Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva:
|
|
- Artúr Kelemen
- 5 évvel ezelőtt
- Látták:
Átírás
1 1 Integráló voltmérő Ha sokáig mérünk: kiátlagoljuk a jelet Milyen lesz ez a súlyfüggvény? T idejű integrálás + delta függvény T ideig integrálva: A súlyfüggvény: T széles impulzus
2 2 Ha a bemenő zaj B sávszélességű és P teljesítményű volt, akkor a kimeneti zaj: P zaj = σ 2 ki = n 0B eff σ2 be BT. Integráló voltmérők integrálási ideje általában a hálózati feszültség periódusidejének egészszámú többszöröse!
3 3 Kváziperiodikus jelek detektálása zaj jelenlétében Ötlet: Nemperiodikus jelek tegyük kváziperiodikussá! Ezután integrálás/összegezés kisebb zaj. A fázis fontos - azaz vagy pontos fázismérés, vagy saját trigger szükséges: τ időközönként k-szor minta, N-szer megismételve:
4 4 Milyen lesz a jel/zaj viszony? Az átlagolás a hasznos jel amplitudóját N-szeresére növeli N-szeresére növekszik a zaj teljesítménye (szórásnégyzete) A jel/zaj javulás mértéke arányos N-vel!» jel zaj» jel zaj» jel zaj 1mérés Nmérés javulás = v(i) σ 2 = Nv(i) Nσ 2 = 1 N
5 5 Macska + trigger: 64 átlagolás után sokkal jobb a jel! Összegezés/átlagolás: milyen lesz a frekvenciatartományban? N db egymást T időközzel követő delta frekvenciaspektruma: V (ω) = 1 N = ( 1 N N 1 X n=0 e iωt = e iωt 1 N(e iωt 1) )(1 e iωt N 1 e iωt )(eiωt N/2 e iωt/2 e iωt N/2 e iωt/2) =
6 6 = = 1 N V (f) = 1 N e iωt N/2 iωt N/2 e e eiωt N/2 sin(ωnt/2) sin(ωt/2) = 1 N iωt/2 e iωt/2 e iωt/2 sin(πfnt ) sin(πft ). Minták számának növelése fésűszerű karakterisztika - fésűs szűrő e-05 1e-06 1e-07 1e
7 e-05 1e-06 1e-07 1e
8 e-05 1e-06 1e-07 1e l. Cf
9 9 Illesztett szűrő: ismert jelalak amplitudójának mérése Előzetes információ: ismerjük a jelalakot! Mekkora az amplitúdó? Példa: t szélességű négyszögimpulzus + fehérzaj: keressük az amplitudót egy H ideális aluláteresztő szűrővel: H sávszélességének növelése: jel amplitudója egy darabig nő, majd állandó H sávszélességének növelése: zaj amplitudója H-val arányosan nő Hol az optimum?!
10 10 Másképpen: ha a bemenőjel alakja ismert: milyen legyen az optimális H(ω) (vagy h(t)) a maximálisan pontos amplitúdó méréshez? Megoldás a S/N (SNR, Signal/Noise Ratio, jel/zaj viszony) maximumát keressük h(t) függvényében, digitalizált értékekre. Legyen h = [h i ] a szűrő, az x = s + n szűrendő jel pedig a s jel + a n zaj összege. A szűrő kimente: y[n] = X i (h[n i]) x [i] ȳ = h x = h s + h n = y s + y n S/N = = ȳ s 2 E( ȳ n 2 ) = h 2 s E( h n 2 ) R 2 dω H(ω)S(ω) E( R dω H(ω)N(ω) 2 )
11 11 De Z E( h n 2 ) = E( Z = E( Z = E( dω H(ω)N(ω) 2 ) dω(h(ω)n(ω))(h(ω)n(ω)) ) dω(h(ω)h(ω) )(N(ω)N(ω) )) = h E( n n ) h = h R n h = h h, mivel fehérzaj esetén a zaj autokovariancia mátrixa R = I. S/N = h s 2 h h Felső limit (Cauchy-Schwarz-Bunyakovszkij): ā b 2 (ā ā)( b b)
12 12 Így S/N = h s 2 h h ( h h)( s s) h h = s s A maximumot akkor érjük el, ha h = α s, azaz ha h(t) = v(t 0 t) (a konjugálás az első definícióban időbeli tükrözést jelent!). Illesztett szűrő: megvalósítás pl. digitális szűrővel! Hálózat frekvenciakarakterisztikája: h(t) = v(t 0 t)! Digitális átvitelnél az illesztett szűrő maximalizálja a bit/hiba arányt is:
13 13 Bemenőjel két Dirac-delta, relatív α amplitúdóarány ismert: milyen az optimális hálózat? Két jel + zaj egyetlen mérésből meghatározandó A Hálózat egyszerű digitális (FIR) szűrő + β paraméter:
14 14 S N (A + Aαβ)2 = n 2 0 (1 + β)2 = A2 (1 + αβ) 2 n β 2 β itt «S N (n + βn T ) 2 = n 2 + 2βnn T + β 2 n 2 T β = α
15 15 A szélsőérték: β = α az illesztett szűrő a megoldás! 2D-ben is működik az eljárás: 3 frekvencia - pontforrások keresése:
16 Korreláció vagy illesztett szűrő? 16
17 17
18 Gravitációs hullámok: első és másodfajú statisztikai hiba. 18
19 19
20 20
21 21 Wavelet transzformáció Eddig vagy amplitúdó vagy frekvencia leírást követtünk δ(t t 0 ) ill. sin x, cos x bázissal. sin x, cos x: időbeli eltolás operátorára invariánsak - sajátfüggvények. Jelek kifejtése ortogonális bázisfüggvények szerint: - Dirac-delta amplitúdó idő leírás - sin és cos függvények Fourier leírás Példák: - konstans frekvenciájú jel időben végtelen sin vagy cos hullám, de csak egy megadott frekvencián. - rövid, Dirac-delta jellegű impulzus Fourier-transzformáltja sok, nagyjából egyezőamplitúdójú sin és cos hullám: a fázisok pontosan olyanok, hogy az impulzus előtt és után a hullámok kioltják egymást, de a megfelelő időpontban az impulzus megjelenik! Időben növekvő frekvenciájú jel: nem tudjuk egyik térben sem jól leírni (hosszú jelsorozat, széles spektrum).
22 Lehetséges más felbontás is - tetszőleges teljes bázisvektor-rendszer választható. 22
23 23 Egy általános bázisvektor-rendszer általában nem TONR rendszer. Hasznos a (kvázi)-ortogonalitás - a teljesség általában feltétel. Kvázi-ortogonalitás: a konvolúció komplikált / nem gyorsabb! Walsh, Haar egyéb függvények - gyorsabb számolás pl. osztályozási problémákhoz, alakfelismeréshez.
24 24 Pl. Walsh bázis: sin x, cos x előjele, DFT helyett csak összeadás. Időben lokalizált bázist is lehet választani - ezt a DFT esetén is megtehetjük: csíkok a frekvencia-idő síkon
25 25 Keskeny ablakok Szeles ablakok f t méretű cellák. A mintavételi törvény (legalább 2 minta a legmagasabb frekvenciából) korlátozza a cella minimális méretét (ugyanaz a korlát, mint a kvantummechanikai határozatlansági reláció esetén: a fázistérben FT kapcsolat itt is, ott is). A szokásos idő- és frekvenciatartománybeli ábrázolás speciális felbontás, ahol az adott cella egyik irányban végtelen kiterjedésű. A síkot végtelen lehetséges módon fel lehet bontani a t és f csíkokon kívül! Waveletek: speciális választás lokalizált cellákkal. Frekvenciájuk viszonylag jól meghatározott ÉS időbeli (térbeli) helyzetük is korlátozott. A minimális cellaméret itt is korlátos!
26 26 Ido t f F r e k v e n c i a (t,f) Fazister Jel Diszkrét wavelet transzformáció (DWT) : - rekurzív szűrés - páros-páratlan tagokra decimálás (FFT algoritmus!) - gyors FFT-vel összemérhető sebesség A cellák területe megegyezik!
27 Wavelet bazis 27
28 28 Daubechies wavelet Az FFT/DWT forgatás az amplitúdó idő tér és a frekvencia idő tér között: mátrixművelet! V 0 ω 0 0 ω 0 1 ω ω 0 (N 1) 1 0 V 1 B V 2 A = ω 1 0 ω 1 1 ω ω 1 (N 1) B ω 2 0 ω 2 1 ω ω 2 (N 1) C V N 1 ω (N 1) 0 ω (N 1) 1 ω (N 1) 2... ω (N 1) (N 1) (itt ω = e 2πi/N ) A DAUB4 wavelet: speciális digitális szűrő D 4 = c 0 c 1 c 2 c 3 c 3 c 2 c 1 c 0 c 0 c 1 c 2 c 3 c 3 c 2 c 1 c c 0 c 1 c 2 c 3 c 3 c 2 c 1 c 0 c 2 c 3 c 0 c 1 c 1 c 0 c 3 c
29 29 x (bemenő) adatokból y = D 4 x kimenő transzformált. D 4 két FIR szűrő: - páratlan sorok: c 0,..., c 3 simítást/integrálás - páros sorok: c 3, c 2, c 1, c 0 különbségképzés/deriválás Legyen a páros sorok kimenete 0 a konstans és a lineáris jelekre + legyen a mátrix inverze annak transzponáltja. (digitális szűrő technika: kvadratúra tükör szűrő) 4 egyenlet, megoldás: c 0 = (1 + 3)/4 2 c 1 = (3 + 3)/4 2 c 2 = (3 3)/4 2 c 3 = (1 3)/4 2 A DAUB család többi tagja is hasonlóan generálható: c 0 = (1 + q )/16 2 c 1 = (5 + p c 2 = (10 2 q )/16 2 c 3 = (10 2 p c 4 = (5 + q )/16 2 c 5 = ( p5 + 2
30 Asszimetrikus esetek, más paraméter sorrend a mátrixban + más jelekre kirótt 0 feltételek a simításnál: különböző wavelet családok generálhatók. 30
31 31 Diszkrét Wavelet Transzformáció (DWT) D 4 = c 0 c 1 c 2 c 3 c 3 c 2 c 1 c 0 c 0 c 1 c 2 c 3 c 3 c 2 c 1 c c 2 c 3 c 0 c 1 c 1 c 0 c 3 c Wavelet mátrix hierarchikus alkalmazása: 1. lépés: teljes N = 2 n adatsorra: 2. lépés: előző lépés simított adatain s.í.t.
32 y 1 y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y 10 y 11 y 12 y 13 6 y y 15 5 y 16 mátrix 2 3 s 1 d 1 s 2 d 2 s 3 d 3 s 4 d 4 s 5 d 5 s 6 d 6 s 7 6 d s 8 5 d 8 sorbarakás 2 3 s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 d 1 d 2 d 3 d 4 d 5 6 d d 7 5 d 8 mátrix 2 3 S 1 D 1 S 2 D 2 S 3 D 3 S 4 D 4 d 1 d 2 d 3 d 4 d 5 6 d d 7 5 d 8 sorbarakás 2 3 S 1 S 2 S 3 S 4 D 1 D 2 D 3 D 4 d 1 d 2 d 3 d 4 d 5 d d 7 5 d 8 s Végül: két S + a D + D, d wavelet együtthatók DWT: ortogonális mátrixtranszformációk sorozata a DWT inverze az eljárás megfordításából áll! Ez hasonĺıt az FFT CT-re:
33 33 DWT mátrixszorzások lepkeművelet simított adatok kiválogatása FFT rendezés /bit-reverzálás De más, mint az FFT CT: FFT: minden lépésben 2 n pont DWT: adatok száma lépésenként feleződik DWT fázistér: hierarchikusan felépítés minden lépésben dupla a frekvencia és feleződik a pontok száma (lehetne másképp is, de az nem DAUB). Alacsony frekvenciák értéke pontos DE nem tudjuk, hogy mikor történik? Magas frekvenciák értéke pontatlan DE tudjuk, hogy mikor történik!
34 Wavelet bazis 34
35 Wavelet függgvény : inverz DWT segítségével megkapható: 35
36 i=1 i=10 i=50 i= i = 150: (128, 255) intervallum, x = ( )/( ) 512 = 88 i = 50: (32, 63) intervallum, x = (50 32)/(64 32) 512 = 288 A DAUB4 deriváltak nem mindenhol folytonosak, a jobb oldali derivált nem mindenhol létezik! Folytonos eset: a cellák átfedhetnek, a wavelet paraméterek nem függetlenek (pl. osztályozásnál nem okoz gondot).
37 37
38 38
39 39 Wavelet alkalmazások exponenciális lefutású impulzusok zajjal: A fázistérben csak a 512/32 legnagyobb értéket tartottuk meg. Rossz zajtömörítés: javul a jel/zaj viszony! l. W/g1.sh Veszteséges tömörítés: az amplitúdó és a hely is tárolandó! Minimax tulajdonság: a wavelet az összes ortonormált bázis közül a Shannon entrópia szerint a legrövidebb leírása az adatoknak és a bázisfüggvényeknek! N dimenziós DWT az FFT-hez hasonlóan dimenziónként végezhető.
40 40 N=2: képfeldolgozás, ahol az élek megőrzése fontos: wavelet tömörítés, nagyság szerint válogatott komponensek kevesebb paraméter, DE nemlineáris! JPEG tömörítési algoritmusban meghatározó szerep! DWT első szintje:
41 A visszaálĺıtott és az eredeti különbsége : 41
42 42
43 43
44 44
45 45
46 46
47 Osztályozás wavelet együtthatókkal: 47
48 48
49 Irány szerinti wavelet információ: klasszifikációs eljárás bemenete. Orvosi, stb. alkalmazások. l. W/avi 49
50 50 Nemlineáris eljárások morfológiai feldolgozás Wavelet amplitúdó vágás: nemlinearitás. Fekete-fehér kép. Dilatáció (ha objektummal érintkezik, akkor objektum) és erózió (ha háttérrel érintkezik, akkor háttér): Zárás (dilatáció, majd erózió) és nyitás (erózió, majd dilatáció):
51 51
52 52
Wavelet transzformáció
1 Wavelet transzformáció Más felbontás: Walsh, Haar, wavelet alapok! Eddig: amplitúdó vagy frekvencia leírás: Pl. egy rövid, Dirac-delta jellegű impulzus Fourier-transzformált: nagyon sok, kb. ugyanolyan
Fehérzajhoz a konstans érték kell - megoldás a digitális szűrő Összegezési súlyok sin x/x szerint (ez akár analóg is lehet!!!)
DSP processzorok: 1 2 3 HP zajgenerátor: 4 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! Fehérzajhoz a konstans érték kell - megoldás a digitális
Shift regiszter + XOR kapu: 2 n állapot
DSP processzorok: 1 2 HP zajgenerátor: 3 Shift regiszter + XOR kapu: 2 n állapot Autókorrelációs függvény: l. pénzdobálás: (sin x/x) 2 burkoló! 4 Fehérzajhoz a konstans érték kell - megoldás a digitális
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2015. április 23. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Mintavétel: szorzás az idő tartományban
1 Mintavételi törvény AD átalakítók + sávlimitált jel τ időközönként mintavétel Mintavétel: szorzás az idő tartományban 1/τ körfrekvenciánként ismétlődik - konvolúció a frekvenciatérben. 2 Nem fednek át:
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 013. áprils 17. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
Fourier transzformáció
a Matematika mérnököknek II. című tárgyhoz Fourier transzformáció Fourier transzformáció, heurisztika Tekintsük egy 2L szerint periodikus függvény Fourier sorát: f (x) = a 0 2 + ( ( nπ ) ( nπ )) a n cos
Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz
Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos
Idő-frekvencia transzformációk waveletek
Idő-frekvencia transzformációk waveletek Pokol Gergő BME NTI Üzemi mérések és diagnosztika 2014. május 8. Vázlat Alapfogalmak az idő-frekvencia síkon Rövid idejű Fourier-transzformáció spektrogram Folytonos
π π A vivőhullám jelalakja (2. ábra) A vivőhullám periódusideje T amplitudója A az impulzus szélessége szögfokban 2p. 2p [ ]
Pulzus Amplitúdó Moduláció (PAM) A Pulzus Amplitúdó Modulációról abban az esetben beszélünk, amikor egy impulzus sorozatot használunk vivőhullámnak és ezen a vivőhullámon valósítjuk meg az amplitúdómodulációt
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek
Digitális jelfeldolgozás
Digitális jelfeldolgozás Mintavételezés és jel-rekonstrukció Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010.
RENDSZERTECHNIKA 8. GYAKORLAT
RENDSZERTECHNIKA 8. GYAKORLAT ÜTEMTERV VÁLTOZÁS Gyakorlat Hét Dátum Témakör Házi feladat Egyéb 1 1. hét 02.09 Ismétlés, bevezetés Differenciálegyenletek mérnöki 2 2. hét 02.16 szemmel 1. Hf kiadás 3 3.
Jelfeldolgozás - ANTAL Margit. impulzusválasz. tulajdonságai. Rendszerek. ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem
Sapientia - Erdélyi Magyar Tudományegyetem 2007 Megnevezések Diszkrét Dirac jel Delta függvény Egységimpluzus függvény A diszkrét Dirac jel δ[n] = { 1, n = 0 0, n 0 d[n] { 1, n = n0 δ[n n 0 ] = 0, n n
Z v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:
1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 5. A JELFELDOLGOZÁS ALAPJAI: JELEK Dr. Soumelidis Alexandros 2018.10.18. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérések
4. Szűrés frekvenciatérben
4. Szűrés frekvenciatérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) Unitér transzformációk Az unitér transzformációk olyan lineáris,
Négypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk. Jelfeldolgozás. Lineáris rendszerek jellemzõi és vizsgálatuk
1 1 Következõ: Lineáris rendszerek jellemzõi és vizsgálatuk Jelfeldolgozás 1 Lineáris rendszerek jellemzõi és vizsgálatuk 2 Bevezetés 5 Kérdések, feladatok 6 Fourier sorok, Fourier transzformáció 7 Jelek
Idı-frekvencia transzformációk waveletek
Idı-frekvencia transzformációk waveletek Pokol Gergı BME NTI Mőszaki diagnosztika 010. április 13. Vázlat Alapfogalmak az idı-frekvencia síkon Rövid idejő Fourier-transzformáció spektrogram Folytonos wavelet
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
4. Laplace transzformáció és alkalmazása
4. Laplace transzformáció és alkalmazása 4.1. Laplace transzformált és tulajdonságai Differenciálegyenletek egy csoportja algebrai egyenletté alakítható. Ennek egyik eszköze a Laplace transzformáció. Definíció:
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból
Segédlet a gyakorlati tananyaghoz GEVAU141B, GEVAU188B c. tantárgyakból 1 Átviteli tényező számítása: Lineáris rendszer: Pl1.: Egy villanymotor 100V-os bemenő jelre 1000 fordulat/perc kimenő jelet ad.
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés
Ortogonalizáció. Wettl Ferenc Wettl Ferenc Ortogonalizáció / 41
Ortogonalizáció Wettl Ferenc 2016-03-22 Wettl Ferenc Ortogonalizáció 2016-03-22 1 / 41 Tartalom 1 Ortonormált bázis 2 Ortogonális mátrix 3 Ortogonalizáció 4 QR-felbontás 5 Komplex skaláris szorzás 6 Diszkrét
Irányítástechnika II. előadásvázlat
Irányítástechnika II. előadásvázlat Dr. Bokor József egyetemi tanár, az MTA rendes tagja BME Közlekedés- és Járműirányítási Tanszék 2018 1 Tartalom Irányítástechnika II. féléves tárgytematika Az irányításelmélet
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz
Ellenőrző kérdések a Jelanalízis és Jelfeldolgozás témakörökhöz 1. Hogyan lehet osztályozni a jeleket időfüggvényük időtartama szerint? 2. Mi a periodikus jelek definiciója? (szöveg, képlet, 3. Milyen
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Jelek és rendszerek - 4.előadás
Jelek és rendszerek - 4.előadás Rendszervizsgálat a komplex frekvenciatartományban Mérnök informatika BSc (lev.) Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet
1. témakör. A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban
1. témakör A hírközlés célja, általános modellje A jelek osztályozása Periodikus jelek leírása időtartományban A hírközlés célja, általános modellje Üzenet: Hír: Jel: Zaj: Továbbításra szánt adathalmaz
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS
ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN. 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1
DINAMIKAI VIZSGÁLAT OPERÁTOROS TARTOMÁNYBAN 2003.10.30. Dr. Aradi Petra, Dr. Niedermayer Péter: Rendszertechnika segédlet 1 Differenciálegyenlet megoldása u(t) diff. egyenlet v(t) a n d n v m dt a dv n
Jelfeldolgozás. Gyakorlat: A tantermi gyakorlatokon való részvétel kötelező! Kollokvium: csak gyakorlati jeggyel!
1 Jelfeldolgozás Jegyzet: http://itl7.elte.hu : Elektronika jegyzet (Csákány A., ELTE TTK 119) Jelek feldolgozása (Bagoly Zs. Csákány A.) angol nyelv DSP (PDF) jegyzet Gyakorlat: A tantermi gyakorlatokon
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata
Fourier-sorfejtés vizsgálata Négyszögjel sorfejtése, átviteli vizsgálata Reichardt, András 27. szeptember 2. 2 / 5 NDSM Komplex alak U C k = T (T ) ahol ω = 2π T, k módusindex. Időfüggvény előállítása
2. gyakorlat Mintavételezés, kvantálás
2. gyakorlat Mintavételezés, kvantálás x(t) x[k]= =x(k T) Q x[k] ^ D/A x(t) ~ ampl. FOLYTONOS idı FOLYTONOS ANALÓG DISZKRÉT MINTAVÉTELEZETT DISZKRÉT KVANTÁLT DIGITÁLIS Jelek visszaállítása egyenköző mintáinak
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Híradástechikai jelfeldolgozás
Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Digitális szűrők - (BMEVIMIM278) Házi Feladat
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rszerek Tanszék Digitális szűrők - (BMEVIMIM278) FIR-szűrő tervezése ablakozással Házi Feladat Név: Szőke Kálmán Benjamin Neptun:
Orvosi Fizika és Statisztika
Orvosi Fizika és Statisztika Szegedi Tudományegyetem Általános Orvostudományi Kar Természettudományi és Informatikai Kar Orvosi Fizikai és Orvosi Informatikai Intézet www.szote.u-szeged.hu/dmi Orvosi fizika
2. Elméleti összefoglaló
2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges
Analóg-digitális átalakítás. Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék
Analóg-digitális átalakítás Rencz Márta/ Ress S. Elektronikus Eszközök Tanszék Mai témák Mintavételezés A/D átalakítók típusok D/A átalakítás 12/10/2007 2/17 A/D ill. D/A átalakítók A világ analóg, a jelfeldolgozás
Matematika (mesterképzés)
Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,
A mintavételezéses mérések alapjai
A mintavételezéses mérések alapjai Sok mérési feladat során egy fizikai mennyiség időbeli változását kell meghatároznunk. Ha a folyamat lassan változik, akkor adott időpillanatokban elvégzett méréssel
λx f 1 (x) e λx f 2 (x) λe λx f 2 (x) + e λx f 2(x) e λx f 2 (x) Hasonlóan általában is elérhető sorműveletekkel, hogy csak f (j)
Matematika A3 gyakorlat Energetika és Mechatronika BSc szakok, 016/17 ősz 10 feladatsor: Magasabbrendű lineáris differenciálegyenletek (megoldás) 1 Határozzuk meg az e λx, xe λx, x e λx,, x k 1 e λx függvények
Fourier transzformáció
Fourier transzformáció A szeizmikus hullámok tanulmányozása során igen nagy jelentősége van a hullámok frekvencia tartalmának. Ezt használjuk a hullámok alakjának mintavételezésekor, lineáris szűrések
Jelek és rendszerek MEMO_03. Pletl. Belépő jelek. Jelek deriváltja MEMO_03
Jelek és rendszerek MEMO_03 Belépő jelek Jelek deriváltja MEMO_03 1 Jelek és rendszerek MEMO_03 8.ábra. MEMO_03 2 Jelek és rendszerek MEMO_03 9.ábra. MEMO_03 3 Ha a jelet méréssel kapjuk, akkor a jel következő
Gyakorló többnyire régebbi zh feladatok. Intelligens orvosi műszerek október 2.
Gyakorló többnyire régebbi zh feladatok Intelligens orvosi műszerek 2018. október 2. Régebbi zh feladat - #1 Az ábrán látható két jelet, illetve összegüket mozgóablak mediánszűréssel szűrjük egy 11 pontos
illetve, mivel előjelét a elnyeli, a szinuszból pedig kiemelhető: = " 3. = + " 2 = " 2 % &' + +
DFT 1. oldal A Fourier-sorfejtés szerint minden periodikus jel egyértelműen felírható különböző amplitúdójú és fázisú szinusz és koszinusz jelek összegeként: = + + 1. ahol az együtthatók, szintén a definíció
Számítógépes gyakorlat MATLAB, Control System Toolbox
Számítógépes gyakorlat MATLAB, Control System Toolbox Bevezetés A gyakorlatok célja az irányítási rendszerek korszerű számítógépes vizsgálati és tervezési módszereinek bemutatása, az alkalmazáshoz szükséges
Mátrix-exponens, Laplace transzformáció
2016. április 4. 2016. április 11. LINEÁRIS DIFFERENCIÁLEGYENLET RENDSZEREK ÉS A MÁTRIX-EXPONENS KAPCSOLATA Feladat - ismétlés Tegyük fel, hogy A(t) = (a ik (t)), i, k = 1,..., n és b(t) folytonos mátrix-függvények
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 6. ea ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 6. ea. 2015 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza:
1. Visszacsatolás nélküli kapcsolások
1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erõsítõ invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt nevezzük földnek. A nem invertáló bemenetre kösse egy potenciométer középsõ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ
X. ANALÓG JELEK ILLESZTÉSE DIGITÁLIS ESZKÖZÖKHÖZ Ma az analóg jelek feldolgozása (is) mindinkább digitális eszközökkel és módszerekkel történik. A feldolgozás előtt az analóg jeleket digitalizálni kell.
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 9. SZŰRŐK
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 9. SZŰRŐK Dr. Soumelidis Alexandros 2018.11.29. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A szűrésről általában Szűrés:
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Képfeldolgozó eljárások áttekintés. Orvosi képdiagnosztika
Képfeldolgozó eljárások áttekintés Orvosi képdiagnosztika Tartalomjegyzék Képmanipulációs eljárások Képjavítás (kontraszt módosítás, intenzitásviszonyok módosításahisztogram módosítás, zajszűrés) Képelemzés
Searching in an Unsorted Database
Searching in an Unsorted Database "Man - a being in search of meaning." Plato History of data base searching v1 2018.04.20. 2 History of data base searching v2 2018.04.20. 3 History of data base searching
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI
ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 8. A JELFELDOLGOZÁS ALAPJAI Dr. Soumelidis Alexandros 2018.11.22. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG A Fourier
3.18. DIGITÁLIS JELFELDOLGOZÁS
3.18. DIGITÁLIS JELFELDOLGOZÁS Az analóg jelfeldolgozás során egy fizikai mennyiséget (pl. a hangfeldolgozás kapcsán a levegő nyomásváltozásait) azzal analóg (hasonló, arányos) elektromos feszültséggé
Összeállította: dr. Leitold Adrien egyetemi docens
Skaláris szorzat az R n vektortérben Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok skaláris szorzata Két R n -beli vektor skaláris szorzata: Legyen a = (a 1,a 2,,a n ) és b
AZ IMPULZUSKOMPRESSZIÓ RADARTECHNIKAI ALKALMAZÁSA BEVEZETÉS
AZ IMPULZUSKOMPRESSZIÓ RADARTECHNIKAI ALKALMAZÁSA Szabó Gyula mérnök őrnagy Teréki Csaba mérnök százados egyetemi tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
5. témakör. Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok
5. témakör Szögmodulációk: Fázis és frekvenciamoduláció FM modulátorok, demodulátorok Szögmoduláció Általánosan felírva a vivőfrekvenciás jelet (AM-nél megismert módon): Amennyiben a vivő pillanatnyi amplitúdója
Jelfeldolgozás bevezető. Témalaboratórium
Jelfeldolgozás bevezető Témalaboratórium Tartalom Jelfeldolgozás alapjai Lineáris rendszerelmélet Fourier transzformációk és kapcsolataik Spektrális képek értelmezése Képfeldolgozás alapjai Néhány nevezetesebb
ANTAL Margit. Sapientia - Erdélyi Magyar Tudományegyetem. Jelfeldolgozás. ANTAL Margit. Adminisztratív. Bevezetés. Matematikai alapismeretek.
Jelfeldolgozás 1. Sapientia - Erdélyi Magyar Tudományegyetem 2007 és jeleket generáló és jeleket generáló és jeleket generáló Gyakorlatok - MATLAB (OCTAVE) (50%) Írásbeli vizsga (50%) és jeleket generáló
Hangtechnika. Médiatechnológus asszisztens
Vázlat 3. Előadás - alapjai Pécsi Tudományegyetem, Pollack Mihály Műszaki Kar Műszaki Informatika és Villamos Intézet Műszaki Informatika Tanszék Ismétlés Vázlat I.rész: Ismétlés II.rész: A digitális Jelfeldolgozás
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Akusztikus mérőműszerek
Akusztikus mérőműszerek Hangszintmérő: méri a frekvencia súlyozott, és nyomásátlagolt hangnyomás szintet (hangszintet). Felépítése Mikrofon + Erősítő Frekvencia Szint tartomány Időátlagolás Kijelzés Előerősítő
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Vektorterek. =a gyakorlatokon megoldásra ajánlott
Vektorterek =a gyakorlatokon megoldásra ajánlott 40. Alteret alkotnak-e a valós R 5 vektortérben a megadott részhalmazok? Ha igen, akkor hány dimenziósak? (a) L = { (x 1, x 2, x 3, x 4, x 5 ) x 1 = x 5,
Képrestauráció Képhelyreállítás
Képrestauráció Képhelyreállítás Képrestauráció - A képrestauráció az a folyamat mellyel a sérült képből eltávolítjuk a degradációt, eredményképpen pedig az eredetihez minél közelebbi képet szeretnénk kapni
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Rendszer és irányításelmélet Rendszerek idő és frekvencia tartományi vizsgálata Irányítástechnika Budapest, 29 2 Az előadás felépítése
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
Irányítástechnika 2. előadás
Irányítástechnika 2. előadás Dr. Kovács Levente 2013. 03. 19. 2013.03.19. Tartalom Tipikus vizsgálójelek és azok információtartalma Laplace transzformáció, állapotegyenlet, átviteli függvény Alaptagok
Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk
Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
M ű veleti erő sítő k I.
dátum:... a mérést végezte:... M ű veleti erő sítő k I. mérési jegyző könyv 1. Visszacsatolás nélküli kapcsolások 1.1. Kösse az erősítő invertáló bemenetét a tápfeszültség 0 potenciálú kimenetére! Ezt
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS
ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 5. DC MOTOROK SZABÁLYOZÁS FORDULATSZÁM- SZABÁLYOZÁS Dr. Soumelidis Alexandros 2019.03.13. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT
Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
Soros felépítésű folytonos PID szabályozó
Soros felépítésű folytonos PID szabályozó Főbb funkciók: A program egy PID szabályozót és egy ez által szabályozott folyamatot szimulál, a kimeneti és a beavatkozó jel grafikonon való ábrázolásával. A
Elektronika Előadás. Digitális-analóg és analóg-digitális átalakítók
Elektronika 2 9. Előadás Digitális-analóg és analóg-digitális átalakítók Irodalom - Megyeri János: Analóg elektronika, Tankönyvkiadó, 1990 - U. Tiecze, Ch. Schenk: Analóg és digitális áramkörök, Műszaki
Irányítástechnika GÁSPÁR PÉTER. Prof. BOKOR JÓZSEF útmutatásai alapján
Irányítástechnika GÁSPÁR PÉTER Prof. BOKOR JÓZSEF útmutatásai alapján Irányítástechnika rendszerek Irányítástechnika Budapest, 2008 2 Az előadás felépítése 1. 2. 3. 4. Irányítástechnika Budapest, 2008
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
Képalkotás modellezése, metrikái. Orvosi képdiagnosztika 2017 ősz
Képalkotás modellezése, metrikái Orvosi képdiagnosztika 2017 ősz Jelölésjegyzék Rendszer válasza f gerjesztésre: Dirac-delta: x ; egységugrás: 0 idejű Dirac-delta gerjesztése a rendszer válasza: h x x
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR. Mikroelektronikai és Technológiai Intézet. Aktív Szűrők. Analóg és Hírközlési Áramkörök
KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR Mikroelektronikai és Technológiai Intézet Analóg és Hírközlési Áramkörök Laboratóriumi Gyakorlatok Készítette: Joó Gábor és Pintér Tamás OE-MTI 2011 1.Szűrők
Az ideális határesetek, mint például tömegpont, tökéletesen merev testek pillanatszerű
Részlet Török János, Orosz László, Unger Tamás, Elméleti Fizika 1 jegyzetéből 1 1. fejezet Matematikai bevezető 1.1. Dirac-delta Az ideális határesetek, mint például tömegpont, tökéletesen merev testek
Feladatok a Gazdasági matematika II. tárgy gyakorlataihoz
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Gazdasági matematika II tárgy gyakorlataihoz a megoldásra ajánlott feladatokat jelöli e feladatokat a félév végére megoldottnak tekintjük a nehezebb
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni.
Eddigi tanulmányaink alapján már egy sor, a szeizmikában általánosan használt műveletet el tudunk végezni. Kezdjük a sort a menetidőgörbékről, illetve az NMO korrekcióról tanultakkal. A következő ábrán
Gingl Zoltán, Szeged, :47 Elektronika - Műveleti erősítők
Gingl Zoltán, Szeged, 06. 06.. 3. 7:47 Elektronika - Műveleti erősítők 06.. 3. 7:47 Elektronika - Műveleti erősítők Passzív elemek nem lehet erősíteni, csi jeleket kezelni erősen korlátozott műveletek
Mintavételezés és AD átalakítók
HORVÁTH ESZTER BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM JÁRMŰELEMEK ÉS JÁRMŰ-SZERKEZETANALÍZIS TANSZÉK ÉRZÉKELÉS FOLYAMATA Az érzékelés, jelfeldolgozás általános folyamata Mérés Adatfeldolgozás 2/31
Digitális mérőműszerek. Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt.
Digitális mérőműszerek Digitális jelek mérése Kaltenecker Zsolt Hiradástechnikai Villamosmérnök Szinusz Hullám Bt. MIRŐL LESZ SZÓ? Mit mérjünk? Hogyan jelentkezik a minőségromlás digitális jel esetében?
Dr. Gyurcsek István. Példafeladatok. Helygörbék Bode-diagramok HELYGÖRBÉK, BODE-DIAGRAMOK DR. GYURCSEK ISTVÁN
Dr. Gyurcsek István Példafeladatok Helygörbék Bode-diagramok 1 2016.11.11.. Helygörbe szerkesztése VIZSGÁLAT: Mi a következménye annak, ha az áramkör valamelyik jellemző paramétere változik? Helygörbe
11. Orthogonal Frequency Division Multiplexing ( OFDM)
11. Orthogonal Frequency Division Multiplexing ( OFDM) Az OFDM (Orthogonal Frequency Division Multiplexing ) az egyik legszélesebb körben alkalmazott eljárás. Ez az eljárás az alapja a leggyakrabban alkalmazott