Matematikai modellalkotás
|
|
- Marcell Balla
- 9 évvel ezelőtt
- Látták:
Átírás
1 Konferencia A Korszerű Oktatásért Almássy Téri Szabadidőközpont, november 22. Matematikai modellalkotás (ötletek, javaslatok) Kosztolányi József
2 I. Elméleti kitekintés oktatási koncepciók 1. Realisztikus matematikaoktatás (Hans Freudenthal, Hollandia) Jellemző vonások: 1. A matematikai alkotómunka fontosabb a tényszerű ismereteknél 2. Az elvek fontosabbak a technikáknál 3. Lehetőség biztosítása valóságból vett matematikai problémák megoldására Didaktikai alapelvek 1. A valóságból vett szöveges problémák kiindulópontjai is, és alkalmazási területei is a matematikai elméleteknek, matematikai eszközöknek 2. Horizontális és vertikális matematizáció 3. A tanulók saját konstrukciói, produktumai fontosak 4. Interaktív problémamegoldás és tanulás 5. A tanulókban meglevő intuitív összefüggések, kapcsolatok, ismeretek nagyon fontosak Példa: (a logaritmus fogalmának bevezetése) Egy laboratóriumban a kísérletekhez baktériumokat szaporítanak. A baktériumok száma óránként megduplázódik. Mennyi idő múlva éri el az egyedszám a kísérlethez szükséges et, ha az adott pillanatban 800 baktérium áll rendelkezésre? 2. Projektorientált matematikaoktatás Jellemző vonások: 1. Orientáció a környezet problémáira 2. Tantárgyi integráció 3. Az oktatás középpontjában a tanuló érdeklődése, szükségletei állnak 4. Nem a matematikai képességek fejlesztése az elsődleges cél, hanem a tanulót körülvevő környezet megértése 5. A tanulói teljesítmények osztállyal közös értékelése 6. A tanítás demokratizálása, liberalizálása 7. Csoportmunka, közösségi diszkussziók Példa: (takarékosság; egy német tankönyv példája) Milyen takarékossági formák vannak? Ezek közül melyiket ajánlanátok osztálytársaitoknak? 1. Érdeklődjetek különböző pénzintézeteknél a lehetséges takarékossági formákról. Mik a feltételek (kamat, lejárati idő, minimális kezdőtőke, felmondási határidő)? 2. Hasonlítsátok össze a különböző ajánlatokat! Mely esetben lesznek ezek különösen kedvezők? 3. Eredményeiteket foglaljátok össze úgy, hogy a valódi segítség legyen számotokra és osztálytársaitok számára is. 3
3 II. A matematikai modellalkotás folyamata (vázlat) ÉLET (probléma) MATEMATIKAI MODELL (pl. új fogalom, egyenlet) MODELLBELI MEGOLDÁS ÉLETBELI MEGOLDÁS Azok a nehézségek, melyek egyenletek felállításakor felmerülnek, fordítási nehézségek. (Pólya György) Példa: A Metróban 1 liter tej 120 Ft. Ez 15 Ft-tal kevesebb, mint a Tescoban. Mennyibe kerül 5 liter tej a Tescoban? Két alapvető, tipikus út a tanulók részéről: 1. közvetlen transzlációs stratégia (kulcsszavak) 2. problémamodellező stratégia (problémareprezentáció) III. Javaslatok, ötletek szöveges problémák megoldásának menetére 1. A szöveg többszöri, közös, értelmező olvasása 2. Információk, adatok (explicit információk) szemléletes kigyűjtése (táblázat, ábra) 3. A rejtett (implicit) információk kihámozása a szövegből 4. A kérdés(ek) pontosítása, tisztázása 5. Kapcsolat keresése az adatok, információk és a kérdezett objektumok, mennyiségek között 6. A kapott problémareprezentáció alapján a matematikai modell megalkotása 7. Megoldás a modellben (előbb érdemes megbecsültetni az eredményt, a választ) 8. A kapott megoldás ellenőrzése előbb a modellben, majd a szöveg alapján 9. Interpretáció az eredeti problémára; válasz Fontos! 1. A szövegelemző, problémamodellező stratégiát demonstratív módon tanítani kell. 2. Kevesebb probléma, alaposabb tárgyalás. 3. A megoldás menetét részletesen le kell íratni (jegyzőkönyv). 4. Adjunk teret a tanulók lehetséges félreértéseinek is, beszéljük meg, hogy miért hibás az adott értelmezés. 4
4 Néhány feladat - középszintű érettségi 1. Egy személygépkocsi két város közötti útjának harmadát 60 km/h átlagsebességgel 48 perc alatt tette meg. Az út hátralevő részén a kocsi átlagsebessége 64 km/h volt. A gépkocsivezető teli üzemanyagtartállyal indult, és megérkezéskor újra teletöltötte a kocsit benzinnel. A töltőállomáson 2592 Ft-ot fizetett. 1 liter benzin 250 Ft-ba került a) Mekkora a két város távolsága? b) Mekkora volt a személygépkocsi teljes útra vonatkozó átlagsebessége? c) Hány liter volt a kocsi átlagos üzemanyag-fogyasztása a két város közötti úton 100 km-re vonatkoztatva? 2. Egy sportklubban 80-an úsznak, 95-en atletizálnak, 125-en tornáznak. Az úszók 45%-a, az atletizálók közül 20%, a tornászoknál 68% lány. Egy közvélemény-kutatás alkalmával tetszőlegesen kiválasztott 3 klubtagot megkérnek arra, hogy töltsenek ki egy kérdőívet. a) Mennyi annak a valószínűsége, hogy a kiválasztott sportolók mindegyike lány? b) Mennyi annak a valószínűsége, hogy a kiválasztott sportolók mindegyike atletizál? c) Mennyi annak a valószínűsége, hogy a kiválasztott sportolók mindegyike atletizáló lány? d) Mennyi annak a valószínűsége, hogy a kiválasztott sportolók ugyanazt a sportágat űzik? 3. Egy dobozban piros és kék golyók vannak. Véletlenszerűen kihúzva egy golyót, 0,4 annak a valószínűsége, hogy az piros. Ha még 10 kék golyót beteszünk a dobozba, a piros húzásának valószínűsége 1/3 lesz. a) Melyik színből hány golyó van a dobozban? b) Az eredeti dobozból kihúzunk 4 golyót úgy, hogy nem tesszük vissza azokat. Mennyi a valószínűsége, hogy mind a négy golyó kék lesz? c) Az eredeti dobozból egymás után kihúzunk 4 golyót úgy, hogy minden húzás után megnézzük, és visszatesszük a kihúzott golyót. Mennyi a valószínűsége, hogy mind a négy golyó kék színű? 4. A következő táblázat Magyarország 15 évnél fiatalabb népességszámát tartalmazza a megadott években rögzített adatok alapján. Év éves népesség összesen a) Az 1997-es adatot alapul véve fejezzük ki a rákövetkező évek adatait ennek százalékában. A változást szemléltessük oszlopdiagramon. b) Mekkora átlagos csökkenéssel számolhatunk a négy év adatait figyelembe véve? c) Ha 2000 után a számított átlagos csökkenés bizonyulna állandó értéknek, akkor mekkora népességszámmal kalkulálhatnánk 2020-ra? Egy-egy érettségi feladatsor Franciaországból illetve Ausztriából FRANCIA FELADATSOR (1996. humán szakirány, emelt szint) 1. Négy barát elhatározta, hogy egy 32 lapos kártyacsomaggal játszik. Egy játszma abból áll, hogy egy játékos húz 3 lapot. A következők szerint szereznek pontokat a játék során: 4 pont jár minden egyes ászért (4 db van összesen a csomagban) 3 pont jár minden egyes királyért (4 db van összesen a csomagban) 2 pont jár minden egyes dámáért (4 db van összesen a csomagban) 1 pont jár minden egyes bubiért (4 db van összesen a csomagban). A többi 16 lapért nem jár pont. 5
5 Azt mondjuk, hogy a játékosnak "nincs találata", ha összesen 0 pontot szerez, "találata van", ha pontot szerez. Tételezzük fel, hogy minden játszmában minden "laphármas" ugyanolyan eséllyel húzható. a) Az egyik játékos játszik egy játszmát. Tekintsük a következő eseményeket: A: Ennek a játékosnak "nincs találata". B: Ennek a játékosnak "találata van". C: Ennek a játékosnak 9 pontos találata van. 7 Mutassuk meg, hogy az A esemény valószínűsége 62. Számítsuk ki a B és C események valószínűségét. (A törteket hozzuk a legegyszerűbb alakra.) b) Mind a 4 játékos játszik egymás után egy-egy játszmát. Tételezzük fel, hogy a 4 játszma eredménye egymástól független. c) Számítsuk ki annak a valószínűségét, hogy a 4 barát közül legalább egynek "találata van". (A végeredményt 10 4 pontossággal, tizedes tört alakban adjuk meg.) 2. Péter nagymamája minden évben félretett egy kis pénzt unokája számára egy perselybe. 500 Ft-tal kezdte a takarékoskodást január elsején. Minden év első napján hozzátett az addig összegyűlt összeghez, méghozzá az előző évben félretettnél 50 Ft-tal többet. Jelöljük u n -nel azt a pénzösszeget, amelyet az ( n ). év január elsején tett a perselybe a nagymama ( u0 = 500, u1 = 550,...). Jelöljük s n -nel azt a pénzösszeget, amely az ( n ). évben, január elseje után a perselyben volt ( s0 = 500, s1 = 1050,...). (1) Számítsuk ki u 2 -t, és fejezzük ki u n -t n függvényében. Számítsuk ki s 2 -t, és fejezzük ki s n -t n függvényében január elsején Péter nagymamája beletette a perselybe a megfelelő összeget, majd úgy döntött, hogy a perselyt unokájának most adja át. Mekkora összeget kapott Péter? (2) Péter nagymamája ajándékából vett néhány apróságot, de elhatározta, hogy a kapott összeg nagyobb részét bankszámlára teszi. Be is tett Ft-ot évi 6%-os kamatra. (A kamatok minden évben hozzáadódnak a tőkéhez.) Jelöljük c n -nel a bankszámlán az n-edik évben rendelkezésre álló, forintban megadott összeget ( c 0 = ). (a) Bizonyítsuk be, hogy minden természetes n számra cn+ 1 = 106, cn. (b) Fejezzük ki c n -t n függvényében. (c) Legalább hány évig kell Péternek várnia, hogy legyen legalább Ft a számláján? 3. Legyen az f függvény az alábbi módon megadva: f ( x) = e 3 1 x minden valós x-re. A derékszögű koordináta-rendszerben legyen f grafikonja C, az y = x egyenletű egyenes D. a) Az f függvény vizsgálata. Határozzuk meg az f -ben vett határértékét. a) Határozzuk meg az f + -ben vett határértékét. Mutassuk meg, hogy f szigorúan növő a valós számok halmazán. b) A C görbe elhelyezkedése a D egyeneshez képest. gx = f x xminden valós x-re. (1) Legyen ( ) ( ) Határozzuk meg g ( x) -et. Mutassuk meg, hogy ha ( ) < g x 0, akkor x > 1 ln 3. 3 (2) Adjuk meg a g menetét leíró táblázatot. (g határértékeinek vizsgálata nem szükséges, de g( 0 ), g 1 ln3 3 g 1 pontos értékeinek kiszámítása igen.), () 6
6 (3) Jelöljük x a -val a gx ( ) = 0 egyenlet egyetlen 0-tól különböző megoldását. Számológép segítségével indokoljuk meg, hogy x a miért esik a ] 094, ; 0,95 [ intervallumba. (4) Adjuk meg, hogy hogyan függ gx ( ) előjele az x valós változó értékeitől. 4. Állapítsuk meg ennek segítségével, hogy a C görbe a D egyeneshez képest hogyan helyezkedik el. OSZTRÁK FELADATSOR 1. Egy városban járvány tört ki. Az f () t = e kt függvény minden t időpontban (egy egység egy hetet jelent) megadja azon emberek számát, akik fertőződtek. Két hét elteltével 832 ember betegedett meg. f t, f t, f t függvényeket. Az eredeti a) Határozzuk meg a k paramétert, valamint ez alapján az () () () függvény mely tulajdonságait tudjuk f () t és f () b) Ábrázoljuk f-et a [ 0; 100] intervallumon. t segítségével meghatározni? c) Mikor lesz több, mint 5000 ember fertőzött? d) Számoljuk ki az átlagos változást a t = 0 és t = 20 időpont között. Mi a jelentése az f () t és f ( t ) függvényeknek ebben az esetben? e) Elég nagy t értékeknél milyen a görbe lefutása? (Mi a határértéke a függvénynek t esetén?) Magyarázzuk meg ezt a tényt. 2. Egy fekvő vízibója keletkezik egy ellipszis egyik felének, és egy őt érintő egyenesnek az x tengely körüli forgatásával. (Az ellipszis középpontja az origóban van, nagytengelye illeszkedik az x tengelyre.) Az ellipszis adatai: a = 4 dm, b = 2 dm, és az egyenes az ellipszist a P( 24,; y) ( y > 0 ) pontban érinti. a) Határozzuk meg az érintő egyenes egyenletét. b) Számítsuk ki a vízibója térfogatát. c) Számítsuk ki a vízibója kúpjának nyílásszögét. 3. Egy sportegyesületnek háromszögletű telket ajánlanak fel a következő oldalhosszúsággal: AB = 238, 9 m; BC = 249 m; AC = 1518, m. a) Számítsuk ki az α szöget (a szokásos betűzés alapján), és a telek területét. b) A háromszögletű telekbe maximális területű téglalapot kell írni (jövendőbeli játéktér) úgy, hogy egyik oldala a háromszög AB oldalára essen. Számítsuk ki a téglalap oldalait. 4. Egy gyárban 3 gép azonos típusú lámpákat gyárt. Az A gép készíti a termékek 40%-át, B a 35%-át, C pedig a 25%-át. Tapasztalati úton megállapították, hogy az A gép 6%-ban, B 4%-ban, C pedig 3%-ban állít elő selejtes terméket. a) Számítsuk ki, hogy az össztermelés hány százaléka selejtes. b) Számítsuk ki annak a valószínűségét, hogy a selejtes lámpa az A géptől származik. c) Mennyi lámpát kell ellenőrizni ahhoz, hogy legalább 98%-os valószínűséggel legalább egy selejtes lámpát találjunk? d) A szállításnál szintén sérülnek meg lámpák, amiket már nem válogatnak ki, hanem 20-as kartonokba raknak. A szállítás után tapasztalat szerint az összes lámpa 6%-a rossz. Számítsuk ki annak a valószínűségét, hogy a szállítás után egy kartonban mind a 20 lámpa ép. e) Számítsuk ki annak a valószínűségét, hogy a szállítás után egy kartonban több mint 4 selejtes lámpa van. 7
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 0814 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:
RészletesebbenKözépszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész
Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. október 25. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2008. október 21. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2008. október 21. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 21. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenMATEMATIKA ÉRETTSÉGI 2007. október 25. EMELT SZINT I.
1) x x MATEMATIKA ÉRETTSÉGI 007. október 5. EMELT SZINT I. a) Oldja meg a valós számok halmazán az alábbi egyenletet! (5 pont) b) Oldja meg a valós számpárok halmazán az alábbi egyenletrendszert! lg x
RészletesebbenMATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003. május 19. du. JAVÍTÁSI ÚTMUTATÓ
MATEMATIKA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 00 május 9 du JAVÍTÁSI ÚTMUTATÓ Oldja meg a rendezett valós számpárok halmazán az alábbi egyenletrendszert! + y = 6 x + y = 9 x A nevezők miatt az alaphalmaz
RészletesebbenEGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. május 5. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 009. május 5. KÖZÉPSZINT I. 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x 1x 4 0 Az egyenlet gyökei 1, 5 és 8. ) Számítsa ki a 1 és 75 számok mértani közepét! A mértani
RészletesebbenMATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY
MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók
Részletesebben10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben4) Az ABCD négyzet oldalvektorai körül a=ab és b=bc. Adja meg az AC és BD vektorokat a és b vektorral kifejezve!
(9/1) Vektorok, Koordináta Geometria 1) Szerkessze meg az a + b és az a b vektort, ha a és b egy szabályos háromszögnek a mellékelt ábra szerinti oldalvektorai! 2) Az ABC háromszög két oldalának vektora
Részletesebben23. ISMERKEDÉS A MŰVELETI ERŐSÍTŐKKEL
23. ISMEKEDÉS A MŰVELETI EŐSÍTŐKKEL Céltűzés: A műveleti erősítők legfontosabb tlajdonságainak megismerése. I. Elméleti áttentés A műveleti erősítők (továbbiakban: ME) nagy feszültségerősítésű tranzisztorokból
Részletesebben13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert!
A 13. Oldja meg a valós számpárok halmazán a következ egyenletrendszert! x y 600 x 10 y 5 600 12 pont írásbeli vizsga, II. összetev 4 / 20 2008. október 21. 14. a) Fogalmazza meg, hogy az f : R R, f x
RészletesebbenPRÓBAÉRETTSÉGI VIZSGA
STUDIUM GENERALE MATEMATIKA SZEKCIÓ MATEMATIKA PRÓBAÉRETTSÉGI VIZSGA 2016. január 16. KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím SG-s csoport Pontszám 2016. január 16. II. Időtartam: 135 perc STUDIUM
RészletesebbenPÉNZÜGYI SZÁMÍTÁSOK. I. Kamatos kamat számítása
PÉNZÜGYI SZÁMÍTÁSOK I. Kamatos kamat számítása Kamat: a kölcsönök után az adós által időarányosan fizetendő pénzösszeg. Kamatláb: 100 pénzegység egy meghatározott időre, a kamatidőre vonatkozó kamata.
RészletesebbenC Í M K E É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS 2007 JAVÍTÓKULCS MATEMATIKA. Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont
8. Í M K E É V F O L Y A M TANULÓI AZONOSÍTÓ: ORSZÁGOS KOMPETENIAMÉRÉS 2007 JAVÍTÓKULS MATEMATIKA Oktatási Hivatal Országos Közoktatási Értékelési és Vizsgaközpont ÁLTALÁNOS TUDNIVALÓK Ön a 2007-es Országos
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
RészletesebbenBolyai János Matematikai Társulat
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév első (iskolai) forduló haladók II.
RészletesebbenTermészetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5
1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
Részletesebben2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )
Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
RészletesebbenKőszegi Irén MATEMATIKA. 9. évfolyam
-- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...
RészletesebbenMunkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit
Kalandtúra 7. unkafüzet megoldások 7. osztályos tanulók számára akara Ágnes Bankáné ező Katalin Argayné agyar Bernadette Vépy-Benyhe Judit BEELEGÍTŐ GONDOLKODÁS. SZÓRAKOZTATÓ FELADVÁNYOK. oldal. 6... 6.
RészletesebbenMatematika POKLICNA MATURA
Szakmai érettségi tantárgyi vizsgakatalógus Matematika POKLICNA MATURA A tantárgyi vizsgakatalógus a 0-es tavaszi vizsgaidőszaktól kezdve alkalmazható mindaddig, amíg új nem készül. A katalógus érvényességét
RészletesebbenDifferenciál egyenletek
Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben
RészletesebbenSíkban polarizált hullámok síkban polarizált lineárisan polarizált Síkban polarizált hullámok szuperpozíciója cirkulárisan polarizált
Síkban polarizált hullámok Tekintsünk egy z-tengely irányában haladó fénysugarat. Ha a tér egy adott pontjában az idő függvényeként figyeljük az elektromos (ill. mágneses) térerősség vektorokat, akkor
RészletesebbenMatematika emelt szintû érettségi témakörök 2013. Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)
Matematika emelt szintû érettségi témakörök 013 Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár) Tájékoztató vizsgázóknak Tisztelt Vizsgázó! A szóbeli vizsgán a tétel címében megjelölt téma kifejtését
RészletesebbenMatematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak)
Matematika felvételi feladatok bővített levezetése 2013 (8. osztályosoknak) Erre a dokumentumra az Edemmester Gamer Blog kiadványokra vonatkozó szabályai érvényesek. 1. feladat: Határozd meg az a, b és
RészletesebbenMinta 1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
1. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
RészletesebbenA felmérési egység kódja:
A felmérési egység lajstromszáma: 0108 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Aterköz//50/Rea//Ált Agrár közös szakképesítés-csoportban, a célzott,
RészletesebbenPróba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
RészletesebbenSlovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008
Slovenská komisia Fyzikálnej olympiády 49. ročník Fyzikálnej olympiády v školskom roku 2007/2008 Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 49. évfolyam, 2007/2008-as tanév Az FO versenyzıinek
RészletesebbenTanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz
MATEMATIKA 6. Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz Témák 1. Játékos feladatok Egyszerű, matematikailag is értelmezhető hétköznapi szituációk megfogalmazása szóban és írásban.
RészletesebbenA gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:
. Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,
RészletesebbenMATEMATIKA ÉRETTSÉGI 2012. május 8. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 01. május 8. EMELT SZINT I. 1) Egy 011-ben készült statisztikai összehasonlításban az alábbiakat olvashatjuk: Ha New York-ban az átlagfizetést és az átlagos árszínvonalat egyaránt
RészletesebbenEötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA. BSc szakdolgozat. tanári szakirány. Budapest, 2013.
Eötvös Loránd Tudományegyetem Természettudományi Kar Geometriai Tanszék AZ EVOLUTÁK VILÁGA BSc szakdolgozat Készítette: Somlói Zsófia matematika BSc tanári szakirány Témavezető: Dr. Moussong Gábor adjunktus
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA. MÓDSZERTANI AJÁNLÁSOK MÁSODIK FÉLÉV Tankönyv második kötet Számok és műveletek 0-től 0-ig Kompetenciák, fejlesztési feladatok:
RészletesebbenBeadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját!
Beadható feladatok 2006. december 4. 1. Feladatok 2006. szeptember 13-án kitűzött feladat: 1. Add meg az alábbi probléma állapottér-reprezentációját! Adott I 1,..., I n [0, 1] intervallumokból szeretnénk
Részletesebben4b 9a + + = + 9. a a. + 6a = 2. k l = 12 évfolyam javítóvizsgára. 1) Alakítsd szorzattá a következő kifejezéseket!
) Alakítsd szorzattá a következő kifejezéseket! 4 c) d) e) f) 9k + 6k l + l = ay + 7ay + 54a = 4 k l = b 6bc + 9c 4 + 4y + y 4 4b 9a évfolyam javítóvizsgára ) Végezd el az alábbi műveleteket és hozd a
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.
Geometria I. Alapfogalmak: Az olyan fogalmakat, amelyeket nem tudunk egyszerűbb fogalmakra visszavezetni, alapfogalmaknak nevezzük, s ezeket nem definiáljuk. Pl.: pont, egyenes, sík, tér, illeszkedés.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Térgeometria 1) Egy gömb alakú labda belső sugara 13 cm. Hány liter levegő van benne? Válaszát indokolja! 2) Egy forgáskúp alapkörének átmérője egyenlő a
RészletesebbenKÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINTŰ. PRÓBAÉRETTSÉGI VIZSGA 2015. február 14.
PRÓBAÉRETTSÉGI VIZSGA m á j u s 1 8. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc Név Tanárok neve Pontszám E-mail cím STUDIUM
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
RészletesebbenI. rész. x 100. Melyik a legkisebb egész szám,
Dobos Sándor, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Dobos Sándor; dátum: 005. november 1. feladat A 70-nek 80%-a mely számnak a 70%-a? I. rész. feladat Egy szabályos
RészletesebbenVetülettani és térképészeti alapismeretek
Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke
Részletesebben5. Egyszerre feldobunk egy-egy szabályos hat-, nyolc-, és tizenkét oldalú dobókockát.
1. feladatsor 1. (a) Igazolja, hogy tetszőleges A, B, C eseményekre fennáll, hogy (A B) (A C) = A (B + C)! (b) Sorolja fel a valószínűség-számítás axiómáit! (a) c=? (4) (b) D(ξ)=? (0.4714) { c x 5 (c)
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2016. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2016. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint
Részletesebben6. modul Egyenesen előre!
MATEMATIKA C 11 évfolyam 6 modul Egyenesen előre! Készítette: Kovács Károlyné Matematika C 11 évfolyam 6 modul: Egyenesen előre! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
É RETTSÉGI VIZSGA 2015. október 22. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 22. 14:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2007. május 8. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 8. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
RészletesebbenBEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA
Pék Johanna BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA (Matematika tanárszakos hallgatók számára) Tartalomjegyzék Előszó ii 0. Alapismeretek 1 0.1. Térgeometriai alapok............................. 1 0.2. Az ábrázoló
RészletesebbenGeometriai axiómarendszerek és modellek
Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének
Részletesebben2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával.
2. Hőmérséklet érzékelők vizsgálata, hitelesítése folyadékos hőmérő felhasználásával. A MÉRÉS CÉLJA Az elterjedten alkalmazott hőmérséklet-érzékelők (ellenállás-hőmérő, termisztor, termoelem) megismerése,
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 0 ÉRETTSÉGI VIZSGA 00. február. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Matematika emelt szint Fontos tudnivalók Formai
RészletesebbenMatematika javítókulcs
2003 ORSZÁGOS KOMPETENCIAMÉRÉS Matematika javítókulcs 6. évfolyam Kiss Árpád Országos Közoktatási Szolgáltató Intézmény - Értékelési Központ ÁLTALÁNOS TUDNIVALÓK A 2003-as tavaszi felmérés célja a tanulók
RészletesebbenIV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői
IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2009. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika középszint
RészletesebbenMATEMATIKA ÍRÁSBELI VIZSGA EMELT SZINT% ÉRETTSÉGI VIZSGA 2013. május 7. MINISZTÉRIUMA. 2013. május 7. 8:00 EMBERI ERFORRÁSOK
I. rész II. rész a feladat sorszáma maximális pontszám elért pontszám maximális pontszám 1. 11 2. 13 51 3. 13 4. 14 16 16 64 16 16 8 nem választott feladat Az írásbeli vizsgarész pontszáma 115 elért pontszám
RészletesebbenMATEMATIKA ÉRETTSÉGI 2009. október 20. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 009. október 0. EMELT SZINT ) Oldja meg az alábbi egyenleteket! a), ahol és b) log 0,5 0,5 7 6 log log 0 I., ahol és (4 pont) (7 pont) log 0,5 a) Az 0,5 egyenletben a hatványozás megfelelő
RészletesebbenNév:. Dátum: 2013... 01a-1
Név:. Dátum: 2013... 01a-1 Ezeket a szorzásokat a fejben, szorzótábla nélkül végezze el! 1. Mennyi 3 és 3 szorzata?.. 2. Mennyi 4 és 3 szorzata?.. 3. Mennyi 4 és 4 szorzata?.. 4. Mennyi 5 és 3 szorzata?..
RészletesebbenHárom dimenziós barlangtérkép elkészítésének matematikai problémái
Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Három dimenziós barlangtérkép elkészítésének matematikai problémái Szakdolgozat Írta: Pásztor Péter Matematika
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 1613 ÉRETTSÉGI VIZSGA 016. május 3. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2011. október 18. 8:00. Az írásbeli vizsga időtartama: 240 perc
ÉRETTSÉGI VIZSGA 2011. október 18. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2011. október 18. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM
RészletesebbenII. Halmazok. Relációk. II.1. Rövid halmazelmélet. A halmaz megadása. { } { } { } { }
II. Halmazok. Relációk II.1. Rövid halmazelmélet A halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. A halmaz alapfogalom. Ez azt jelenti, hogy csak példákon
RészletesebbenMATEMATIKA ÉRETTSÉGI 2008. október 21. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 008. október 1. KÖZÉPSZINT I. 1) Adja meg a 4 egyjegyű pozitív osztóinak halmazát! A keresett halmaz: {1 4 6 8}. ) Hányszorosára nő egy cm sugarú kör területe, ha a sugarát háromszorosára
Részletesebben10. évfolyam, negyedik epochafüzet
10. évfolyam, negyedik epochafüzet (Geometria) Tulajdonos: NEGYEDIK EPOCHAFÜZET TARTALOM I. Síkgeometria... 4 I.1. A háromszög... 4 I.2. Nevezetes négyszögek... 8 I.3. Sokszögek... 14 I.4. Kör és részei...
RészletesebbenMATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam
BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag
RészletesebbenElsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek
Elsôfokú egyváltozós egyenletek 6 Elsôfokú egyenletek, egyenletrendszerek, egyenlôtlenségek. Elsôfokú egyváltozós egyenletek 000. Érdemes egyes tagokat, illetve tényezôket alkalmasan csoportosítani, valamint
RészletesebbenJavítókulcs M a t e m a t i k a
6. évfolyam Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2011 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2011-es Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja a kezében.
RészletesebbenSlovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády. Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51.
Slovenská komisia Fyzikálnej olympiády 51. ročník Fyzikálnej olympiády Szlovákiai Fizikai Olimpiász Bizottság Fizikai Olimpiász 51. évfolyam Az BB kategória 01. fordulójának feladatai (Archimédiász) (A
Részletesebben9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes
9. modul Szinusz- és koszinusztétel Készítette: Csákvári Ágnes Matematika A 11. évfolyam 9. modul: Szinusz- és koszinusztétel Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenMATEMATIKA ÉRETTSÉGI 2011. október 18. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 0. október 8. EMELT SZINT I. ) Kinga 0. születésnapja óta kap havi zsebpénzt a szüleitől. Az első összeget a 0. születésnapján adták a szülők, és minden hónapban 50 Fttal többet adnak,
RészletesebbenKÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)
ÉRETTSÉGI VIZSGA 2012. május 25. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati
RészletesebbenKÖZÉPSZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2007. október 25. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2007. október 25. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Matematika
RészletesebbenFelszín- és térfogatszámítás (emelt szint)
Felszín- és térfogatszámítás (emelt szint) (ESZÉV 2004.minta III./7) Egy négyoldalú gúla alaplapja rombusz. A gúla csúcsa a rombusz középpontja felett van, attól 82 cm távolságra. A rombusz oldalának hossza
RészletesebbenAzonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2015. október 13. 8:00. Az írásbeli vizsga időtartama: 240 perc
É RETTSÉGI VIZSGA 2015. október 13. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. október 13. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA
RészletesebbenGondolkodjunk a fizika segı tse ge vel!
SZAKDOLGOZAT Gondolkodjunk a fizika segı tse ge vel! Simon Ju lia Matematika BSc., tana ri szakira ny Te mavezeto : Besenyei A da m adjunktus Alkalmazott Analı zis e s Sza mı ta smatematikai Tansze k Eo
RészletesebbenMATEMATIKA tankönyvcsaládunkat
Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK
RészletesebbenStatisztika I. 6. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 6. előadás Előadó: Dr. Ertsey Imre GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE GYAKORISÁGI SOROK ELOSZLÁSA KONCENTRÁCIÓ ELEMZÉSE szorosan kapcsolódik a szóródás elemzéshez, elméleti
RészletesebbenSzeminárium-Rekurziók
1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az
RészletesebbenJavítókulcs MateM atika
6. évfolyam Javítókulcs MateM atika Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2012 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön a 2012-es Országos kompetenciamérés matematikafeladatainak
Részletesebben4. modul Poliéderek felszíne, térfogata
Matematika A 1. évfolyam 4. modul Poliéderek felszíne, térfogata Készítette: Vidra Gábor Matematika A 1. évfolyam 4. modul: POLIÉDEREK FELSZÍNE, TÉRFOGATA Tanári útmutató A modul célja Időkeret Ajánlott
Részletesebbenprogram használata a középiskolai matematika oktatásban
Eötvös Loránd Tudományegyetem Informatika Kar Média- és Oktatásinformatika Tanszék A program használata a középiskolai matematika oktatásban Készítette: Horváthné Oroján Gabriella levelező informatika-tanár
RészletesebbenAbszolútértékes egyenlôtlenségek
Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,
Részletesebben3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege
Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat
RészletesebbenTERMELÉSMENEDZSMENT. Gyakorlati segédlet a műszaki menedzser szak hallgatói számára. Összeállította: Dr. Vermes Pál főiskolai tanár 2006.
Szolnoki Főiskola Műszaki és Mezőgazdasági Fakultás Mezőtúr TERMELÉSMENEDZSMENT Gyakorlati segédlet a műszaki menedzser szak hallgatói számára Összeállította: Dr. Vermes Pál főiskolai tanár Mezőtúr 6.
RészletesebbenHraskó András, Surányi László: 11-12. spec.mat szakkör Tartotta: Surányi László. Feladatok
Feladatok 1. Színezzük meg a koordinátarendszer rácspontjait két színnel, kékkel és pirossal úgy, hogy minden vízszintes egyenesen csak véges sok kék rácspont legyen és minden függőleges egyenesen csak
RészletesebbenEMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2006. május 9. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2006. május 9. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika
RészletesebbenKitöltési útmutató. Tartalomjegyzék
Kitöltési útmutató Az Európai Mezőgazdasági Vidékfejlesztési Alapból a turisztikai tevékenységek ösztönzésére a LEADER Helyi Akciócsoportok közreműködésével 2012-ben nyújtandó támogatások jogcímhez kapcsolódó
RészletesebbenJánossy elmélete az új növekedési elmélet tükrében
Közgazdasági Szemle, XLVII. évf., 2000. május (457 472. o.) TARJÁN TAMÁS Jánossy elmélete az új növekedési elmélet tükrében A hosszú távú idõsorok vizsgálatának legnagyobb hazai úttörõje Jánossy Ferenc
RészletesebbenAZ ÁRUPIACI KERESLET AZ EGYENSÚLYI JÖVEDELEM
AZ ÁRUPIACI KERESLET AZ EGYENSÚLYI JÖVEDELEM KIEGÉSZÍTENDŐ ÁLLÍTÁSOK A felsorolt alapfogalmadat illessze az állításokban kihagyott helyre! Egy fogalmat több helyen is felhasználhat. a) adott időszaki kiadások
RészletesebbenMIKROÖKONÓMIA - konzultáció - Piac és fogyasztás
MIKROÖKONÓMIA - konzultáció - Piac és fogyasztás Révész Sándor szuperkonzultacio.hu 2012. január 7. Dierenciálszámítási alapok A mikroökonómiai problémák megoldása két formában fog történni: 1. egyensúly
RészletesebbenMikrohullámok vizsgálata. x o
Mikrohullámok vizsgálata Elméleti alapok: Hullámjelenségen valamilyen rezgésállapot (zavar) térbeli tovaterjedését értjük. A hullám c terjedési sebességét a hullámhossz és a T rezgésido, illetve az f frekvencia
RészletesebbenMATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Kombinatorika
Kombinatorika Modulok: A kombinatorikai feladatok megoldásához három modult használunk: Permutáció (Sorba rendezés) Kombináció (Kiválasztás) Variáció (Kiválasztás és sorba rendezés) DEFINÍCIÓ: (Ismétlés
Részletesebben