Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Segédlet: Kihajlás. Készítette: Dr. Kossa Attila BME, Műszaki Mechanikai Tanszék május 15."

Átírás

1 Segédlet: Kihajlás Készítette: Dr. Kossa ttila BME, Műszaki Mechanikai Tanszék május 15. Jelen segédlet célja tömören összefoglalni a hosszú nyomott rudak kihajlásra történő ellenőrzését. segédlet nem tér ki a részletes levezetésekre, ehelyett a végképletek gyakorlati alkalmazását mutatja be. kihajláshoz tartozó részletes levezetések szakkönyvekben megtalálhatóak 1. következőkben bemutatott összefüggések középpontosan terhelt nyomott rudakra vonatkoznak. Elsőként a rúd karcsúságát (karcsúsági tényező) definiáljuk. Ez egy olyan dimenzótlan skalár szám aminek segítségével el tudjuk dönteni, hogy a vizsgált nyomott rúd esetén melyik elméletet kell alkalmaznunk a törőerő számításához. karcsúságot rendszerint λ-val jelöljük és az alábbiak szerint számítjuk:, (1) ahol l 0 [m] a kihajló hosszúság, [m] pedig a keresztmetszet minimális inerciasugara. 1. ábra. kihajló hosszúság változása a megfogási módoktól függően z l 0 értéke a rúd hosszától és a rúdvégek megfogásától függ, számítása: l 0 = c l, (2) ahol l a vizsgált rúd tényleges hossza, c pedig a rúdvégek megtámasztásától függő konstans, melynek értékét különböző esetekre a 1. ábra foglalja össze. 1.a esetén alul befogás van, felül pedig szabad vég. 1.b-nél alul és felül is csuklós megfogás szerepel, vagyis a keresztmetszet a végeknél elfordulhat. 1.c annyiban különbözik a b) esettől, hogy alul befogás kényszer van, vagyis a végkeresztmetszet elfordulása zérus kell legyen. Legvégül, a d) esetén alul befogás, míg 1 Például: Muttnyánszky Ádám: Szilárdságtan. Műszaki Könyvkiadó, Budapest, 1981., Sz. D. Ponomarjov: Szilárdsági számítások a gépészetben, 7. kötet. Műszaki Könyvkiadó, Budapest, 1966., Pattantyús Á. G.: Gépész- és villamosmérnökök kézikönyve, 2. kötet. Műszaki Könyvkiadó, Budapest,

2 felül egy olyan jellegű megvezetést alkalmazunk, hogy a keresztmetszet ne tudjon elfordulni a rúdvégnél. keresztmetszet minimális inerciasugarának számítása: =, (3) ahol I 2 a keresztmetszet 2-es főtengelyére számított másodrendű nyomaték, vagyis a fő másodrendű nyomatékokból a kisebb. zért ezzel kell számolni mert a rúd a kisebb ellenállás "irányába" fog kihajlani, ez pedig a legkisebb másodrendű nyomatékkal rendelkező tengely. (3)-ban jelenti a keresztmetszet területét. Mindezek után a karcsúság (λ) és a rúd anyagának ismeretében eldönthető, hogy melyik elméletet kell alkalmaznunk a törőerő számításához. Ehhez a 2.ábrát kell megvizsgálnunk. z ábrán bemutatott 3 különböző esetet az 1. táblázat foglalja össze. 2. ábra. különböző elméletek érvényességi tartománya 1. táblázat. különböző elméletek érvényességi tartománya lkalmazandó elmélet λ < λ F Folyáshatár λ F < λ < λ 0 Tetmajer-egyenes λ 0 < λ Euler-hiperbola λ F és λ 0 karcsúságok a rúd anyagától függő értékek, néhány anyag esetére a 2. táblázat ad iránymutatást 2. 2 táblázat adatai a Muttnyánszky Ádám: Szilárdságtan. Műszaki Könyvkiadó, Budapest, könyv oldaláról származnak. 2

3 2. táblázat. Kihajlással kapcsolatos anyagjellemzők néhány anyag esetén Szakítószilárdság Folyáshatár Tetmajer-képlet nyag σ sz [MPa] σ F [MPa] [MPa] λ F λ , 14λ Szénacél , 62λ , 82λ Ötvözött acél , 3λ Dúralumínium , 2λ Öntöttvas 0,053λ 2 12λ Fenyőfa 30 0, 2λ Tölgyfa 37, 5 0, 25λ λ < λ F Ebben az esetben a rúd karcsúsága olyan kicsi (zömök rúd), hogy a kihajlás jelensége nem számottevő, emiatt a törőfeszültség értéke az anyag folyáshatárával egyenlő, vagyis σ t = σ F. (4) λ F < λ < λ 0 Létezik egy átmeneti tartomány a karcsú (λ 0 < λ) és zömök (λ < λ F ) rudak között, ahol a törőfeszültséget a Tetmajer-féle képlettel számítjuk, ami egy egyenesnek az egyenlete: σ t = a bλ. (5) fenti egyenletben szereplő a és b paraméterek az anyagtól függő konstansok. Néhány anyag esetére a 2. táblázat közli a Tetmajer-egyenes egyenletét 3. λ 0 < λ Ebbe a tartományba tartoznak a karcsú rudak. Ebben az esetben a törőfeszültséget az Euler-féle képlettel számítjuk: ( π ) 2E, σ t = (6) λ ahol E az anyag rugalmassági modulusa. törőfeszültség ismeretében a törőerő azf t = σ t összefüggéssel számítható. z Euler-féle számítás esetén a törőerő számítható közvetlenül a ( ) 2 π F t = I 2 E (7) l 0 összefüggéssel is. z ellenőrzés utolsó lépése, hogy a kiszámított törőerőt összehasonlítjuk a rúd tényleges terhelésével (F). Ha F F t, akkor a rúd kihajlás szempontjából nem felel meg. 3 Öntöttvas esetén a Tetmajer-képlet egy parabolát definiál, nem egyenest. 3

4 z ellenőrzés algoritmusának rövid összefoglalása: 1. keresztmetszet geometria adatainak meghatározása: I 2,,. 2. rúdvégek megfogásának jellegének vizsgálata, ennek ismeretében a kihajló hosszúság számítása: l karcsúság számítása: λ. 4. Karcsúság ismeretében a megfelelő számítási képlet kiválasztása: Folyáshatár vagy Tetmajer-képlet vagy Euler-képlet. 5. Törőerő számítása. 6. Törőerő összehasonlítása a tényleges nyomóterheléssel. Kihajlás szempontjából megfelel vagy nem felel meg? Példa Két rúd a B csuklón keresztül csatlakozik. z egyik rúd másik végén (C) befogást alkalmazunk, míg a másik rúdnál görgős támaszt (). z elrendezést és a kiindulási adatokat a 3. ábra mutatja. BC rúd keresztmetszete a b méretű téglalap. 3. ábra. kihajló hosszúság változása a megfogási módoktól függően Feladatok: a) Határozzuk meg a BC-rúd kihajlással szembeni biztonsági tényezőjét! b) Hogyan változik a biztonsági tényező értéke ha h értékét 20 %-kal csökkentjük? c) Hogyan változik a biztonsági tényező értéke ha b értékét a háromszorosára vesszük? d) Hogyan változik a biztonsági tényező hahértéket a duplájára növeljük és az helyen csuklós támaszt alkalmazunk a görgős helyett? e) Legyen a BC-rúd keresztmetszete kör. Mekkora legyen a d átmérő, ha a kihajlással szemben 3x-os biztonságot szeretnénk elérni? 4

5 Megoldás BC rudat terhelő nyomóerő értéke az pontra felírt nyomatéki egyenletből kifejezhető: F = pt 2 a) keresztmetszet geometria adatainak számítása: I 2 = ab3 12 = 100 kn. (8) = ab = mm 2, (9) = = ,333 mm 4, 3 (10) = = b 12 = 5,7735 mm. (11) BC rudat a C keresztmetszetben befogtuk, viszont a B végének oldalirányú mozgása nem gátolt. Emiatt a 1.a ábra szerinti esettel van dolgunk, vagyis a kihajló hosszúság értéke: karcsúsági tényező számítása: l 0 = 2h = 640 mm. (12) = 110,851. (13) Mivel λ > λ 0, emiatt az Euler-féle képletet kell alkalmaznunk. Ennek megfelelően a törőerő számítása: ( ) 2 π F t = I 2 E = 160,638 kn. (14) Tehát a kihajlással szembeni biztonsági tényező: l 0 n = F t F = 1, (15) b) megváltozott kihajló hosszúság számítása: karcsúsági tényező értéke ez esetben: l 0 = 2(0,8h) = 512 mm. (16) = 88,681. (17) Mivel λ 0 < λ < λ 0, emiatt ennél az esetnél már nem az Euler-féle képletet, hanem a Tetmajerféle képletet kell alkalmaznunk. Ennek megfelelően a törőfeszültség számítása: Vagyis a törőerő: σ t = 308 1,14 λ = 206,904 MPa. (18) F t = σ t = 206,904 kn. (19) Tehát a kihajlással szembeni biztonsági tényező ebben az esetben: n = F t F = 2, (20) 5

6 c) b növelésével változnak a keresztmetszet geometriai adatai. Fontos észrevenni, hogy az előző esetekhez képesti merőleges tengely lesz most a 2-es tengely, vagyis ennek megfelelően kell I 2 -t számolni: karcsúsági tényező értéke: = a(3b) = mm 2, (21) I 2 = 3b(a)3 = mm 4, (22) 12 = = 14,439 mm. (23) = 44,3405. (24) Mivel λ < λ F, emiatt a törőfeszültség értéke a folyáshatárral egyenlő: törőerő számítása ennek megfelelően: Tehát a kihajlással szembeni biztonsági tényező: σ t = σ F = 240 MPa. (25) F t = σ t = 720 kn. (26) n = F t F = 7,2. (27) d) Ha az helyen csuklós támaszt alkalmazunk, akkor a BC-rúd B vége nem tud vízszintes irányba elmozdulni, vagyis az a 1.c ábra szerinti eset áll elő. kihajló hosszúság - figyelembe véve, hogy a h hosszt pedig a duplájára növeljük - ez esetben: l 0 = 0,7(2h) = 448 mm. (28) keresztmetszet geometria jellemzői nem változtak. karcsúsági tényező értéke: = 448 = 77,596. (29) 5,7735 Mivel λ 0 < λ < λ 0, emiatt ennél az esetnél a Tetmajer-féle képletet kell alkalmaznunk. Ennek megfelelően a törőfeszültség számítása: Vagyis a törőerő: Tehát a kihajlással szembeni biztonság: σ t = 308 1,14 λ = 219,541 MPa. (30) F t = σ t = 219,541 kn. (31) n = F t F = 2, (32) 6

7 e) Ha 3x-os biztonságot szeretnénk elérni akkor a törőerő értéke F t = nf = = 300 kn (33) kell legyen. Méretezés során viszont előre nem tudjuk megmondani, hogy a meghatározni kívánt keresztmetszet esetén melyik elméletet kell alkalmaznunk a törőerő számítására. Emiatt iterációra van szükség. Vagyis feltételezzük például, hogy Euler-féle képletet kell használni, és ennek alapján számítjuk a d-t. Ezután, a keresztmetszet geometriájának ismeretében, már számítható a karcsúság (amit az elején még nem ismertünk). mennyiben λ > λ F értéket kapunk akkor jogos volt a feltételezés. Ha nem, akkor hasonló gondolatmenet alapján vizsgáljuk a Tetmajer-képlet érvényességét és a folyáshatárra való ellenőrzést. fenti gondolatmenetet követve feltételezzük elsőként, hogy az Euler-képletet kell használnunk. (7) képletből a szükséges I 2 kifejezhető: I 2 = F t E ( ) 2 l0 = π Ebből számítható a keresett átmérő: N MPa d = 4 64 π z átmérő ismeretében már számítható a rúd karcsúsága: = d2 π 4 = 884,468 mm2, = ( ) mm = ,735 mm 4. (34) π = 33,558 mm. (35) = 8,3895 mm, = 2h = 76,285. (36) Mivel a λ > λ F feltétel nem teljesül, emiatt nem az Euler-képletet kell alkalmazni! Vizsgáljuk meg, hogy a Tetmajer-féle képlet alkalmazása esetén milyen eredményre jutunk. megadott biztonság esetén a törőfeszültség értéke: σ t = n F = = = d 2 π z anyagra megadott Tetmajer-képletből is felírhatjuk a törőfeszültség értékét: ahol a karcsúsági tényező: = ,863 d 2. (37) σ t = 308 1,14λ, (38) = l 0 = 4l 0 d = 2560 d. (39) fenti egyenletbe d-t mm-ben kell behelyettesíteni. Visszaírva λ-t (38)-ba kapjuk, hogy σ t = ,4. (40) d Egyenlővé téve a (37) és (40) egyenleteket, d-re vonatkozólag egy másodfokú egyenletet kapunk: ,863 = ,4, (41) d 2 d 308d ,4d ,863 = 0, (42) 7

8 melynek megoldásai: d 1 = 40,2709, d 1 = 30,7956. (43) Tehát a keresett átmérő értéke d = 40, 2709 mm. karcsúság értéke számítható (39) segítségével: λ = 63,57. Mivel a karcsúság a λ F < λ < λ 0 tartományba esik emiatt a Tetmajer-képletet kell alkalmazni, vagyis a d-re kapott érték a keresett megoldás. Megjegyzés: fenti, e) pontbeli méretezési feladat paraméteresen is elvégezhető. Vezessük le általános esetre a méretezést. Legyen a rúd terhelése F, az elérni kívánt biztonsági tényező n, a Tetmajer-képlet alakja σ t = a bλ, a rúd hossza l, a megfogás módját jellemző konstans c. Határozzuk meg a szükséges d átmérőt mind az Euler-féle képlet, mind a Tetmajer-féle képlet alkalmazásával! Vizsgáljuk elsőként az Euler-féle képletet. szükséges törőerő értéke a biztonsági tényező figyelembe vételével: F t = nf. (44) törőerő felírása az Euler-féle képlet segítségével: ( ) 2 π F t = I 2 E. (45) l 0 Egyenlővé téve a fenti két egyenletet, és beírva I 2 képletét kapjuk, hogy ( ) 2 π nf = I 2 E, (46) nf = l 0 ( π cl ) 2 d 4 π 4nF (cl) 2 64 E d = 2 4 π 3 E Tetmajer-képlet alkalmazása esetén a törőerő értéke: ahol a karcsúság számítása:. (47) F t = (a bλ), (48) = cl = 4cl d. (49) Egyenlővé téve (44) és (48) egyenleteket, d-re vonatkozólag egy másodfokú egyenletet kapunk: nf = (a bλ), (50) 4nF d 2 π = a 4bcl d, (51) ad 2 4bcld 4nF π = 0, (52) melynek a pozitív megoldása d = 2bcl a + (2bcl a ) 2 + 4nF aπ. (53) két megoldás a hozzájuk kapcsolódó elméletek érvényességi tartományán belül alkalmazható. Vagyis a (47) szerinti megoldás akkor adja a tényleges megoldást ha a vele számolt karcsúságra teljesül, hogy λ > λ F. (53) megoldás pedig akkor szolgáltatja a tényleges megoldást, ha a vele számított karcsúságra teljesül, hogy λ F < λ < λ 0. 8

Szilárdságtan Segédlet KIHAJLÁS

Szilárdságtan Segédlet KIHAJLÁS Gyakorlat 9 Mechanika Szilárdságtan 16 9 Segédlet KHJLÁS Tartalom 1 LKLMZOTT ÖSSZEÜGGÉSEK 1 GYKORLTOK PÉLDÁ TOVÁBB ELDTOK 9 1 EGYSZERŰ RUDK 9 RÁCSOS TRTÓK 1 Ez a Segédlet tartalmazza a 1, 16 években a

Részletesebben

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék. [1]

ACÉLSZERKEZETEK I. LEHÓCZKI Bettina. Debreceni Egyetem Műszaki Kar, Építőmérnöki Tanszék.   [1] ACÉLSZERKEZETEK I. LEHÓCZKI Bettina Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: lehoczki.betti@gmail.com [1] ACÉLSZERKEZETEK I. Gyakorlati órák időpontjai: szeptember 25. október 16. november

Részletesebben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben

Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség

Részletesebben

Hajlított elemek kifordulása. Stabilitásvesztési módok

Hajlított elemek kifordulása. Stabilitásvesztési módok Hajlított elemek kifordulása Stabilitásvesztési módok Stabilitásvesztés (3.3.fejezet) Globális: Nyomott rudak kihajlása Hajlított tartók kifordulása Lemezhorpadás (lokális stabilitásvesztés): Nyomott és/vagy

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

FORGATTYÚS HAJTÓMŰ KISFELADAT

FORGATTYÚS HAJTÓMŰ KISFELADAT Dr. Lovas László FORGATTYÚS HAJTÓMŰ KISFELADAT Segédlet a Jármű- és hajtáselemek III. tantárgyhoz Kézirat 2013 FORGATTYÚS HAJTÓMŰ KISFELADAT 1. Adatválaszték p 2 [bar] V [cm3] s/d [-] λ [-] k f [%] k a

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

Hegesztett gerinclemezes tartók

Hegesztett gerinclemezes tartók Hegesztett gerinclemezes tartók Lemezhorpadások kezelése EC szerint dr. Horváth László BME Hidak és Szerkezetek Tanszéke Bevezetés Gerinclemezes tartók vékony lemezekből: Bevezetés Összetett szelvények,

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató

Lindab Z/C 200 ECO gerendák statikai méretezése. Tervezési útmutató Lindab Z/C 200 ECO gerendák statikai méretezése Tervezési útmutató Készítette: Dr. Ádány Sándor Lindab Kft 2007. február ZC200ECO / 1 1. Bevezetés Jelen útmutató a Lindab Kft. által 1998-ban kiadott Lindab

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai. DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Nyomott oszlopok számítása EC2 szerint (mintapéldák)

Nyomott oszlopok számítása EC2 szerint (mintapéldák) zéhenyi István Egyetem zerkezetépítési és Geotehnikai Tanszék yomott oszlopok számítása E szerint 1. Központosan nyomott oszlop Központosan nyomott az oszlop ha e = 0 (e : elsőrendű, vagy kezdeti külpontosság).

Részletesebben

KERESZTMETSZETI JELLEMZŐK

KERESZTMETSZETI JELLEMZŐK web-lap : www.hild.gor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STATIKA 50. KERESZTMETSZETI JELLEMZŐK A TARTÓK MÉRETEZÉSE SORÁN SZÁMOS ESETBEN SZÜKSÉGÜNK VAN OLYAN ADATOKRA,

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem

Részletesebben

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.

tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás

Részletesebben

Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem

Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan, MOGA C;t;lin. Kolozsvári M=szaki Egyetem Többtámaszú öszvértartók elemzése képlékeny tartományban az EUROCODE 4 szerint Plastic Analysis of the Composite Continuous Girders According to EUROCODE 4 Dr. MOGA Petru, Dr. KÖLL7 Gábor, GU9IU :tefan,

Részletesebben

SIKLÓCSAPÁGY KISFELADAT

SIKLÓCSAPÁGY KISFELADAT Dr. Lovas Lászl SIKLÓCSAPÁGY KISFELADAT Segédlet a Jármű- és hajtáselemek II. tantárgyhoz Kézirat 2012 SIKLÓCSAPÁGY KISFELADAT 1. Adatválaszték pk [MPa] d [mm] b/d [-] n [1/min] ház anyaga 1 4 50 1 1440

Részletesebben

Tervezés katalógusokkal kisfeladat

Tervezés katalógusokkal kisfeladat BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Számítógépes tervezés, méretezés és gyártás (BME KOJHM401) Tervezés katalógusokkal kisfeladat Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:.........................................

Részletesebben

CSAVARORSÓS EMELŐ MŰSZAKI DOKUMENTÁCIÓ ÁLTALÁNOS CÉLOKRA FELHASZNÁLHATÓ CSAVARORSÓS EMELŐHÖZ. Maximális terhelő erő: 13 kn

CSAVARORSÓS EMELŐ MŰSZAKI DOKUMENTÁCIÓ ÁLTALÁNOS CÉLOKRA FELHASZNÁLHATÓ CSAVARORSÓS EMELŐHÖZ. Maximális terhelő erő: 13 kn CSAVARORSÓS EMELŐ MŰSZAKI DOKUMENTÁCIÓ ÁLTALÁNOS CÉLOKRA FELHASZNÁLHATÓ CSAVARORSÓS EMELŐHÖZ. Maximális terhelő erő: 1 kn Maximális emelési magasság: 750 mm HORVÁTH ZOLTÁN GÉPÉSZ LEVELEZŐ I. A csavarorsós

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

TERVEZÉS KATALÓGUSOKKAL KISFELADAT

TERVEZÉS KATALÓGUSOKKAL KISFELADAT Dr. Nyitrai János Dr. Nyolcas Mihály TERVEZÉS KATALÓGUSOKKAL KISFELADAT Segédlet a Jármű- és hajtáselemek III. tantárgyhoz Kézirat 2012 TERVEZÉS KATALÓGUSOKKAL KISFELADAT "A" típusú feladat: Pneumatikus

Részletesebben

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra!

1. Határozzuk meg az alábbi tartó vasalását, majd ellenőrizzük a tartót használhatósági határállapotokra! 1. Határozzuk meg az alábbi tartó vasalását majd ellenőrizzük a tartót használhatósági határállapotokra! Beton: beton minőség: beton nyomószilárdságnak tervezési értéke: beton húzószilárdságának várható

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM befogott tartó ÓE-A15 alap közepes haladó CATIA V5 CAD,

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv

Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv (-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk

Részletesebben

DEME FERENC okl. építőmérnök, mérnöktanár

DEME FERENC okl. építőmérnök, mérnöktanár DEME FERENC okl. építőmérnök, mérnöktanár web-lap : www.sze.hu/~deme e-mail : deme.ferenc1@gmail.com HÁROMCSUKLÓS TARTÓ KÜLSŐ ÉS BELSŐ REAKCIÓ ERŐINEK SZÁMÍTÁSA, A TARTÓ IGÉNYBEVÉTELI ÁBRÁINAK RAJZOLÁSA

Részletesebben

4.33. ábra Nyomott rúd befogási és vezetési körülményei

4.33. ábra Nyomott rúd befogási és vezetési körülményei Ismételje át az Euler-féle efogási esetek mechanikai alapjait! Gyűjtse ki és tanulja a hidegfolyató élyegek terhelési típusát! Jegyezze a élyegek geometriai kialakításának szaályait! Rajzoljon különöző

Részletesebben

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1.

Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás) y = 1 + 2(x 1). y = 2x 1. Feladatok megoldásokkal a harmadik gyakorlathoz (érintési paraméterek, L Hospital szabály, elaszticitás). Feladat. Írjuk fel az f() = függvény 0 = pontbeli érintőjének egyenletét! Az érintő egyenlete y

Részletesebben

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata.

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata. 1. példa: A 12. gyakorlat 1. feladata. Számítsuk ki a reakcióerőket! Rajzoljuk meg a nyomatéki ábrát! Megjegyzés: A támaszok vízszintesen egy vonalban vannak. 1 / 20 2. példa: Számítsuk ki a reakcióerőket!

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: VEM térbeli hajlított rúd ÓE-A03 alap közepes haladó VEM

Részletesebben

KIFÁRADÁSI ÉLETTARTAM KISFELADAT

KIFÁRADÁSI ÉLETTARTAM KISFELADAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM KISFELADAT Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:......................................... Neptun kód.:.........

Részletesebben

Scholler 3 Dolgozat. Téma: Kardok mechanikai vizsgálata

Scholler 3 Dolgozat. Téma: Kardok mechanikai vizsgálata Scholler 3 Dolgozat Téma: Kardok mechanikai vizsgálata Készítette: Rádi Ferenc, BME, Gépészmérnöki Kar, Msc-Mechanical Modelling tanulója 2012. július. 17 Elfogadta: Miskolczi Mátyás, Waldmanné Csabán

Részletesebben

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Miskolci Egyetem Bányászati és Geotechnikai Intézet Bányászati és Geotechnikai Intézeti Tanszék ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Oktatási segédlet Szerző: Dr. Somosvári Zsolt DSc professzor emeritus Szerkesztette:

Részletesebben

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor

Acélszerkezetek I. Gyakorlati óravázlat. BMEEOHSSI03 és BMEEOHSAT17. Jakab Gábor Acélszerkezetek I. BMEEOHSSI0 és BMEEOHSAT17 Gakorlati óravázlat Készítette: Dr. Kovács Nauzika Jakab Gábor A gakorlatok témája: 1. A félév gakorlati oktatásának felépítése. A szerkezeti acélanagok fajtái,

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Rugalmas állandók mérése

Rugalmas állandók mérése Rugalmas állandók mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 11/30/2011 Beadás ideje: 12/07/2011 1 1. A mérés rövid leírása Mérésem

Részletesebben

A pneumatika építőelemei 1.

A pneumatika építőelemei 1. A pneumatika építőelemei 1. A pneumatikában alkalmazott építőelemek és működésük végrehajtó elemek (munkahengerek) PTE PMMFK 1 PTE PMMFK 2 PTE PMMFK 3 Egyszeres működésű henger rugós visszatérítéssel Egyszeres

Részletesebben

Leggyakoribb fa rácsos tartó kialakítások

Leggyakoribb fa rácsos tartó kialakítások Fa rácsostartók vizsgálata 1. Dr. Koris Kálmán, Dr. Bódi István BME Hidak és Szerkezetek Tanszék Leggakoribb fa rácsos tartó kialakítások Változó magasságú Állandó magasságú Kis mértékben változó magasságú

Részletesebben

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

A.11. Nyomott rudak. A.11.1. Bevezetés

A.11. Nyomott rudak. A.11.1. Bevezetés A.. Nyomott rudak A... Bevezetés A nyomott szerkezeti elem fogalmat általában olyan szerkezeti elemek jelölésére használjuk, amelyekre csak tengelyirányú nyomóerő hat. Ez lehet speciális terhelésű oszlop,

Részletesebben

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ]

Ismét a fahengeres keresztmetszetű gerenda témájáról. 1. ábra forrása: [ 1 ] 1 Ismét a fahengeres keresztmetszetű gerenda témájáról Az 1. ábrával már korábban is találkozhatott az Olvasó. 1. ábra forrása: [ 1 ] Ezen azt láthatjuk, hogy bizonyos esetekben a fűrészelt fagerenda a

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

Gépelemek II. 1. feladat. Rugalmas hajtás tervezése III. A tengely méretezése

Gépelemek II. 1. feladat. Rugalmas hajtás tervezése III. A tengely méretezése 01 Géelemek II. 1. feladat Rugalmas hajtás tervezése III. A tengely méretezése Miskolci Egyetem Gé és Terméktervezési Tanszék Szűcs Renáta 011/1 tavaszi félév Feladat kiírás A vázlat szerinti elrendezésben

Részletesebben

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT

DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK MŰSZAKI MECHANIKA II. HÁZIFELADAT 2013 Feladat: Adott az ábrán látható kéttámaszú tartó, amely melegen hengerelt I idomacélokból és melegen hengerelt

Részletesebben

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 8. Előadás Kapcsolatok II. Hegesztett kapcsolatok Dr. Szalai József Főiskolai adjunktus I. ZH STATIKA!!! Gyakorlás: Mechanikai példatár I. kötet (6.1 Egyenes tengelyű tartók)

Részletesebben

Körgyűrű keresztmetszetű, pörgetett vasbeton rudak nyírási ellenállása 1. rész Völgyi István Témavezető: Dr Farkas György Kutatás felépítése 1. Anyagvizsgálatok 2. Nyírási ellenállás 3. Modellalkotás -

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Jármű- és hajtáselemek II. (KOJHA 126) Fogaskerék hajtómű előtervezési segédlet

Jármű- és hajtáselemek II. (KOJHA 126) Fogaskerék hajtómű előtervezési segédlet Jármű- és hajtáselemek II. (KOJHA 126) Fogaskerék hajtómű előtervezési segédlet Egy új hajtómű geometriai méreteinek a kialakításakor elsősorban a már meglevő, használt megoldásoknál megfigyelhető megoldásokra

Részletesebben

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m

A csoport. Statika ZH feladat. Határozza meg az erőrendszer nyomatékát a F pontra! a = 3 m b = 4 m c = 4 m Stata ZH-1. 215. 1. 14. A csoport 1. feladat Határozza meg az erőrendszer nyomatéát a F pontra! a = 3 m b = 4 m c = 4 m F 1 = 5 N F 2 = 1 N M = 5 Nm M = + 4 + 3 4 F 1 = 2 = + 12 16 + 9 + 16 3 + 4 F 2 =

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐORRÁSOK MINISZTÉRIUMA ontos

Részletesebben

Ellipszis átszelése. 1. ábra

Ellipszis átszelése. 1. ábra 1 Ellipszis átszelése Adott egy a és b féltengely - adatokkal bíró ellipszis, melyet a befoglaló téglalapjának bal alsó sarkában csuklósan rögzítettnek képzelünk. Az ellipszist e C csukló körül forgatva

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK GÉPÉSZET ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel A. Ismertesse az anyagok tűzveszélyességi, valamint az építmények kockázati osztályba sorolását! B. Ismertesse a szerelési

Részletesebben

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra

Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,2,3.(a),(b),(c), 6.(a) feladatokra Feladatok az 5. hétre. Eredményekkel és teljesen kidolgozott megoldásokkal az 1,,3.(a),(b),(), 6.(a) feladatokra 1. Oldjuk meg a következő kezdeti érték feladatot: y 1 =, y(0) = 3, 1 x y (0) = 1. Ha egy

Részletesebben

A Horváth Mérnökiroda, A Budapesti Műszaki Egyetem Gépjárművek Tanszéke. A Schwarzmüller Járműgyártó és Kereskedelmi Kft

A Horváth Mérnökiroda, A Budapesti Műszaki Egyetem Gépjárművek Tanszéke. A Schwarzmüller Járműgyártó és Kereskedelmi Kft A járóképes alvázakra épített különböző felépítményekkel kialakítható tehergépkocsik forgalombahelyezésének hatósági eljárásához A Horváth Mérnökiroda, A Budapesti Műszaki Egyetem Gépjárművek Tanszéke

Részletesebben

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban

Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban Hajlított vasbeton keresztmetszet ellenőrzése III. feszültségi állapotban /Határnyomaték számítás/ 4. előadás A számítást III. feszültségi állapotban végezzük. A számításokban feltételezzük, hogy: -a rúd

Részletesebben

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (2) First Prev Next Last Go Back Full Screen Close Quit 1. Tekintsünk a térben egy P (p 1, p 2, p 3 ) pontot és egy v = (v 1, v 2, v 3 ) = 0 vektort. Ekkor pontosan egy egyenes létezik,

Részletesebben

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa

Hódmezővásárhelyi Városi Matematikaverseny április 14. A osztályosok feladatainak javítókulcsa Hódmezővásárhelyi Városi Matematikaverseny 2003. április 14. A 11-12. osztályosok feladatainak javítókulcsa 1. feladat Egy számtani sorozatot az első eleme és különbsége egyértelműen meghatározza, azt

Részletesebben

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára

4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára 4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról

Részletesebben

FERNEZELYI SÁNDOR EGYETEMI TANÁR

FERNEZELYI SÁNDOR EGYETEMI TANÁR MAGASÉPÍTÉSI ACÉLSZERKEZETEK 1. AZ ACÉLÉPÍTÉS FERNEZELYI SÁNDOR EGYETEMI TANÁR A vas felhasználásának felfedezése kultúrtörténeti korszakváltást jelentett. - - Kőkorszak - Bronzkorszak - Vaskorszak - A

Részletesebben

SCH Süllyesztett fejű csavar Szénacél sárga horganyzással

SCH Süllyesztett fejű csavar Szénacél sárga horganyzással SCH Süllyesztett fejű csavar Szénacél sárga horganyzással ETA 11/0030 NAGYOBB MENET hossza menet (60%) a kötés jó zárásáért és a sokoldalú felhasználhatóságért NAGY TEJESÍTMÉNYŰ ACÉ nagy ellenállású és

Részletesebben

Segédlet a gördülőcsapágyak számításához

Segédlet a gördülőcsapágyak számításához Segédlet a gördülőcsapágyak számításához Összeállította: Dr. Nguyen Huy Hoang Budapest 25 Feladat: Az SKF gyártmányú, SNH 28 jelű osztott csapágyházba szerelt 28 jelű egysorú mélyhornyú golyóscsapágy üzemi

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

CONSTEEL 8 ÚJDONSÁGOK

CONSTEEL 8 ÚJDONSÁGOK CONSTEEL 8 ÚJDONSÁGOK Verzió 8.0 2013.11.20 www.consteelsoftware.com Tartalomjegyzék 1. Szerkezet modellezés... 2 1.1 Új szelvénykatalógusok... 2 1.2 Diafragma elem... 2 1.3 Merev test... 2 1.4 Rúdelemek

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

A ferde tartó megoszló terheléseiről

A ferde tartó megoszló terheléseiről A ferde tartó megoszló terheléseiről Úgy vettem észre az idők során, hogy nem nagyon magyarázták agyon azt a kérdést, amivel itt fogunk foglalkozni. Biztos azt mondják majd megint, hogy De hisz ezt mindenki

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak

Rácsos szerkezetek. Frissítve: Egy kis elmélet: vakrudak Egy kis elmélet: vakrudak Az egyik lehetőség, ha két rúd szög alatt találkozik (nem egyvonalban vannak), és nem működik a csomópontra terhelés. Ilyen az 1.ábra C csomópontja. Ekkor az ide befutó mindkét

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése KLASSZIKUS FIZIKA LABORATÓRIUM 7. MÉRÉS Mágneses szuszceptibilitás mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 5. Szerda délelőtti csoport 1. A mérés célja Az

Részletesebben

Egy geometriai szélsőérték - feladat

Egy geometriai szélsőérték - feladat 1 Egy geometriai szélsőérték - feladat A feladat: Szerkesztendő egy olyan legnagyobb területű háromszög, melynek egyik csúcsa az a és b féltengelyeivel adott ellipszis tetszőlegesen felvett pontja. Keresendő

Részletesebben

PTE Pollack Mihály Műszaki Kar Gépszerkezettan Tanszék

PTE Pollack Mihály Műszaki Kar Gépszerkezettan Tanszék PTE Pollack Mihály Műszaki Kar Gépszerkezettan Tanszék Összeállította: Dr. Stampfer Mihály 2009. Segédlet az ékszíjhajtás méretezéséhez A végtelenített ékszíjak és ékszíjtárcsák több országban is szabványosítottak

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Útmutató az. AxisVM rapido 2. használatához

Útmutató az. AxisVM rapido 2. használatához 2011-2013 Inter-CAD Kft. Minden jog fenntartva Útmutató az AxisVM rapido 2 használatához A program célja a tervezési munka megkönnyítése. Használata nem csökkenti felhasználójának felelősségét, hogy a

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek emelt szint 1621 ÉRETTSÉGI VIZSGA 2016. október 17. GÉPÉSZETI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Részletesebben

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen

pont százalék % érdemjegy (jeles) (jó) (közepes) (elégséges) alatt 1 (elégtelen A dolgozat feladatai az órán megoldott feladatok valamelyike, vagy ahhoz nagyon hasonló. A dolgozat 8 feladatból áll. 1. feladat 13 pont. feladat 8 pont 3. feladat 4. feladat 5. feladat 5 pont 6. feladat

Részletesebben

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben