Rugalmasságtan és FEM, 2005/2006. II. félév, I. ZÁRTHELYI, A

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Rugalmasságtan és FEM, 2005/2006. II. félév, I. ZÁRTHELYI, A"

Átírás

1 Rugalmasságtan és FEM, 5/6. II. félév, I. ZÁRTHELYI, A 6. április., Név: NEP T UN kod :. feladat Adott az elmozdulásmez½o: u = ( ax z i + bxz k) ; a = [mm ] ; b = [mm ].a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban!. feladat A test egy adott pontjában a feszültségi állapotot a következ½o adatok jellemzik: x = [MP a] ; xy = 5 [MP a] ; sík-feszültségi állapot, a rugalmassági modulus értéke: 5 [MP a] ; a Poisson tényez½o értéke: :..a., Határozza meg az alakváltozási tenzor mátrixát!.b., Számítsa ki az (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszültséget!. feladat Adott az Airy-féle feszültségfüggvény: (x; y) = A 6 xy :.a., Határozza meg a Mohr szerinti egyenérték½u feszültség értékét sík-alakváltozási állapot esetén az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett! (a Poisson tényez½o értéke: :5).. feladat Az r b = [mm] sugarú furattal és R = [mm] küls½o sugárral bíró állandó szélesség½u tárcsát zsugorkötéssel szerelték a merev tengelyre. Az! = [=s] szögsebesség½u forgáskor a radiális feszültség a tárcsában SI mértékegységekkel a r (r) = : 7 : 5 r 7:5 6 r függvényként ismert. A Poisson tényez½o értéke: :..a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt?.b., Mekkora a tárcsa anyagának s½ur½usége?.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál?

2 Megoldások. feladat Adott az elmozdulásmez½o: u = ( ax z i + bxz k) ; a = [mm ] ; b = [mm ].a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban!.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban!.a., Írja fel az alakváltozási tenzor mátrixát az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban! " (ax z) = axz " (bxz ) = bxz " = ; @ = z) () @ = z) (bxz ) = ax + @ (bxz ) " = 6 axz (ax + bz ) (ax + bz ) bxz 7 5 Az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] és b = [mm ] állandók mellett: " = 5.b., Határozza meg az x és z tengelypárok fajlagos szögváltozását az

3 (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban! Az x és z tengelypárok fajlagos szögváltozása az xz mennyiség. Az (x = [mm] ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] és b = [mm ] állandók mellett: xz = ax + bz = : xz =.c., Adja meg az n T = [; ; ] irányhoz tartozó fajlagos nyúlást az (x = ; y = [mm] ; z = [mm]) koordinátájú pontban! Mivel n T i T, így (x = ; y = [mm] ; z = [mm]) koordinátájú pontban az a = [mm ] állandó esetén " n " x = axz = : " n " x =. feladat A test egy adott pontjában a feszültségi állapotot a következ½o adatok jellemzik: x = [MP a] ; xy = 5 [MP a] ; sík-feszültségi állapot, a rugalmassági modulus értéke: 5 [MP a] ; a Poisson tényez½o értéke: :..a., Határozza meg az alakváltozási tenzor mátrixát!.b., Számítsa ki az (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszültséget!.a., Határozza meg az alakváltozási tenzor mátrixát! A feszültségi tenzor mátrixa ( z = ): 5 = 5 5 [MP a] : Az alakváltozás komponensek sík-feszültségi állapot esetén: " x = E ( x y ) = E x = " y = E ( y x ) = E x = xy = G xy = " z = ( + ) xy = E (" x + " y ) = ( [MP a]) = 5 5 [MP a] : ( [MP a]) = 5 [MP a] ( + :) 5 ( 5 [MP a]) = 6 5 [MP a] : : (5 :) =

4 Az alakváltozási tenzor mátrixa: " = 5 5 : (i j) (j) normálisú síkhoz tartozó feszültségvektort és normálfeszült-.b., Számítsa ki az séget! A sík normálisa Így tehát a normálfeszültség pedig: (i j) (j) = k j = i n i! n = n i = n = n n n i = [ ; 5; ] 5 5 [MP a] ; 5 [MP a] = [MP a]:. feladat Adott az Airy-féle feszültségfüggvény: (x; y) = A 6 xy :.a., Határozza meg a Mohr szerinti egyenérték½u feszültség értékét sík-alakváltozási állapot esetén az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett! (a Poisson tényez½o értéke: :5). A feszültség komponensek: x (x; A 6 = Axy; y (x; = xy (x; y) Sík-alakváltozási állapot esetén: A 6 xy z = ( x + y ) = Axy: = A 6 = A feszültségi tenzor mátrixa: = 6 Axy Ay Ay 7 5 ; Axy

5 amely az (x = [mm] ; y = 5 [mm] ; z = [mm]) koordinátájú pontban az A = [N=mm ] állandó mellett 5 = 5 [MP a] = 5 5 [MP a]! = [MP a] = 5 [MP a] A Mohr szerinti egyenérték½u feszültség: M = = 5 ( 5) = [MP a] : M = [MP a]. feladat Az r b = [mm] sugarú furattal és R = [mm] küls½o sugárral bíró állandó szélesség½u tárcsát zsugorkötéssel szerelték a tengelyre. Az! = [=s] szögsebesség½u forgáskor a radiális feszültség a tárcsában SI mértékegységekkel a r (r) = : 7 : 5 r 7:5 6 r függvényként ismert. A Poisson tényez½o értéke: :..a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt?.b., Mekkora a tárcsa anyagának s½ur½usége?.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál?.a., Mekkora nyomás ébred forgás közben a tengely és a tárcsa közt? A radiális feszültség az r b = [mm] sugárnál a tengely és a tárcsa közt ébred½o nyomást adja negatív el½ojellel: r (r = r b ) = p = : 7 : 5 : 7:5 6 : = 5:99 8 [P a] p = 59:9 [MP a] :.b., Mekkora a tárcsa anyagának s½ur½usége? Az adott függvényben az A, B és C állandók beazonosíthatók r (r) = : 7 {z } A : {z } 5 r 7:5 {z 6 } r : B C A C értékéb½ol a s½ur½uség számítható: C = + 8! = + : = 7:5 6! = 8 8 7:5 6 : = 9 kg m

6 kg = 9 : m.c., Mekkora tangenciális feszültség ébred a tárcsa küls½o sugaránál? Az A, B és C állandók ismeretében a tangenciális feszültség képlete felírható: t = A + B r + C r ; ahol C = +! = + : 9 = 8 8 P a C = :75 6 : m A tangenciális feszültség függvénye ekkor P a :75 6 m t (r) = A + B r + C r = : 7 + : 5 r :75 6 r ; amely felhasználásával a tangenciális feszültség értéke a tárcsa küls½o sugaránál (R = : [m]) t (r = R) = : 7 + : 5 : :75 6 : = :6 7 [P a] t (r = R) = 6: [MP a]

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort!

Frissítve: 2015.04.29. Feszültség- és alakváltozási állapot. 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1. példa: Írjuk fel az adott kockához tartozó feszültségtenzort! 1 / 20 2. példa: Rajzoljuk fel az adott feszültségtenzorhoz tartozó kockát! 2 / 20 3. példa: Feszültségvektor számítása. Egy alkatrész egy

Részletesebben

Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.

Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem

Alkalmazott Mechanika Tanszék. Széchenyi István Egyetem Széchenyi István Egyetem Szerkezetek dinamikája Alkalmazott Mechanika Tanszék Elméleti kérdések egyetemi mesterképzésben (MSc) résztvev járm mérnöki szakos hallgatók számára 2013. szeptember 6. 1. Folytonos

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

Számítás végeselem módszerrel Topológia

Számítás végeselem módszerrel Topológia Soil Boring co. Tarcsai út. 57/8 - Budapest Számítás végeselem módszerrel Topológia Projekt Dátum : 8.0.05 Globális beállítások Projekt típusa : Számítás típusa : Alagutak : Bővített adatbevitel : Részletes

Részletesebben

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat)

SZILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egyetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) SILÁRDSÁGTAN A minimum teszt kérdései a gépészmérnöki szak egetemi ágon tanuló hallgatói részére (2004/2005 tavaszi félév, szigorlat) Szilárdságtan Pontszám 1. A másodrendű tenzor értelmezése (2) 2. A

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból

BEMUTATÓ FELADATOK (2) ÁLTALÁNOS GÉPTAN tárgyból BEMUTATÓ FELADATOK () 1/() Egy mozdony vízszintes 600 m-es pályaszakaszon 150 kn állandó húzóer t fejt ki. A vonat sebessége 36 km/h-ról 54 km/h-ra növekszik. A vonat tömege 1000 Mg. a.) Mekkora a mozgási

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása

A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3. FEJEZET A szilárdságtan alapkísérletei I. Egyenes rúd húzása, zömök rúd nyomása 3.1. Az alapkísérletek célja Hétköznapi megfigyelés, hogy ugyanazon szilárd test alakváltozásainak mértéke függ a testet

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak.

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM K ö z l e k e d é s m é r n ö k i K a r Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Járműelemek és Hajtások Tanszék Járműelemek és

Részletesebben

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd Integrálszámítás 4. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 2015 november 30. Filip Ferdinánd 2015 november 30. Integrálszámítás 4. 1 / 12 Az el adás vázlata Területszámítás

Részletesebben

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK Építészeti és építési alapismeretek emelt szint 0812 ÉRETTSÉGI VIZSGA 2010. október 18. ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS

Részletesebben

STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél

STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél A cikkben számtalan konkrét tervezõi munka közül válogatva rövid áttekintést nyújtunk felhasználói szemmel a STAAD-III kimondottan

Részletesebben

Alagútfalazat véges elemes vizsgálata

Alagútfalazat véges elemes vizsgálata Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék

Bevezetés a modern fizika fejezeteibe. 1.(a) Rugalmas hullámok. Utolsó módosítás: szeptember 28. Dr. Márkus Ferenc BME Fizika Tanszék Bevezetés a modern fizika fejezeteibe 1.(a) Rugalmas hullámok Utolsó módosítás: 2012. szeptember 28. 1 A deformálható testek mozgása (1) A Helmholtz-féle kinematikai alaptétel: A deformálható test elegendően

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Méréssel kapcsolt 3. számpélda

Méréssel kapcsolt 3. számpélda Méréssel kapcsolt 3. számpélda Eredmények: m l m 1 m 3 m 2 l l ( 2 m1 m2 m l = 2 l2 ) l 2 m l 3 = m + m2 m1 Méréssel kapcsolt 4. számpélda Állítsuk össze az ábrán látható elrendezést. Használjuk a súlysorozat

Részletesebben

MECHANIKA II. Szilárdságtan

MECHANIKA II. Szilárdságtan MECHANIKA II. Szilárdságtan Legeza, László dr. Mónika, Bakosné Diószegi Tibor dr., Goda MECHANIKA II. Szilárdságtan

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

A betonok összetételének tervezése

A betonok összetételének tervezése A betonok összetételének tervezése A beton összetételének tervezése: (1m 3 ) A megoldásakor figyelembe kell venni: - az előírt betonszilárdságot - megfelelő tartósságot (környezeti hatások) - az adalékanyag

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.

Részletesebben

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak

1. feladat. CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak 1. feladat CAD alapjai c. tárgyból nappali tagozatú ipari formatervező szakos mérnök hallgatóknak Vetületek képzése, alkatrészrajz készítése (formátum: A4) Készítse el a gyakorlatvezető által kiadott,

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft. Győr, 2010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Név:...EHA kód:... 2007. tavasz

Név:...EHA kód:... 2007. tavasz VIZSGA_FIZIKA II (VHNB062/210/V/4) A MŰSZAKI INFORMATIKA SZAK Név:...EHA kód:... 2007. tavasz 1. Egy 20 g tömegű testet 8 m/s sebességgel függőlegesen felfelé dobunk. Határozza meg, milyen magasra repül,

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Műszaki paraméterek táblázata. AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100

Műszaki paraméterek táblázata. AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100 AD-R típusú 3 tengelyes CNC hidraulikus élhajlító 1260 2060 25100 Hajlítási erő tonna 60 60 100 Hajlítási hossz ( A ) mm 1250 2050 2550 Oszlopok közötti távolság ( B ) mm 1050 1700 2200 Y tengely gyorsjárati

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. október 15. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

Fogasléchajtások, Sorozat TRR Elfordulási szög: 0-360 Ø32-100 mm mágneses dugattyúval Fogasléces ikerdugattyú Csillapítás: pneumatikus, beállítható

Fogasléchajtások, Sorozat TRR Elfordulási szög: 0-360 Ø32-100 mm mágneses dugattyúval Fogasléces ikerdugattyú Csillapítás: pneumatikus, beállítható 1 Üzemi nyomás min/max 1,5 bar / 10 bar Környezeti hőmérséklet min./max. -20 C / +80 C Közeghőmérséklet min./max. -20 C / +80 C Közeg Sűrített levegő Részecskeméret max. 5 µm A sűrített levegő olajtartalma

Részletesebben

Versenyző kódja: 43 15/2008. (VIII. 13.) SZMM rendelet 54 521 01 0000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA

Versenyző kódja: 43 15/2008. (VIII. 13.) SZMM rendelet 54 521 01 0000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA 54 521 01 0000 00 00-2013 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 521 01 0000 00 00 SZVK rendelet száma: 15/2008. (VIII. 13.) SZMM

Részletesebben

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ 2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4

Részletesebben

QP és QX mélykútszivattyúk 4"

QP és QX mélykútszivattyúk 4 QP 4A-8 0,25 2,8 A - 20 681 mm 11,5 kg 1 1/4" QP 4A-12 0,37 3,3 A 1,6 A 20 761 mm 12,0 kg 1 1/4" QP 4A-18 0,55 4,4 A 1,7 A 25 896 mm 13,5 kg 1 1/4" QP 4A-25 0,75 5,8 A 2,5 A 35 1061 mm 15,4 kg 1 1/4" QX

Részletesebben

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. 1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,

Részletesebben

Lineáris algebra gyakorlat

Lineáris algebra gyakorlat Lineáris algebra gyakorlat 9. gyakorlat Gyakorlatvezet : Bogya Norbert 202. április 6. Bogya Norbert Lineáris algebra gyakorlat (9. gyakorlat Bázistranszformáció és alkalmazásai (folytatás Tartalom Bázistranszformáció

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

Többváltozós függvények Feladatok

Többváltozós függvények Feladatok Többváltozós függvények Feladatok 2. szeptember 3. Határozzuk meg az alábbi sorozatok határértékét illetve torlódási pontjait!. ( n n2 + n n 3 2. ( n + n n5 n2 +2n+ 5 n n+ 3. ( sin(nπ/2 n n! Határozzuk

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata

A kerék-sín között fellépő Hertz-féle érintkezési feszültség vizsgálata A keréksín között fellépő Hertzféle érintkezési feszültség vizsgálata közúti vasúti felépítmények esetében Dr. Kazinczy László PhD. egyetemi docens i Műszaki és Gazdaságtudományi gyetem, Út és Vasútépítési

Részletesebben

A lengőfűrészelésről

A lengőfűrészelésről A lengőfűrészelésről Az [ 1 ] tankönyvben ezt írják a lengőfűrészről, működéséről, használatáról: A lengőfűrész árkolásra, csaprések készítésére alkalmazott, 150 00 mm átmérőjű, 3 4 mm vastag, sűrű fogazású

Részletesebben

ÁLTALÁNOS JÁRMŰGÉPTAN

ÁLTALÁNOS JÁRMŰGÉPTAN ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

A POLIPROPILÉN TATREN IM

A POLIPROPILÉN TATREN IM TATREN IM 6 56 A POLIPROPILÉN TATREN IM 6 56 blokk kopolimer típust akkumulátor házak, háztartási eszközök, autó - és egyéb műszaki alkatrészek fröccsöntésére fejlesztettük ki, ahol a tartós hőállóság

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Mikroökonómia. Vizsgafeladatok

Mikroökonómia. Vizsgafeladatok Mikroökonómia Vizsgafeladatok Bacsi, Mikro feladatok 1 1, Marshall- kereszt, piaci egyensúly Mennyi a savanyúcukorka egyensúlyi mennyisége, ha a cukorka iránti kereslet és kínálat függvénye a következı:

Részletesebben

Bevezetés. Párhuzamos vetítés és tulajdonságai

Bevezetés. Párhuzamos vetítés és tulajdonságai Bevezetés Az ábrázoló geometria célja a háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelműen és egyértelműen visszaállítható (rekonstruálható) módon történő való

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

52 524 01 0100 31 01 Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

52 524 01 0100 31 01 Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását

Részletesebben

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Ábragyűjtemény levelező hallgatók számára

Ábragyűjtemény levelező hallgatók számára Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek:

GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára. A 4. gyakorlat anyaga. Adott: Geometriai méretek: SZÉCHENYI ISTVÁN EGYETEM KÖZLEKEDÉSI ÉS GÉPÉSZMÉRNÖKI INTÉZET ÁLTALÁNOS GÉPÉSZETI TANSZÉK GÉPÉSZETI ALKALMAZOTT SZÁMÍTÁSTECHNIKA f iskolai mérnökhallgatók számára A 4. gyakorlat anyaga Feladat: Saját síkjában

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Rugalmas tengelykapcsoló mérése

Rugalmas tengelykapcsoló mérése BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar Budapesti Mőszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Jármőelemek és Hajtások Tanszék Jármőelemek és Hajtások Tanszék

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Bepárlás. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék

Bepárlás. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Bepárlás Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Megköszönjük Szternácsik Klaudia és Wolowiec Szilvia hallgatóknak a diák

Részletesebben

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK

GÉPÉSZETI ALAPISMERETEK TÉMAKÖRÖK GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI TÉMAKÖRÖK Preisz Csaba mérnök-tanár Műszaki mechanika Statikai alapfogalmak - Erőrendszer fogalma - Vektorokkal végezhető alapműveleteket (erők felbontása,

Részletesebben

Szélsőérték-számítás

Szélsőérték-számítás Szélsőérték-számítás Jelölések A következő jelölések mind az f függvény x szerinti parciális deriváltját jelentik: Ugyanígy az f függvény y szerinti parciális deriváltja: f x = xf = f x f y = yf = f y

Részletesebben

egyetemi tanár Nyugat-Magyarországi Egyetem

egyetemi tanár Nyugat-Magyarországi Egyetem egyetemi tanár Nyugat-Magyarországi Egyetem Folyadékok szerkezeti jellemz i Az el adás témakörei: Mit nevezünk folyadéknak? - részecskék kölcsönhatása, rendezettsége - mechanikai viselkedése alapján A

Részletesebben

A betonburkolatok méretezésére és építésére vonatkozó Útügyi Műszaki Előírások átdolgozása

A betonburkolatok méretezésére és építésére vonatkozó Útügyi Műszaki Előírások átdolgozása A betonburkolatok méretezésére és építésére vonatkozó Útügyi Műszaki Előírások átdolgozása MAÚT Építési Bizottság Dr Ambrus Kálmán Betonburkolat munkacsoport Vörös Zoltán 2016. Jelenleg érvényben lévő

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Peremelem módszer ortotrop és mikropoláris testek síkfeladataira a lineáris rugalmasságtan primál és duál rendszerében PhD értekezés Készítette: Dudra

Részletesebben

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Mivel az f : 0; ; x sin x folytonos az értelmezési tartományán, ezért elég azt belátni, hogy szigorúan gyengén konkáv ezen az intervallumon Legyen 0

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Egyajtós öltöző szekrény

Egyajtós öltöző szekrény Egyajtós öltöző szekrény 1 ajtós fém öltözõszekrény Szélesség: 300 mm Ajtók: 1 Kétajtós öltöző szekrény 2 ajtós fém öltözõszekrény Szélesség: 600 mm Ajtók: 2 Három ajtós öltöző szekrény 3 ajtós fém öltözõszekrény

Részletesebben

0. Teszt megoldás, matek, statika / kinematika

0. Teszt megoldás, matek, statika / kinematika 0. Teszt megoldás, matek, statika / kinematika Mechanika (ismétlés) statika, kinematika Dinamika, energia Áramlástan Reológia Optika find x Teszt: 30 perc, 30 kérdés Matek alapfogalmak: Adattípusok: Természetes,

Részletesebben

CORONA ER TÖBBSUGARAS ELEKTRONIKUS VÍZMÉRŐ

CORONA ER TÖBBSUGARAS ELEKTRONIKUS VÍZMÉRŐ ALKALMAZÁSI TERÜLET Teljesen elektronikus szárnykerekes vízmérő beépített rádiómodullal, hideg- és melegvíz felhasználás mérésére. Nagyon pontos adatrögzítés minden számlázási adatról 90 C közeghőmérsékletig.

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

That s E[M]CONOMY: Képzés munka közben. CONCEPT MILL 450. Ipari szintű CNC-oktatás

That s E[M]CONOMY: Képzés munka közben. CONCEPT MILL 450. Ipari szintű CNC-oktatás [ That s ] E[M]CONOMY: Képzés munka közben. CONCEPT MILL 450 Ipari szintű CNC-oktatás Concept MILL 450 Forgácsolás kompromisszumok nélkül. A Concept MILL 450 egy teljes értékű termelő gép CNC-marás oktatásához:

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Méréstechnika 5. Galla Jánosné 2014

Méréstechnika 5. Galla Jánosné 2014 Méréstechnika 5. Galla Jánosné 014 A mérési hiba (error) a mérendő mennyiség értékének és a mérendő mennyiség referencia értékének különbsége: ahol: H i = x i x ref H i - a mérési hiba; x i - a mért érték;

Részletesebben

Géprajz gépelemek II. II. Konzultáció (2014.03.22.)

Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Géprajz gépelemek II. II. Konzultáció (2014.03.22.) Forgó alkatrészek oldható kötőelemei (a nem oldható tengelykötéseket a tk.-ből tanulni) Ékkötés Az ék horonyszélességének illesztése laza D10 A tengely

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

1. Mátrixösszeadás és skalárral szorzás

1. Mátrixösszeadás és skalárral szorzás 1 Mátrixösszeadás és skalárral szorzás Mátrixok tömör jelölése T test Az M = a i j T n m azt az n sorból és m oszlopból álló mátrixot jelöli, amelyben az i-edik sor j-edik eleme a i j T Példák [ ] Ha M

Részletesebben