HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA"

Átírás

1 HIPERELASZTIKUS ANYAGMODELLEK KONTINUUM-MECHANIKAI HÁTTERE, OPTIMALIZÁLÁSI LEHETŐSÉG MOONEY-RIVLIN ANYAGÁLLANDÓKRA CONTINUUM MECHANICS BACKGROUND OF HYPERELASTIC MATERIAL MODELS, OPTIMIZATION POSSIBILITY OF MOONEY- RIVLIN S MATERIAL PERMANENTS HURI Dávid 1, MANKOVITS Tamás 2 egyetemi hallgató 1, adjunktus 2 Debreceni Egyetem Műszaki Kar 4028 Debrecen, Ótemető u Kivonat: Jelen cikk összefoglalja a gumiszerű anyagok számítási lehetőségeit. A dolgozat második része bemutatja az NX NASTRAN megoldó által használt kontinuummechanikai összefüggéseket. Végül egy gumirugó végeselemes analízisének optimalizálási lehetőség kerül bemutatásra. Kulcsszavak: végeselem-módszer, gumirugó, Mooney-Rivlin anyagmodell Abstract: This paper presents the calculation possibilities for elastic materias. Continuum mechanics to be used for The NX NASTRAN solver which is also presented. Finally a finite element analysis of a rubber spirng is evaluted as a numerical example. Keywords: finite element method, rubber spring, Mooney-Rivlin material model 1. BEVEZETÉS A rugóknak nagyon jelentős szerepe van a gépészetben, és ez tovább bővül, ha fém helyett elasztikus anyagot használunk az adott feladatra. Ha egy tengelyszimmetrikus gumi tömbön nyomó igénybevétellel munkát végzünk, azt belső deformációs munka alakjában felhalmozza majd a terhelés megszűnése után újra külső mechanikai munkává tudja alakítani a tömb speciális alakkiképzése nélkül, akkor ezt a rugót anyagrugónak nevezzük. Ilyen esetben jellemzően progresszív rugókarakterisztikát kapunk, ami következtetni enged minket a tervezési nehézségekre. További problémát okoz, hogy a gumi rugalmasságát nagymértékben befolyásolja a tömb alakja, anyaga valamint alakváltozásának mértéke is. Fontos jellemzője a nagy fajlagosmunka-felvétel ami nagy pontosságot követel számításaink során [1]. A gépészetben az évek alatt elterjedt kézi számítások csak elhanyagolások útján, kis alakváltozások esetére (ε < 25%), korábban már felvett diagramokkal és tapasztalati tényezőkkel számíthatóak statikus terhelésekre. Ezen okok miatt mindig is megoldatlan probléma maradt a gumirugók tervezésének feladata. Azonban a számítógépes végeselemes szoftverek megjelenésével, soha nem látott lehetőségek nyíltak meg a gumiszerű anyagok analízisében. Cikkemben bemutatom a már ismert számításokat, majd összehasonlítom az általam használt végeselemes szoftver analízisének eredményeivel.

2 2. MÉRETEZÉS NYOMÓ IGÉNYBEVÉTELRE HAGYOMÁNYOSAN Az acéloknál jól ismert Hooke-törvény gumi esetén csak a τ nyírófeszültségre érvényes, a σ húzónyomó feszültségeket bonyolult elméleti összefüggések írják le. Nyomásnak kitett gumitömbben a feszültség eloszlása inhomogén. Az igénybevétel karakterisztikája progresszív, de azt a műszaki gyakorlatban a számítások megkönnyítése miatt a valóságot jól megközelítő egyenessel helyettesítik. A közelítő egyenest úgy vették fel, hogy nulla és 20%-as deformációnál megegyezzen a valós rugókarakterisztika értékével, így az egyenlete: F = f A E h ahol F a nyomóerő, f a rugóút, A a gumirugó nyomást átadó felülete, h a magassága végül E pedig a gumirugó látszólagos rugalmassági modulusza. A látszólagos E -modulusz függ a G- nyírómodulusztól és a gumi alakjától is. Az alaki függést a k alaki tényezővel vesszük figyelembe: k = (2) ahol A a deformációban gátolt, A pedig a deformációban résztvevő szabad felület. Szakirodalmakban találunk olyan diagramokat (1.ábra), melyek megteremtik a kapcsolatot E k között különböző keménységű gumik esetén. Ezen modulusz bevezetésével a számítás egyszerűvé válik és a közelítésből származó hiba nem jelentős 25%-os deformációig. (1) 1. ábra E k kapcsolata különböző Shore leménységekre 3. GUMISZERŰ ANYAGOK VÉGESELEMES LEÍRÁSÁHOZ ALKALMAZOTT KONTINUUM-MECHANIKAI ALAPOK A FEMAP 9.3 szoftver NASTRAN megoldója a gumiszerű anyagok vizsgálatához a mechanikában jól ismert elméleti alapokat tartalmazza. Ahhoz, hogy egy nagy alakváltozásra képes alkatrészt szimulálni tudjunk, tisztában kell lennünk az ide vonatkozó kontinuummechanikai háttérrel. A 2. ábra egy nagy alakváltozásra képes rugalmas testet ábrázol a t = 0 és t = t időpillanatban. A test nyomó igénybevételnek van kitéve, a mechanikai modellje pedig ideális állapotot modellez.

3 2. ábra rugalmas szilárd test nyomásának ideális esete Az ábra alapján kifejezhető a fajlagos megnyúlás, a három koordinátatengely irányában ε = ΔL L = L L L (3) ε = ε = ΔD D A deformáció meghatározására szolgáló nyúlási arányt (λ) bevezetve [2] = D D D (4) ahol ε < 0 λ = L L = L + L L L = 1 + L L L = 1 + ε (5) λ = λ = D D = D + D D D ahol ε, ε > 0, így nyomás esetén a nyúlási arány a három főirányban = 1 + D D D = 1 + ε = 1 + ε (6) λ = λ λ = λ λ = λ (7) A kapcsolatot a pillanatnyi és az azonosító állapot között az F az alakváltozási gradiens, szolgáltatja [3] dr = F dr (8)

4 Azonban az általunk tárgyalt ideális esetben a deformáció alatt nincs szögtorzulás, így a mátrixa leegyszerűsödik: λ 0 0 F = 0 λ 0 (9) 0 0 λ A gumi molekulájának elasztikus tulajdonságát legjobban az egységnyi térfogatra vonatkoztatott deformációs energia sűrűséggel lehet jellemezni W = W (J) + W (C) (10) ahol, W (J) a térfogatváltozásból származó deformációs energia sűrűség, míg W (C) a térfogatállandóságból származó deformációs energia sűrűség. A nemlineáris feladatokban tehát W függvénye C-nek azaz a jobboldali Cauchy-Green alakváltozási tenzornak, mely a kontinuum elem alakváltozási állapotának leírására szolgál, továbbá felírható C = F F (11) majd a mátrixszorzást elvégezve λ 0 0 C = 0 λ 0 (12) 0 0 λ Ahhoz, hogy általánosan kezelhető legyen a feszültség-deformáció összefüggése, feltételezem, hogy az anyag rugalmas tulajdonságai deformálatlan állapotban izotropok (azaz a vizsgált anyag minden irányban azonos tulajdonsággal bír és a deformáció alatt térfogata változatlan). Így a deformáció jellemzésére C három fő skalár invariánsa használható, melyek rendre I = λ + λ + λ (13) I = λ λ + λ λ + λ λ (14) I = detc = λ λ λ (15) A gumira jellemző, hogy közel összenyomhatatlan anyagként viselkedik, így alakváltozása során térfogata nem változik. Ezért felírható a nyúlás arányokra az alábbi összefüggés így következik, hogy λ λ λ = 1 (16) I = 1 (17) azaz a deformáció két független értékkel, I és I -vel jellemezhető. Ebből következik, hogy a W deformációs energiasűrűség csak ezen két változó függvénye W = f(i ; I ) (18)

5 A gumitest deformálatlan állapotára felírható az alábbi összefüggés így, λ = λ = λ = 1 (19) I = I = 3 (20) ahhoz, hogy fennállhasson az alábbi egyenlőség W = 0 (21) a deformációs energiasűrűség változóit módosítanom kell, így függvénye a W = f(i 3; I 3) (22) Az alakváltozás nemlineáris elméletének segítségével a W (C) deformációs energia sűrűséget kifejeztem. Ebből kiindulva különböző anyagmodellek definiálásával, a W egységnyi térfogatra vonatkoztatott deformációs energia sűrűség számítható. Ezt a kontinuummechanikai hátteret használva, a végeselemes diszkretizáció után a szoftver képes arra, hogy alakváltozási- és feszültségi állapotot számoljon a megfelelő peremfeltételek mellett. 4. HIPERELASZTIKUS ANYAGOK ANALÍZISE FEMAP 9.3-AL A hiperelasztikus anyagok az NX Nastran speciális, Advanced Nonlinear (solution 601 és 701) megoldó moduljában érhetőek el. Az alkalmazható anyagmodellek a Mooney-Rivlin, Ogden, Arruda- Boyce, Hyperfoam, és a Sussman-Bathe. Ezen anyagmodellek csak 2D-s térfogati és 3D-s térfogati elemek használata esetén elfogadottak [4]. 4.1 Mooney-Rivlin anyagmodell Ez esetben a térfogatváltozásból származó deformációs energia sűrűség W (J) = 1 2 κ(j 1) (23) ahol κ az ún. térfogati rugalmassági modulusz. Míg a térfogatállandóságból származó deformációs energia sűrűség W = C (I 3) + C (I 3) + C (I 3) + C (I 3)(I 3) + C (I 3) + C (I 3) + C (I 3) (I 3) + C (I 3)(I 3) + C (I 3) (24) ahol, C Mooney-Rivlin anyagállandók. Láthatjuk, hogy a Mooney-Rivlin anyagtörvény leírásához használható 9 C állandó, és a κ Bulk modulusz. De nem feltétlenül szükséges ennyire magasrendű anyagtörvényt alkalmazni. Ha úgy választunk, hogy csak C 0 akkor a neo-hookean anyagtörvényt kapjuk. Megkaphatjuk a hagyományos kétváltozós Mooney-Rivlin anyagtörvényt, ha úgy választunk, hogy csak C 0 és C 0 W = C (I 3) + C (I 3) (25)

6 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 Ha feltételezzük, hogy κ = akkor az előző két állandó segítségével leírható a rugalmassági és nyírási modulusz: G = 2(C + C ) (26) E = 6(C + C ) (27) A κ Bulk modulusz az anyag összenyomhatóságát fejezi ki. Ha értéke nagyobb mint 2000 akkor összenyomhatatlan anyagot feltételezünk. Nagysága 601-es megoldó alakalmazása esetén, számítható közel összenyomhatatlan (ν = 0,499) anyagra: κ = 2G(1 + 2ν) 3(1 2ν) ahol G a nyírási rugalmassági modulusz, ν a Poisson-tényező (28) 4.2 Ogden anyagmodell Ez esetben a térfogatállandóságból származó deformációs energia sűrűség W = μ λ α + λ + λ 3 W = f(i 3; I 3)W = 0 (29) ahol μ és α az Ogden anyagállandók. Láthatjuk, hogy az Ogden anyagtörvény leírásához 19 állandó használható: μ, α, n = 1,,9 és a bulk modolusz. Ha úgy választunk, hogy a μ, α 0 csak n = 1,2,3 esetén akkor a hagyományos 3 változós Ogden anyagtörvényt kapjuk meg. Ha feltételezzük, hogy κ = akkor a rugalmassági és nyírási modulusz leírható az alábbi összefüggésekkel: G = 1 2 μ α (30) E = 3 2 μ α (31) A bulk moduluszra érvényesek a Mooney-Rivlin anyagtörvénynél elmondottak. 4.3 Arruda-Boyce anyagmodell W = N 1 2 (I 3) N (I 9) N (I 27) N (I ) N I 243 (32) ahol N egy anyagállandó, N egy paraméter mely képviseli a kapcsolatot az anyagi láncok között.

7 4.4 Hyperfoam anyagmodell W = μ λ α + λ + λ J 1 β (33) ahol az anyagállandók a μ, α, β, n = 1,, N ig. N maximális értéke 9. Ez az anyagmodell erősen összenyomható elasztomerekhez lett létrehozva, így ha a bulk modulusz nagy (nagyobb mint 10), más anyagmodellt kell alkalmazni. 4.5 Sussman-Bathe anyagmodell 5. NUMERIKUS PÉLDA W = w(e ) + w(e ) + w(e ) (34) Numerikus példának egy egyszerűen kezelhető hengeres gumi alkatrészt vettem melynek átmérője D = 25,3mm vastagsága pedig h = 17,8mm. A próbatest előírt elmozdulással lett összenyomva a szoftverben, melynek hatására a létrejött alakváltozást a 3.ábra szemlélteti 5.1 Anyagmodell optimalizálása 3. ábra Alakváltozás FEMAP-ban 5 mm-nél Egy optimalizálási lehetőséget fogok bemutatni Mooney-Rivlin anyagmodellre. Célom olyan C és C anyagállandók felvétele melyek helyesen írják le az anyag viselkedését nyomásra. Az optimalizálás lépései rendre: - Vizsgálatunk tárgyát egy 32 Shore A keménységű gumi képezi, melynek rugókarakterisztikája hagyományos méretezési módszerrel számítható. - Közel összenyomhatatlan állapotra a κ = 250 értéket veszem fel

8 - Felveszem C és C anyagállandók értékét úgy, hogy teljesüljön az alábbi egyenlőség C C = 4 (35) - Próbafuttatással felveszem a rugókarakterisztikát 20%-as deformációig - Mindaddig változtatom a C és C értékét, míg a 20%-as deformációhoz tartozó nyomóerő közel azonos nem lesz a hagyományos módszerrel számított értékkel - Így anyagállandókat rendelhetek adott Shore keménységű gumianyagokhoz 5.2 Eredmények 4. ábra Optimalizálás során felvett rugókarakterisztikák Végeselemes futtatásokkal az optimalizálást elvégezve, különböző keménységű gumidarabokra a rugókarakterisztikák az alábbi képet mutatják 5. ábra optimalizált rugókarakterisztikák

9 így, az alábbi összefüggések állapíthatóak meg Shore A[ ] C [MPa] C [MPa] 32 0,259 0, ,436 0, ,586 0, ,736 0, ,92 0,23 1. táblázat anyagállandók értékei Nagyobb alakváltozást modellezve, jól látszik a rugókarakterisztika progresszív jellege, és jelentős eltérések figyelhetőek meg a hagyományos számítás, és a végeselemes analízissel felvett karakterisztikák között 5. ÖSSZEFOGLALÁS 6. ábra Rugókarakterisztikák 40%-os összenyomásig Feldolgozva az NX NASTRAN által gumiszerű anyagokra alkalmazott kontinuummechanikai hátteret, az anyagmodellek és állandóik definiálása érthetővé vált. Optimalizálással sikerült anyagállandókat megállapítani Mooney-Rivlin anyagmodell esetén, és a végeselemes analízisből kiderült, hogy a valóságot reprezentáló rugókarakterisztika érhető el nyomó igénybevételre. KÖSZÖNETNYILVÁNÍTÁS A cikkben ismertetett kutató munka a TÁMOP-4.2.2/B-10/ jelű projekt részeként - az Új Magyarország Fejlesztési Terv keretében az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg. 6. FELHASZNÁLT IRODALOM [1] DR. BARTHA ZOLTÁN, Gumiipari Kézikönyv I. kötet, Budapest, 1988 [2] MSC. SOFTWARE, Nonlinear Finite Element Analysis of Elastomers [3] BONET, J., WOOD R.D., Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, [4] NX NASTRAN 7.1, Advanced Nonlinear Theory and Modeling Guide

NEMLINEÁRIS VEM PROGRAM GYAKORLATI ALKALMAZÁSA GUMIALKATRÉSZEKRE

NEMLINEÁRIS VEM PROGRAM GYAKORLATI ALKALMAZÁSA GUMIALKATRÉSZEKRE Multidiszciplináris tudományok, 2. kötet. (2012) 1 sz. pp. 103-114. NEMLINEÁRIS EM PROGRAM GYAKORLATI ALKALMAZÁSA GUMIALKATRÉSZEKRE Mankovits Tamás 1, Szabó Tamás 2 1 Adjunktus, Debreceni Egyetem, Gépészmérnöki

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

Pro/ENGINEER Advanced Mechanica

Pro/ENGINEER Advanced Mechanica Pro/ENGINEER Advanced Mechanica 2009. június 25. Ott István www.snt.hu/cad Nagy alakváltozások Lineáris megoldás Analízis a nagy deformációk tartományában Jellemzı alkalmazási területek: Bepattanó rögzítı

Részletesebben

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Fröccsöntött alkatrészek végeselemes modellezése. Szőcs András. Budapest, 2010. IV. 29.

Fröccsöntött alkatrészek végeselemes modellezése. Szőcs András. Budapest, 2010. IV. 29. Fröccsöntött alkatrészek végeselemes modellezése Szőcs András Budapest, 2010. IV. 29. 1 Tartalom Mőanyag- és Gumitechnológiai Szakcsoport bemutatása Méréstechnika Elızmények Szilárdságtani modellezés Termo-mechanikai

Részletesebben

Műszerezett keménységmérés alkalmazhatósága a gyakorlatban

Műszerezett keménységmérés alkalmazhatósága a gyakorlatban Műszerezett keménységmérés alkalmazhatósága a gyakorlatban Rózsahegyi Péter laboratóriumvezető Tel: (46) 560-137 Mob: (30) 370-009 Műszaki Kockázatmenedzsment Osztály Mechanikai Anyagvizsgáló Laboratórium

Részletesebben

Alagútfalazat véges elemes vizsgálata

Alagútfalazat véges elemes vizsgálata Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése

Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Acéllemezbe sajtolt nyírt kapcsolat kísérleti vizsgálata és numerikus modellezése Seres Noémi Doktorandusz BME Tartalom Téma: öszvérfödémek együttdolgoztató kapcsolatának numerikus modellezése, nyírt együttdolgoztató

Részletesebben

A MEFA-rugós tartók kifejezetten a flexibilis csőrögzítésekhez, illetve aggregátorok elasztikus tartóihoz lettek kifejlesztve.

A MEFA-rugós tartók kifejezetten a flexibilis csőrögzítésekhez, illetve aggregátorok elasztikus tartóihoz lettek kifejlesztve. MEFA - Rugós tartók Rugós tartók A MEFA-rugós tartók kifejezetten a flexibilis csőrögzítésekhez, illetve aggregátorok elasztikus tartóihoz lettek kifejlesztve. Alkalmazási és beépítési esetek: a) Csővezetékek

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

Miskolci Egyetem. GUMIALKATRÉSZEK ALAKOPTIMALIZÁLÁSA Ph.D. értekezés

Miskolci Egyetem. GUMIALKATRÉSZEK ALAKOPTIMALIZÁLÁSA Ph.D. értekezés Miskolci Egyetem GÉPÉSZMÉRNÖKI- ÉS INFORMATIKAI KAR GUMIALKATRÉSZEK ALAKOPTIMALIZÁLÁSA Ph.D. értekezés KÉSZÍTETTE: Mankovits Tamás okleveles gépészmérnök SÁLYI ISTVÁN GÉPÉSZETI TUDOMÁNYOK DOKTORI ISKOLA

Részletesebben

AZ ELLENÁLLÁSPONTHEGESZTÉS VÉGESELEMES MODELLEZÉSÉNEK SAJÁTOSSÁGAI

AZ ELLENÁLLÁSPONTHEGESZTÉS VÉGESELEMES MODELLEZÉSÉNEK SAJÁTOSSÁGAI FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 2000. március 24-25. AZ LLNÁLLÁSPONTHGSZTÉS VÉGSLS ODLLZÉSÉNK SAJÁTOSSÁGAI Szabó Péter This paper contains the results of a research work, in which the results

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához

Zárójelentés a Mikro-kontinuumok képlékeny alakváltozása című OTKA kutatási témához Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához A kutatás eredményeinek ismertetése A kutatások elsősorban a mikropoláris kontinuumok rugalmas-képlékeny alakváltozás

Részletesebben

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat)

KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) KÖTÉSEK FELADATA, HATÁSMÓDJA. CSAVARKÖTÉS (Vázlat) Kötések FUNKCIÓJA: Erő vagy nyomaték vezetése relatív nyugalomban lévő szerkezeti elemek között. OSZTÁLYOZÁSUK: Fizikai hatáselv szerint: Erővel záró

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN

FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN Moldex3D I2 FRÖCCSÖNTÉS SZIMULÁCIÓ A SZERKEZETI ANALÍZIS SZOLGÁLATÁBAN Készítette: Polyvás Péter peter.polyvas@econengineering.com econengineering Kft. www.econengineering.com 2010.04.28. Moldex3D Vezető

Részletesebben

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

Végeselem analízis 7. gyakorlat (kidolgozta: Dr. Pere Balázs)

Végeselem analízis 7. gyakorlat (kidolgozta: Dr. Pere Balázs) SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem analízis 7. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test stacionárius hővezetési feladata és hőfeszültségeinek

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

TŰZOLTÓ TECHNIKAI ESZKÖZÖK, FELSZERELÉSEK IV. FEJEZET TŰZOLTÓ KAPCSOK 1

TŰZOLTÓ TECHNIKAI ESZKÖZÖK, FELSZERELÉSEK IV. FEJEZET TŰZOLTÓ KAPCSOK 1 TŰZOLTÓ TECHNIKAI ESZKÖZÖK, FELSZERELÉSEK IV. FEJEZET TŰZOLTÓ KAPCSOK 1 1. A TŰZOLTÓ KAPCSOK CSOPORTOSÍTÁSA. 1.1. Típus szerint (a kapocstípusok a felhasználástól és a rendeltetéstől függően): a) tömlőkapocs

Részletesebben

A TERMÉSZETES VÍZÁRAMLÁS ÉS A TERMÁLIS GYÓGYVIZEK HŐMÉRSÉKLETÉNEK KAPCSOLATA AZ ÉK ALFÖLD PORÓZUS ÜLEDÉKEIBEN

A TERMÉSZETES VÍZÁRAMLÁS ÉS A TERMÁLIS GYÓGYVIZEK HŐMÉRSÉKLETÉNEK KAPCSOLATA AZ ÉK ALFÖLD PORÓZUS ÜLEDÉKEIBEN A Miskolci Egyetem Közleménye, A sorozat, Bányászat, 72.kötet (2007) A TERMÉSZETES VÍZÁRAMLÁS ÉS A TERMÁLIS GYÓGYVIZEK HŐMÉRSÉKLETÉNEK KAPCSOLATA AZ ÉK ALFÖLD PORÓZUS ÜLEDÉKEIBEN Dr. Székely Ferenc 1204

Részletesebben

MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER)

MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) MODELLEZÉS ÉS SZIMULÁCIÓ (A LINEÁRIS RUGALMASSÁGTAN ÉS A VÉGESELEM-MÓDSZER) Szerzők: Dr. Mankovits Tamás Huri Dávid Lektor: Dr.

Részletesebben

Turai Péter 1 Dr. Nagy László 2 Dr. Takács Attila 3

Turai Péter 1 Dr. Nagy László 2 Dr. Takács Attila 3 ZAGYTÁROZÓGÁT ALATTI PÓRUSVÍZNYOMÁS VÉGESELEMES MODELLEZÉSE NUMERICAL MODELING FOR PORE PRESSURE PREDICTION UNDER TAILINGS DAM Turai Péter 1 Dr. Nagy László 2 Dr. Takács Attila 3 1 MSc. hallgató, BME,

Részletesebben

Dr. Móczár Balázs 1, Dr. Mahler András 1, Polgár Zsuzsanna 2 1 BME Építőmérnöki Kar, Geotechnikai Tanszék 2 HBM Kft.

Dr. Móczár Balázs 1, Dr. Mahler András 1, Polgár Zsuzsanna 2 1 BME Építőmérnöki Kar, Geotechnikai Tanszék 2 HBM Kft. TALAJ ÉS SZERKEZET KÖLCSÖNHATÁSÁNAK ÖSSZEHASONLÍTÓ VIZSGÁLATAI VASBETON LEMEZALAPOZÁSÚ VÁZAS ÉPÜLETEK ESETÉN COMPARITIVE TESTS OF SOIL AND STRUCTURE INTERACTION IN CASE OF FRAMED STRUCTURES WITH RAFT FOUNDATION

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető . Laboratóriumi gyakorlat A EMISZO. A gyakorlat célja A termisztorok működésének bemutatása, valamint főbb paramétereik meghatározása. Az ellenállás-hőmérséklet = f és feszültség-áram U = f ( I ) jelleggörbék

Részletesebben

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához

Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához Segédlet a Hengeres nyomó csavarrugó feladat kidolgozásához A rugók olyan gépelemek, amelyek mechanikai energia felvételére, tárolására alkalmasak. A tárolt energiát, erő vagy nyomaték formájában képesek

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Projektfeladatok 2014, tavaszi félév

Projektfeladatok 2014, tavaszi félév Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:

Részletesebben

Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.

Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN

PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN Multidiszciplináris tudományok, 3. kötet. (2013) sz. pp. 251-258. PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN Lajos Sándor Mérnöktanár, Miskolci Egyetem,Ábrázoló geometriai

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Diplomamunkám felépítése

Diplomamunkám felépítése Üregek távolhatása gránitos kőzetkörnyezetben Tóth Szilvia Konzulensek: Dr. Török Ákos, BME Építőanyagok és Mérnökgeológia Tanszék Poromb Péter, Mott MacDonald Magyarország Kft. Diplomamunkám felépítése

Részletesebben

Innocity Kft. terméktervezés, szerszámtervezés öntészeti szimuláció készítés + 3 6 / 7 0 / 4 2 1 8-407. w w w. i n n o c i t y.

Innocity Kft. terméktervezés, szerszámtervezés öntészeti szimuláció készítés + 3 6 / 7 0 / 4 2 1 8-407. w w w. i n n o c i t y. terméktervezés, szerszámtervezés öntészeti szimuláció készítés I n n o c i t y K u t a t á s i é s I n n o v á c i ó s T a n á c s a d ó K f t 2 6 0 0 V á c, P e t ő f i S á n d o r u. 5 5 / A + 3 6 /

Részletesebben

Féknyereghez használt ötvözött alumínium (7075T6) rugalmassági modulusa VEM vizsgálatokhoz

Féknyereghez használt ötvözött alumínium (7075T6) rugalmassági modulusa VEM vizsgálatokhoz Féknyereghez használt ötvözött alumínium (7075T6) rugalmassági modulusa VEM vizsgálatokhoz Á. Horváth 1, I. Oldal 2, G. Kalácska 1, M. Andó 3 3 1 2 Gépipari Technológiai Intézet, Szent István Egyetem,

Részletesebben

Kúszás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK POLIMEREK IDŐFÜGGŐ MECHANIKAI TULAJDONSÁGAI

Kúszás BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK POLIMEREK IDŐFÜGGŐ MECHANIKAI TULAJDONSÁGAI B Kiadva: 4. február 3. BUDAPSTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI GYTM GÉPÉSZMÉRNÖKI KAR POLIMRTCHNIKA TANSZÉK Kúszás POLIMRK IDŐFÜGGŐ MCHANIKAI TULAJDONSÁGAI A JGYZT ÉRVÉNYSSÉGÉT A TANSZÉKI WB OLDALON KLL

Részletesebben

LÁNC- ÉS SZÍJFESZÍT K, GUMIRUGÓK

LÁNC- ÉS SZÍJFESZÍT K, GUMIRUGÓK LÁNC- ÉS SZÍJFESZÍT K, GUMIRUGÓK Tartalomjegyzék: CRESA csoport ARCO csoport TEN BLOC csoport ASSO csoport Egyéb feszít választék Gumirugók Oldalszám 226. oldal 230. oldal 233. oldal 236. oldal 238. oldal

Részletesebben

PRÓBAMÉRÉSEK TEREPI KÖRÜLMÉNYEK KÖZÖTT KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL

PRÓBAMÉRÉSEK TEREPI KÖRÜLMÉNYEK KÖZÖTT KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (011) 1. szám, pp. 75-8. PRÓBAMÉRÉSEK TEREPI KÖRÜLMÉNYEK KÖZÖTT KÖNNYŰ EJTŐSÚLYOS DINAMIKUS TERHELŐTÁRCSÁVAL Makó Ágnes PhD hallgató, I. évfolyam

Részletesebben

Mathcad. 2009. Június 25. Ott István. www.snt.hu/cad. S&T UNITIS Magyarország Kft.

Mathcad. 2009. Június 25. Ott István. www.snt.hu/cad. S&T UNITIS Magyarország Kft. Mathcad 2009. Június 25. Ott István www.snt.hu/cad Matematika a gépészet nyelve Mit? Miért? 10 x 2 dx = 333 1 π cos ( x) + sin( x) dx = 2 0 i 3 1 4 i4 i 1 2 i3 + 1 4 i2 d ds ( 3s) 2 + s 2 18 s + 1 2 Pro/ENGINEER

Részletesebben

Rugalmas tengelykapcsoló mérése

Rugalmas tengelykapcsoló mérése BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék

Részletesebben

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN

ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MFK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN ÉPÍTŐANYAGOK REOLÓGIAI TULAJDONSÁGAINAK VIZSGÁLATA A DE-ATC-MK MÉLY- ÉS SZERKEZETÉPÍTÉSI TANSZÉKÉN Dr. Kovács Imre PhD. tanszékvezető főiskolai docens 1 Vizsgálataink szintjei Numerikus szimuláció lineáris,

Részletesebben

Mechanikai tulajdonságok és vizsgálatuk 1-2

Mechanikai tulajdonságok és vizsgálatuk 1-2 ANYAGTUDOMÁNY É TECHNOLÓGIA TANZÉK Anyagszerkezettan és anyagvizsgálat 5/6 Mechanikai tulajonságok és vizsgálatuk 1- Dr. Krállics György krallics@eik.bme.hu 1 Az előaás fő pontjai Bevezetés Rugalmas és

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

Bevezetés a. nyúlásmérő bélyeges méréstechnikába

Bevezetés a. nyúlásmérő bélyeges méréstechnikába Bevezetés a nyúlásmérő bélyeges méréstechnikába Dr. Petróczki Károly PhD egyetemi docens, tanszékvezető Szent István Egyetem, Gödöllő, Gépészmérnöki Kar Folyamatmérnöki Intézet Méréstechnika Tanszék Petroczki.Karoly@gek.szie.hu

Részletesebben

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok Dr. Szalai József Főiskolai adjunktus I. ZH STATIKA!!! Gyakorlás: Mechanikai példatár I. kötet (6.1 Egyenes tengelyű tartók)

Részletesebben

A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR

A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR Készítette: TÓTH ESZTER A5W9CK Műszaki menedzser BSc. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT CÉLJA Plazmasugaras és vízsugaras technológia

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

PÁLYÁZATI BESZÁMOLÓ A PRO PROGRESSIO ALAPÍTVÁNY

PÁLYÁZATI BESZÁMOLÓ A PRO PROGRESSIO ALAPÍTVÁNY PÁLYÁZATI BESZÁMOLÓ A PRO PROGRESSIO ALAPÍTVÁNY RÉSZÉRE Készítette:... Kotrocz Krisztián Budapest, 014.07.10. 1 BEVEZETÉS A kutatás keretén belül kohézív talajok numerikus szimulációjával foglalkoztam.

Részletesebben

A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban

A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban A hatékony mérnöki tervezés eszközei és módszerei a gyakorlatban Korszerű mérnöki technológiák (CAD, szimuláció, stb.) alkalmazásának bemutatása a készülékfejlesztés kapcsán Előadó: Szarka Zsolt H-TEC

Részletesebben

Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images

Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images Laurent D. COHEN and Isaac COHEN Prezentáció: Kiss Zoltán, SZTE 2004. Motiváció 1) Objektum felszínek kijelölése szegmentációs

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

A nyomás. IV. fejezet Összefoglalás

A nyomás. IV. fejezet Összefoglalás A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010

MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 MŰSZAKI TUDOMÁNY AZ ÉSZAK-ALFÖLDI RÉGIÓBAN 2010 KONFERENCIA ELŐADÁSAI Nyíregyháza, 2010. május 19. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18

Kecskeméti Főiskola GAMF Kar. Poliolefinek öregítő vizsgálata Szűcs András. Budapest, 2011. X. 18 Kecskeméti Főiskola GAMF Kar Poliolefinek öregítő vizsgálata Szűcs András Budapest, 211. X. 18 1 Tartalom Műanyagot érő öregítő hatások Alapanyag és minta előkészítés Vizsgálati berendezések Mérési eredmények

Részletesebben

Teherviselő faszerkezet csavaros kapcsolatának tervezési tapasztalatai az európai előírások szerint

Teherviselő faszerkezet csavaros kapcsolatának tervezési tapasztalatai az európai előírások szerint Teherviselő faszerkezet csavaros kapcsolatának tervezési tapasztalatai az európai előírások szerint Joó Balázs Designing olted connections according to European standards The suject of the article is the

Részletesebben

Polimerek fizikai, mechanikai, termikus tulajdonságai

Polimerek fizikai, mechanikai, termikus tulajdonságai SZÉCHENYI ISTVÁN EGYETEM ANYAGISMERETI ÉS JÁRMŰGYÁRTÁSI TANSZÉK POLIMERTECHNIKA NGB_AJ050_1 Polimerek fizikai, mechanikai, termikus tulajdonságai DR Hargitai Hajnalka 2011.10.05. BURGERS FÉLE NÉGYPARAMÉTERES

Részletesebben

Lemezgrafitos vasöntvények visszamaradó öntési feszültségének mérése és véges elemes szimulációja

Lemezgrafitos vasöntvények visszamaradó öntési feszültségének mérése és véges elemes szimulációja Lemezgrafitos vasöntvények visszamaradó öntési feszültségének mérése és véges elemes szimulációja Dr. Molnár Dániel Miskolci Egyetem, Műszaki Anyagtudományi Kar, Metallurgiai és Öntészeti Intézet daniel.molnar@uni-miskolc.hu

Részletesebben

Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata

Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK Végeselem módszer 5. gyakorlat (kidolgozta: Dr. Pere Balázs) Feladat: Forgásszimmetrikus test elmozdulás- és feszültség állapotának vizsgálata Adottak

Részletesebben

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika Dunaújvárosi Főiskola Anyagtudományi és Gépészeti Intézet Mérnöki alapismeretek és biztonságtechnika Mechanikai anyagvizsgálat 2. Dr. Palotás Béla palotasb@mail.duf.hu Készült: Dr. Krállics György (BME,

Részletesebben

Dimenzióváltás becsapódásos fragmentációban

Dimenzióváltás becsapódásos fragmentációban Dimenzióváltás becsapódásos fragmentációban Pál Gergő Témavezető: Dr. Kun Ferenc Debreceni Egyetem Döffi 2013, Balatonfenyves Heterogén anyagok fragmentációja Próbatest töredezési folyamata - nagy mennyiségű

Részletesebben

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata

MÉRÉSI JEGYZŐKÖNYV. A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata MÉRÉSI JEGYZŐKÖNYV A mérés megnevezése: Potenciométerek, huzalellenállások és ellenállás-hőmérők felépítésének és működésének gyakorlati vizsgálata A mérés helye: Irinyi János Szakközépiskola és Kollégium

Részletesebben

Keménységmérés diszkrét elemes (DEM) modellezése

Keménységmérés diszkrét elemes (DEM) modellezése Szilikátipari Tudományos Egyesület Diplomadíj pályázat Budapest, 2016. május 11. Keménységmérés diszkrét elemes (DEM) modellezése Gyurkó Zoltán BME Építőanyagok és Magasépítés Tanszék Dr. Borosnyói Adorján

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

Számítógéppel segített folyamatmodellezés p. 1/20

Számítógéppel segített folyamatmodellezés p. 1/20 Számítógéppel segített folyamatmodellezés Piglerné Lakner Rozália Számítástudomány Alkalmazása Tanszék Pannon Egyetem Számítógéppel segített folyamatmodellezés p. 1/20 Tartalom Modellező rendszerektől

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS

DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST RESULTS Műszaki Földtudományi Közlemények, 83. kötet, 1. szám (2012), pp. 271 276. HULLADÉKOK TEHERBÍRÁSÁNAK MEGHATÁROZÁSA CPT-EREDMÉNYEK ALAPJÁN DETERMINATION OF SHEAR STRENGTH OF SOLID WASTES BASED ON CPT TEST

Részletesebben

SZENT ISTVÁN EGYETEM

SZENT ISTVÁN EGYETEM SZENT ISTVÁN EGYETEM Elasztomer-fém kötés kialakításának feltételei gépipari hibrid alkatrészek gyártásánál Doktori (PhD) értekezés Renner Tamás Gödöllő 2013 A doktori iskola megnevezése: Műszaki Tudományi

Részletesebben

V. Moldex3D Szeminárium - econ Felhasználói Találkozó

V. Moldex3D Szeminárium - econ Felhasználói Találkozó V. Moldex3D Szeminárium - econ Felhasználói Találkozó A Moldex3D szerepe a minőségi termékgyártásban Dr. Molnár László econ Engineering Kft 2 econ Engineering Kft. High quality in CAE Cégadatok: Alapítás

Részletesebben

Tömeg (2) kg/darab NYLATRON MC 901 NYLATRON GSM NYLATRON NSM 40042000 40050000 40055000 50. Átmérő tűrései (1) mm. Átmérő mm.

Tömeg (2) kg/darab NYLATRON MC 901 NYLATRON GSM NYLATRON NSM 40042000 40050000 40055000 50. Átmérő tűrései (1) mm. Átmérő mm. NYLTRON M 901, kék (színezett, növelt szívósságú, öntött P 6) NYLTRON GSM, szürkésfekete; (MoS, szilárd kenőanyagot tartalmazó, öntött P 6) NYLTRON NSM, szürke (szilárd kenőanyag kombinációt tartalmazó

Részletesebben

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Keszenheimer Attila Direct line Kft vendégkutató BME PhD hallgató Felület integritás

Részletesebben

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ

ahol m-schmid vagy geometriai tényező. A terhelőerő növekedésével a csúszó síkban fellép az un. kritikus csúsztató feszültség τ Egykristály és polikristály képlékeny alakváltozása A Frenkel féle modell, hibátlan anyagot feltételezve, nagyon nagy folyáshatárt eredményez. A rácshibák, különösen a diszlokációk jelenléte miatt a tényleges

Részletesebben

Idegen nyelvű folyóiratokban megjelent közlemények:

Idegen nyelvű folyóiratokban megjelent közlemények: Idegen nyelvű folyóiratokban megjelent közlemények: 1. Páczelt, I. Szabó, T.: A bandwidth reduction process for substructural finite element method, Acta Techn. Acad. Sci. Hung. 102 (3 4), pp. 315 325,

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

PÉLDATÁR 10. 10. BEGYAKORLÓ FELADAT TÉRBELI FELADAT MEGOLDÁSA VÉGESELEM- MÓDSZERREL

PÉLDATÁR 10. 10. BEGYAKORLÓ FELADAT TÉRBELI FELADAT MEGOLDÁSA VÉGESELEM- MÓDSZERREL PÉLDATÁR 10. 10. BEGYAKORLÓ FELADAT TÉRBELI FELADAT MEGOLDÁSA VÉGESELEM- MÓDSZERREL Szerző: Dr. Oldal István 2 Végeselem-módszer 10. TÉRBELI FELADAT MEGOLDÁSA 10.1. Lépcsős tengely vizsgálata Tömör testként,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Tartószerkezet rekonstrukciós szakmérnök képzés Feszített és előregyártott vasbeton szerkezetek 1. előadás Előregyártott vasbeton szerkezetek kapcsolatai Dr. Sipos András Árpád 2012. november 17. Vázlat

Részletesebben

2011.11.08. 7. előadás Falszerkezetek

2011.11.08. 7. előadás Falszerkezetek 2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:

Részletesebben

PEMŰ Rt. Vulkollán üzem telefon:26/561-257, 30/2277-371 2083 Solymár, Tersztyánszky út. 89. fax: 26/561-250, email:bertae@pemu.hu

PEMŰ Rt. Vulkollán üzem telefon:26/561-257, 30/2277-371 2083 Solymár, Tersztyánszky út. 89. fax: 26/561-250, email:bertae@pemu.hu Bevezető A PEMŰ Műanyagipari Rt. hagyományos termékei között kiemelkedő szerepet foglalnak el a poliuretán rugók. A tervezési segédletben ismertetjük a rugók felhasználási lehetőségeit, az alkalmazási

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium

Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium Két- és háromállású szabályozók. A szabályozási rendszer válasza és tulajdonságai. Popov stabilitási kritérium 4.. Két- és háromállású szabályozók. A két- és háromállású szabályozók nem-olytonos kimenettel

Részletesebben