskolai docens, miko.balazs@bgk.uni-obuda.hu 3 Óbudai Egyetem, Bánki Donát

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

Rapid Gyorsragasztó. Tulajdonság Rapid/A Rapid/B Rapid (Keverve) Szín Fajsúly Viszkozitás (25 C-on) Élettartam Minőségét megőrzi (2gm, 25 C-on)

Rapid Gyorsragasztó. Tulajdonság Rapid/A Rapid/B Rapid (Keverve) Szín Fajsúly Viszkozitás (25 C-on) Élettartam Minőségét megőrzi (2gm, 25 C-on) Araldite (AW 2104/HW 2934) Kétkomponensű epoxy ragasztó háztartási és ipari felhasználásra Főbb jellemzők: Nagy tépő és nyíró erő Erős és rugalmas Gyors kikötés Sokféle felület ragasztásához Termék meghatározás:

Részletesebben

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László A kockázat alapú felülvizsgálati és karbantartási stratégia alkalmazása a MOL Rt.-nél megvalósuló Statikus Készülékek Állapot-felügyeleti Rendszerének kialakításában II. rész: a rendszer felülvizsgálati

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

4. Pneumatikus útszelepek működése

4. Pneumatikus útszelepek működése 4. Pneumatikus útszelepek működése Elektromos, direkt vezérlésű szelepek működése A közvetlen, vagy direkt vezérlésű útszelepek szerkezeti kialakításuk szerint - jellemzően - ülékes szelepek, ahol a szeleptányér

Részletesebben

se és alkalmazása Alun Thomas RHK Kft. SDMTS

se és alkalmazása Alun Thomas RHK Kft. SDMTS Plate loading módszer m ismertetése se és alkalmazása Alun Thomas SDMTS RHK Kft. Témák Bevezetés San Diego Hindhead Bátaapáti Következtetések Milyen egy helyszíni mérés? Bármilyen vizsgálat, amit valós

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

Szenzor- és méréstechnikai fejlesztések biomechanikai vizsgálatokhoz

Szenzor- és méréstechnikai fejlesztések biomechanikai vizsgálatokhoz Szenzor- és méréstechnikai fejlesztések biomechanikai vizsgálatokhoz SOHA RUDOLF FERENC DEBRECENI EGYETEM Témavezető: István Dr. Szabó 1 Tartalomjegyzék Gyorsulásmérő szenzor alapú mérőrendszer Járásvizsgálat

Részletesebben

KÖSZÖNTJÜK HALLGATÓINKAT!

KÖSZÖNTJÜK HALLGATÓINKAT! 2010. november 10. KÖSZÖNTJÜK HALLGATÓINKAT! Önök Dr. Horváth Zoltán Módszerek, amelyek megváltoztatják a világot A számítógépes szimuláció és optimalizáció jelentősége c. előadását hallhatják! 1 Módszerek,

Részletesebben

Számítógéppel segített tervezés oktatása BME Gép- és Terméktervezés Tanszékén. Dr. Körtélyesi Gábor Farkas Zsolt BME Gép és Terméktervezés Tanszék

Számítógéppel segített tervezés oktatása BME Gép- és Terméktervezés Tanszékén. Dr. Körtélyesi Gábor Farkas Zsolt BME Gép és Terméktervezés Tanszék Számítógéppel segített tervezés oktatása BME Gép- és Terméktervezés Tanszékén Dr. Körtélyesi Gábor Farkas Zsolt BME Gép és Terméktervezés Tanszék Gödöllő. 2009. 01.22. Tervezési lépések Háttér: eszközök,

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból

Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból Vizsgára felkészülést segítő kérdések Gépszerkezettan I. (AGS1) tárgyból 1/1. Foglalja össze a VEM alapelvét, sajátosságait! - diszkretizáció, - a szerkezet kisebb méretű, szabályos elemekre bontása, -

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés Mérnöki Szolgáltató Kft. ELEKTROSZTATIKUS feltöltődés robbanás veszélyes térben ESC- ESD Dr. Fodor István EOS E M ESC C ESD ESC AKTÍV PASSZÍV Anyag Tűz- és Reprográfia Mechanikai szeparálás robbanásveszély

Részletesebben

(11) Lajstromszám: E 007 384 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 384 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU000007384T2! (19) HU (11) Lajstromszám: E 007 384 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 03 757801 (22) A bejelentés napja:

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján

Részletesebben

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 7. Előadás Kapcsolatok I. Csavarozott kapcsolatok Dr. Szalai József Főiskolai adjunktus Tartalom Acélszerkezetek kapcsolatai Csavarozott kapcsolatok kialakítása Csavarozott kapcsolatok

Részletesebben

DICHTOMATIK. Beépítési tér és konstrukciós javaslatok. Statikus tömítés

DICHTOMATIK. Beépítési tér és konstrukciós javaslatok. Statikus tömítés Beépítési tér és konstrukciós javaslatok Az O-gyűrűk beépítési terét (hornyot) lehetőség szerint merőlegesen beszúrva kell kialakítani. A szükséges horonymélység és horonyszélesség méretei a mindenkori

Részletesebben

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf.

HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás. 2010/2011.BSc.II.évf. HŐMÉRSÉKLET MÉRÉS I. Mérésadatgyűjtés, jelfeldolgozás 2010/2011.BSc.II.évf. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók 1.Ellenállás változáson alapuló

Részletesebben

A statikai tervezés és a biztonsági értékelés adatigényének kielégítése fejlett geotechnikai, kőzetmechanikai mérési módszerek alkalmazásával

A statikai tervezés és a biztonsági értékelés adatigényének kielégítése fejlett geotechnikai, kőzetmechanikai mérési módszerek alkalmazásával A statikai tervezés és a biztonsági értékelés adatigényének kielégítése fejlett geotechnikai, kőzetmechanikai mérési módszerek alkalmazásával Kovács László, Kőmérő Kft., Pécs kovacslaszlo@komero.hu Új

Részletesebben

nyme ktk KTK_symbol.ai méretezés alapok Közgazdaságtudományi Kar emblémája adobe illustrator nyme arculati kézikönyv forrásfájok használata

nyme ktk KTK_symbol.ai méretezés alapok Közgazdaságtudományi Kar emblémája adobe illustrator nyme arculati kézikönyv forrásfájok használata méretezés alapok A méretezés alapja a»«rétegen található kör. Az embléma és a szöveggyűrű mérete minden esetben ezzel a körrel együtt értendő! Az embléma legkisebb alkalmazható átmérője: 26mm, ekkor a...26

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408

MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408 MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Mérési metodika és a műszer bemutatása

Mérési metodika és a műszer bemutatása Mérési metodika és a műszer bemutatása CPT kábelnélküli rendszer felépítése A Cone Penetration Test (kúpbehatolási vizsgálat), röviden CPT, egy olyan talajvizsgálati módszer, amely segítségével pontos

Részletesebben

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK

METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Optimalizációs eljárások hatása a mért értékek megbízhatóságának a növelésére

Optimalizációs eljárások hatása a mért értékek megbízhatóságának a növelésére Optimalizációs eljárások hatása a mért értékek megbízhatóságának a növelésére Dr. Odry Péter, Kecskés István Workshop Miskolc, 2013. 09. 06. 2.2/a Altéma 2.2/a Altéma: Ferromágneses anyagok roncsolásmentes,

Részletesebben

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr.

Anyagismeret I. A töréssel szembeni ellenállás vizsgálata. Összeállította: Csizmazia Ferencné dr. Anyagismeret I. A töréssel szembeni ellenállás vizsgálata Összeállította: Csizmazia Ferencné dr. Az anyag viselkedése terhelés hatására Az anyagok lehetnek: szívósak, képlékenyek és ridegek. Szívós vagy

Részletesebben

Félvezetk vizsgálata

Félvezetk vizsgálata Félvezetk vizsgálata jegyzkönyv Zsigmond Anna Fizika BSc III. Mérés vezetje: Böhönyei András Mérés dátuma: 010. március 4. Leadás dátuma: 010. március 17. Mérés célja A mérés célja a szilícium tulajdonságainak

Részletesebben

kerámia vagy természetes kőanyagú burkolólapokkal burkolt teraszok;

kerámia vagy természetes kőanyagú burkolólapokkal burkolt teraszok; Mapeflex PU50 SL Egykomponensű, folyékony, alacsony rugalmassági moduluszú, poliuretán hézagkitöltő-anyag a padlók legfeljebb 25%-os elmozdulású tágulási hézagainak kitöltésére ALKALMAZÁSI TERÜLET A Mapeflex

Részletesebben

Az automatikus optikai ellenőrzés növekvő szerepe az elektronikai technológiában

Az automatikus optikai ellenőrzés növekvő szerepe az elektronikai technológiában Az automatikus optikai ellenőrzés növekvő szerepe az elektronikai technológiában Dr. Jakab László, Dr. Janóczki Mihály BME Szabó András Robert Bosch Elektronika Kft. MTA Elektronikus Eszközök és Technológiák

Részletesebben

A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA

A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA V. VÁROSI VILLAMOS VASÚTI PÁLYA NAP Debrecen, 2012. 04. 03. A DEBRECENBEN ÉPÜLŐ EDF FÜVES VÁGÁNY MŰSZAKI MEGFELELŐSÉGÉNEK VIZSGÁLATA SZÉCHENYI ISTVÁN EGYETEM Dr. Horvát Ferenc főiskolai tanár 1. BEVEZETÉS

Részletesebben

Finomsági modulus és Hummel-féle terület

Finomsági modulus és Hummel-féle terület Finomsági modulus és Hummel-féle terület Németül: Angolul: Finomsági modulus: Finomsági modulus: Franciául: Finomsági modulus: Feinheitsmodul Hummel-Fläche Fineness modulus Hummel-area Module de finesse

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 10. Előadás Faszerkezetek I. Dr. Szalai József Főiskolai adjunktus Tartalom Fa, mint anyag általános tulajdonságai Előnyök-hátrányok Faipari termékek Faszerkezetek jellemző alkalmazási

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

AZ I-RISK SZOFTVER ALKALMAZÁSA INTEGRÁLT RENDSZER KIALAKÍTÁSÁNÁL. Dinnyés Álmos - Kun-Szabó Tibor

AZ I-RISK SZOFTVER ALKALMAZÁSA INTEGRÁLT RENDSZER KIALAKÍTÁSÁNÁL. Dinnyés Álmos - Kun-Szabó Tibor AZ I-RISK SZOFTVER ALKALMAZÁSA INTEGRÁLT RENDSZER KIALAKÍTÁSÁNÁL Dinnyés Álmos - Kun-Szabó Tibor Veszprémi Egyetem, Környezetmérnöki és Kémiai Technológia Tanszék 8201 Veszprém, Pf.: 158. e-mail: dinnyesa@almos.vein.hu

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

Név:.. Beosztás:. Levelezési cím: E-mail cím:.. Cég neve: Telefon/fax: Amennyiben a számlát fogadó cég más: Cég neve:. Címe

Név:.. Beosztás:. Levelezési cím: E-mail cím:.. Cég neve: Telefon/fax: Amennyiben a számlát fogadó cég más: Cég neve:. Címe Magyar Öntészeti Szövetség H-1751 Budapest, Pf.:200/19 Fax: 36/1-420-4812 E-mail: foundry@t-online.hu JELENTKEZÉSI LAP* a 23. Magyar Öntőnapokra 2015. 09-11., Herceghalom Név:.. Beosztás:. Levelezési cím:

Részletesebben

TŰZÁLLÓ BETON BEDOLGOZÁSÁNAK VIZSGÁLATA A GERJESZTETT REZGÉSEK MÉRÉSE

TŰZÁLLÓ BETON BEDOLGOZÁSÁNAK VIZSGÁLATA A GERJESZTETT REZGÉSEK MÉRÉSE FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 1998. március 0-1. TŰZÁLLÓ BTON BDOLGOZÁSÁNAK VIZSGÁLATA A GRJSZTTT RZGÉSK ÉRÉS Berencsi István Dr. Gömze A. László In 1997 was exemined the quality of compress

Részletesebben

Egyenes, a koponyacsonttal párhuzamos vágás toka alsó toka Egyenes, a koponyacsonttal párhuzamos vágás a szem vonaláig, majd tovább a fej elülső része felé toka és alsó toka Kristályosodási

Részletesebben

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL

7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 7. Laboratóriumi gyakorlat KIS ELMOZDULÁSOK MÉRÉSE KAPACITÍV ÉS INDUKTÍV MÓDSZERREL 1. A gyakorlat célja Kis elmozulások (.1mm 1cm) mérésének bemutatása egyszerű felépítésű érzékkőkkel. Kapacitív és inuktív

Részletesebben

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról

A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról A.. rendelete az épületenergetikai követelményekről, az épületek energiatanúsítványáról és a légkondicionáló rendszerek időszakos felülvizsgálatáról 3.sz Melléklet Követelményértékek 1 1. A határoló-és

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére

Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Az alakítással bevitt energia hatása az ausztenit átalakulási hőmérsékletére Csepeli Zsolt Bereczki Péter Kardos Ibolya Verő Balázs Workshop Miskolc, 2013.09.06. Előadás vázlata Bevezetés Vizsgálat célja,

Részletesebben

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos

A szilárd testek alakja és térfogata észrevehetően csak nagy erő hatására változik meg. A testekben a részecskék egymáshoz közel vannak, kristályos Az anyagok lehetséges állapotai, a fizikai körülményektől (nyomás, hőmérséklet) függően. Az anyagokat általában a normál körülmények között jellemző állapotuk alapján soroljuk be szilád, folyékony vagy

Részletesebben

Görgősláncok, lánckerekek, láncfeszítők

Görgősláncok, lánckerekek, láncfeszítők Görgősláncok, lánckerekek, láncfeszítők Görgős hajtólánc A legjobb minőségű hajtóláncok. Jelenleg ez a legelterjedtebb típus, különböző változatait kerékpár és motorkerékpár hajtására, vezérmű hajtására

Részletesebben

SZILÁRD TESTEK SZTATIKÁJA

SZILÁRD TESTEK SZTATIKÁJA SOPRONI EGYETEM FAIPARI MÉRNÖKI KAR Dr. Szala József egyetem tanár MŰSZAKI MECHANIKA II. SZILÁRD TESTEK SZTATIKÁJA (Rugalmasság- és szlárdságtan) Jegyzet fapar-, papírpar-, erdő- és környezetmérnök hallgatók

Részletesebben

VILLANYSZERELÉSI ÉS VILÁGÍTÁSTECHNIKAITERMÉKEK

VILLANYSZERELÉSI ÉS VILÁGÍTÁSTECHNIKAITERMÉKEK VILLANYSZERELÉSI ÉS VILÁGÍTÁSTECHNIKAITERMÉKEK Villanyszerelési és világítástechnikai szaküzletünkben forgalmazunk: PVC csövek: vékonyfalú hajlítható műanyag védőcsövek vastagfalú merev műanyag védőcsövek

Részletesebben

MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (2)

MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (2) Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT (2) a NAT-1-1508/2011 nyilvántartási számú akkreditált státuszhoz A MÜKI LABOR Mûanyag Vizsgáló és Fejlesztõ Kft. (1117 Budapest, Budafoki út 187-189.)

Részletesebben

Dinamikus kerékterhelés mérés. Békéscsaba 2011. augusztus 31. szeptember 1.- 2.

Dinamikus kerékterhelés mérés. Békéscsaba 2011. augusztus 31. szeptember 1.- 2. Új technológiák, anyagok a pálya- építésben és fenntartásban szakmai továbbképzés Dinamikus kerékterhelés mérés Előadó: Somlai Szilárd MÁV Zrt Pályalétesítményi Főosztály Békéscsaba 2011. augusztus 31.

Részletesebben

Vérkeringés. A szív munkája

Vérkeringés. A szív munkája Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása

Részletesebben