Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI
Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció elemzés Idősorok és grafikus ábrázolásuk Dinamikus viszonyszámok
Ismérv szerinti rendezés Minőségi (hajszín, nem, születési hely) Mennyiségi (magasság, kor, jövedelem) diszkrét véges, v megszámlálhatóan végtelen értéket vehet fel. Pl szobák száma lehet 1, 1.5, 2, 2.5, stb szobás. folytonos (egy adott intervallumon belül) bármilyen értéket felvehet. Pl alapterület: egy 54 nm-es lakás lehet valójában 53,78, vagy 54,003 nm-es is, vagy bármi 53,5 és 54.5 között. (a pontosság kedvéért: minden racionális szám (a tizedestörttel feĺırhatók is ide tartoznak) megszámlálható, a gond az irracionális számokkal van, pl ha a lakás kör alapterületű.) Rangsor Mennyiségi ismérv értékeinek monoton sorozata.
Gyakorisági sorok Csoportosító sor A sokaság egységeinek mennyiségi ismérv szerinti osztályozása. HA az ismérvváltozatok száma kicsi, 1-1 ismérvváltozat szerint. HA nagy, több ismérvértéket magukba foglaló intervallumok, ún. osztályközök szerint. Gyakoriság (f i ) Az egy-egy csoportba/osztályközbe tartozó egységek száma. Relatív gyakoriság (g i = f i N ) Az egy csoportba/osztályközbe tartozó egységek (százalékos) részesedése. Ha az osztályok 1 ismérvértékből állnak, (gyakorisági) eloszlás, osztályközök esetén (gyakorisági) megoszlás.
Gyakorisági sorok Csoportosító sor A sokaság egységeinek mennyiségi ismérv szerinti osztályozása. HA az ismérvváltozatok száma kicsi, 1-1 ismérvváltozat szerint. HA nagy, több ismérvértéket magukba foglaló intervallumok, ún. osztályközök szerint. Gyakoriság (f i ) Az egy-egy csoportba/osztályközbe tartozó egységek száma. Relatív gyakoriság (g i = f i N ) Az egy csoportba/osztályközbe tartozó egységek (százalékos) részesedése. Ha az osztályok 1 ismérvértékből állnak, (gyakorisági) eloszlás, osztályközök esetén (gyakorisági) megoszlás.
Gyakorisági sorok Csoportosító sor A sokaság egységeinek mennyiségi ismérv szerinti osztályozása. HA az ismérvváltozatok száma kicsi, 1-1 ismérvváltozat szerint. HA nagy, több ismérvértéket magukba foglaló intervallumok, ún. osztályközök szerint. Gyakoriság (f i ) Az egy-egy csoportba/osztályközbe tartozó egységek száma. Relatív gyakoriság (g i = f i N ) Az egy csoportba/osztályközbe tartozó egységek (százalékos) részesedése. Ha az osztályok 1 ismérvértékből állnak, (gyakorisági) eloszlás, osztályközök esetén (gyakorisági) megoszlás.
Gyakorisági sorok általános sémája Ismérvérték X i Gyakoriság f i X 1 f 1 X 2 f 2. X i. yí X k Összesen. f i. f k N
Gyakorisági sorok általános sémája Az osztályközök Gyakoriság Alsó határa Felső határa f i X 1 X 1 f 1 X 2 X 2 f 2... X i X i f i... X k X k f k Összesen N
Gyakorisági sorok általános sémája Ismérvérték X i Relatív gyakoriság g i X 1 g 1 X 2 g 2. X i. g i.. yí X k g k Összesen 1
Gyakorisági sorok általános sémája Az osztályközök Relatív gyakoriság Alsó határa Felső határa g i X 1 X 1 g 1 X 2 X 2 g 2... X i X i g i... X k X k g k Összesen 1
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Az osztályközök megadása Valódi határok : Hézagmentesen illeszkednek (45 50, 50 55,...). Minden ismérvérték besorolásra kerül. Közölt határok : Az intervallumok kezdőértékeit a mérési pontosság egységével eltoljuk ( 20.0, 20.1 30.0,...). Egyértelmű besorolhatóság
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Az osztályközök megadása Valódi határok : Hézagmentesen illeszkednek (45 50, 50 55,...). Minden ismérvérték besorolásra kerül. Közölt határok : Az intervallumok kezdőértékeit a mérési pontosság egységével eltoljuk ( 20.0, 20.1 30.0,...). Egyértelmű besorolhatóság
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Hosszuk h = Xmax X min k Az osztályközök megadása Valódi határok : Hézagmentesen illeszkednek (45 50, 50 55,...). Minden ismérvérték besorolásra kerül. Közölt határok : Az intervallumok kezdőértékeit a mérési pontosság egységével eltoljuk ( 20.0, 20.1 30.0,...). Egyértelmű besorolhatóság
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Hosszuk h = Xmax X min k
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Hosszuk h = Xmax X min k Nagy X max X min különbség, egyenetlen eloszlás esetén nem egyforma osztályközök. Az osztályközök megadása Valódi határok : Hézagmentesen illeszkednek (45 50, 50 55,...). Minden ismérvérték besorolásra kerül. Közölt határok : Az intervallumok kezdőértékeit a mérési pontosság egységével eltoljuk ( 20.0, 20.1 30.0,...). Egyértelmű besorolhatóság
Osztályközök Az osztályközök meghatározása Minden ismérvérték pontosan 1 osztályba tartozzon Számuk a legkisebb k, melyre 2 k > N Hosszuk h = Xmax X min k Nagy X max X min különbség, egyenetlen eloszlás esetén nem egyforma osztályközök. Az osztályközök megadása Valódi határok : Hézagmentesen illeszkednek (45 50, 50 55,...). Minden ismérvérték besorolásra kerül. Közölt határok : Az intervallumok kezdőértékeit a mérési pontosság egységével eltoljuk ( 20.0, 20.1 30.0,...). Egyértelmű besorolhatóság Nyitott osztályköz : Egyik határa hiányzik; számolásokban ugyanolyan hosszú, mint a többi
Kumulatív gyakoriság Kumulatív gyakoriság (f i ) A felső értékhatárnak megfelelő, vagy kisebb ismérvértékek előfordulásának száma. Kumulatív relatív gyakoriság (g i ) A felső értékhatárnak megfelelő, vagy kisebb ismérvértékek előfordulásának aránya. Lefelé kumulatív (relatív) gyakoriság (f i (g i )) Az alsó értékhatárnak megfelelő, vagy nagyobb ismérvértékek előfordulásának száma (aránya).
Értékösszegsorok Értékösszegsor A mennyiség ismérv alapján kialakított osztályokhoz az odatartozó egységek ismérvértékeinek összegét (S i ) rendeli. A sokaság teljes értékösszege S = k i=1 f i X i. Osztályközös gyakoriság esetén... a tényleges értékösszeg csak az eloszlás ismeretében határozható meg. egyébként az osztályközépsőből (X i = x i +x i 2 ) becsüljük. A relatív értékösszeg az a megoszlási viszonyszám, ami az osztályok értékösszegét (S i ) a teljes értékösszeghez (S) viszonyítja.
Grafikus ábrázolás: Definíciók Hisztogram Hézagmentesen illesztett téglalapokkal szemléltet. Egyenlő osztályközök esetén területük arányos a relatív gyakorisággal. Különböző osztályközhosszúságok esetén magasságuk az egységnyi osztályközhosszra jutó gyakoriság (( fi h i ), vagy ( gi h i )) sűrűséghisztogram. Gyakorisági poligon Az osztályközepeknél felmért gyakoriságok pontjait egyenes szakaszokkal összekötő vonaldiagram.
Gyakorisági sorok grafikus ábrázolása Osztályok: bot-ábra Osztályközök: hisztogram
Gyakorisági sorok grafikus ábrázolása Osztályok: bot-ábra Osztályközök: gyakorisági poligon
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Mo Nyers módusz: a gyakorisági poligon maximumhelye. Folytonos/sokváltozatos mennyiségi ismérv esetén modális osztályköz. A modális osztályköz közepe: nyers módusz
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Mo Nyers módusz: a gyakorisági poligon maximumhelye. Folytonos/sokváltozatos mennyiségi ismérv esetén modális osztályköz. A modális osztályköz közepe: nyers módusz
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Mo Nyers módusz: a gyakorisági poligon maximumhelye. Folytonos/sokváltozatos mennyiségi ismérv esetén modális osztályköz. A modális osztályköz közepe: nyers módusz
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Szimmetrikus a megoszlás: modális osztályköz közepe.
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Szimmetrikus a megoszlás: modális osztályköz közepe. Amúgy Mo = mo + k 1 k 1 + k 2 h mo: a mod. osztályköz alsó határa k 1 (k 2 ): a mod. és megelőző (követő) osztályköz gyakorisága különbsége h: a modális osztályköz hossza.
Helyzetmutatók: Módusz Módusz (Mo) A leggyakoribb elem a sokaságban tipikus érték Szimmetrikus a megoszlás: modális osztályköz közepe. Amúgy Mo = mo + k 1 k 1 + k 2 h mo: a mod. osztályköz alsó határa k 1 (k 2 ): a mod. és megelőző (követő) osztályköz gyakorisága különbsége h: a modális osztályköz hossza.
Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. A = Me minimalizálja a N i=1 X i A -t Ha az elemszám páratlan a medián -edik ismérvérték. Ha páros, az N 2 és N 2 + 1-edik ismérvértékek átlaga az N+1 2
Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. A = Me minimalizálja a N i=1 X i A -t Ha az elemszám páratlan a medián -edik ismérvérték. Ha páros, az N 2 és N 2 + 1-edik ismérvértékek átlaga az N+1 2
Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. A = Me minimalizálja a N i=1 X i A -t Ha az elemszám páratlan a medián -edik ismérvérték. Ha páros, az N 2 és N 2 + 1-edik ismérvértékek átlaga az N+1 2
Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. Osztályközös gyakoriság esetén az i-edik osztályköz tartalmazza, ha f i 1 N 2 f i Egyenletes elhelyezkedés esetén: Me = me + N 2 f me 1 f me h me: a med. osztályköz alsó határa f kumulált gyakoriság h: a mediánt tartalmazó osztályköz hossza.
Medián Medián (Me) Ugyanannyi kisebb és nagyobb érték. Osztályközös gyakoriság esetén az i-edik osztályköz tartalmazza, ha f i 1 N 2 f i Egyenletes elhelyezkedés esetén: Me = me + N 2 f me 1 f me h me: a med. osztályköz alsó határa f kumulált gyakoriság h: a mediánt tartalmazó osztályköz hossza.
Átlag Átlag (X ) Az ismérvértékek összegének és a sokaság elemszámának hányadosa; az ismérvértékek számtani átlaga. X = N i=1 X i N Gyakorisági sor esetén súlyozott átlag X = N i=1 f i X i N i=1 f i Megoszlásból becsült érték, súlyozott harmonikus átlag: X = N i=1 S i N S i i=1 X i (X i az osztályközép, S i az i-edik értékösszeg.)
Átlag Átlag (X ) Az ismérvértékek összegének és a sokaság elemszámának hányadosa; az ismérvértékek számtani átlaga. X = N i=1 X i N Gyakorisági sor esetén súlyozott átlag X = N i=1 f i X i N i=1 f i Megoszlásból becsült érték, súlyozott harmonikus átlag: X = N i=1 S i N S i i=1 X i (X i az osztályközép, S i az i-edik értékösszeg.)
Átlag Átlag (X ) Az ismérvértékek összegének és a sokaság elemszámának hányadosa; az ismérvértékek számtani átlaga. X = N i=1 X i N Gyakorisági sor esetén súlyozott átlag X = N i=1 f i X i N i=1 f i Megoszlásból becsült érték, súlyozott harmonikus átlag: X = N i=1 S i N S i i=1 X i (X i az osztályközép, S i az i-edik értékösszeg.)
Kvantilisek q-ad rendű, vagy q-adik kvantilis (Q q ) Az ismérvértékek rangsorát q : (1 q) arányban osztó ismérvérték Q q = X i, ha f i 1 N q f i Gyakori kvantilisek: Tercilisek: Q 1 3 Kvartilisek: Q 1 4 Q 3 4 = T 2 (felső kvartilis) Kvintilisek: Q i 5 Decilisek: Q i 10 = T 1 (alsó tercilis), Q 2 3 = Q 1 (alsó kvartilis), Q 2 4 = K i = D i Percentilisek: Q i 100 = P i = T 2 (felső tercilis) = Me (medián),
Kvantilisek q-ad rendű, vagy q-adik kvantilis (Q q ) Az ismérvértékek rangsorát q : (1 q) arányban osztó ismérvérték Q q = X i, ha f i 1 N q f i Gyakori kvantilisek: Tercilisek: Q 1 3 Kvartilisek: Q 1 4 Q 3 4 = T 2 (felső kvartilis) Kvintilisek: Q i 5 Decilisek: Q i 10 = T 1 (alsó tercilis), Q 2 3 = Q 1 (alsó kvartilis), Q 2 4 = K i = D i Percentilisek: Q i 100 = P i = T 2 (felső tercilis) = Me (medián),
Kvantilisek q-ad rendű, vagy q-adik kvantilis (Q q ) Az ismérvértékek rangsorát q : (1 q) arányban osztó ismérvérték Q j k meghatározása, mint a mediáné: Rangsorból [ kiindulva ] m = j k (N + 1) X m az { m-edik elem } a rangsorban t = j k (N + 1) = j k (N +1) m. Ekkor = X m + t(x m+1 X m ) Q j k
Szóródás Szóródás Azonos fajta számszerű adatok különbözősége. Léteznek abszolút és relatív mutatói. Gyakran használt mérőszámok: a szóródás terjedelme az átlagos eltérés szórás átlagos különbség relatív szórás
A szóródás terjedelme Szóródás terjedelme (R) Az előforduló legnagyobb és legkisebb ismérvérték különbsége: R = X max X min. Interkvantilis terjedelemmutatók A két szélső kvantilis különbsége. Pl. D 9 D 1.
A szóródás terjedelme Szóródás terjedelme (R) Az előforduló legnagyobb és legkisebb ismérvérték különbsége: R = X max X min. Interkvantilis terjedelemmutatók A két szélső kvantilis különbsége. Pl. D 9 D 1.
Átlagos eltérés Átlagos eltérés (δ) Az értékek számtani átlagtól vett abszolút eltérésének átlaga. Ha d i = X i X, illetve δ = N i=1 X i X = N k i=1 δ = f i X i X k i=1 f = i N i=1 d i, N k i=1 f i d i k i=1 f. i
Szórás Szórás (σ) Az értékek számtani átlagtól vett eltérésének négyzetes átlaga. Ha d i = X i X, σ = σ = N i=1(x i X) 2 N i=1 N = d2 i N k i=1 f i(x i X) 2 k = i=1 f i, illetve k i=1 f i di 2 k. i=1 f i A szórásnégyzet (σ 2 ) más néven variancia. Eltérés-négyzetösszeg: SS = N ( i=1 Xi X ) 2, illetve SS = N i=1 f ( i Xi X ) 2. Relatív szórás V = σ X
Szórás Szórás (σ) Az értékek számtani átlagtól vett eltérésének négyzetes átlaga. Ha d i = X i X, σ = σ = N i=1(x i X) 2 N i=1 N = d2 i N k i=1 f i(x i X) 2 k = i=1 f i, illetve k i=1 f i di 2 k. i=1 f i A szórásnégyzet (σ 2 ) más néven variancia. Eltérés-négyzetösszeg: SS = N ( i=1 Xi X ) 2, illetve SS = N i=1 f ( i Xi X ) 2. Relatív szórás V = σ X
Szórás Szórás (σ) Az értékek számtani átlagtól vett eltérésének négyzetes átlaga. Ha d i = X i X, σ = σ = N i=1(x i X) 2 N i=1 N = d2 i N k i=1 f i(x i X) 2 k = i=1 f i, illetve k i=1 f i di 2 k. i=1 f i A szórásnégyzet (σ 2 ) más néven variancia. Eltérés-négyzetösszeg: SS = N ( i=1 Xi X ) 2, illetve SS = N i=1 f ( i Xi X ) 2. Relatív szórás V = σ X
Szórás tulajdonságai δ σ. σ Xi +A = σ Xi σ B Xi = B σ B Xi 2 2 σ = X q X
Szórás tulajdonságai δ σ. σ Xi +A = σ Xi σ B Xi = B σ B Xi 2 2 σ = X q X
Átlagos különbség Átlagos különbség vagy Gini-féle szóródási mérőszám (G) Az ismérvértékek egymástól számított abszolút különbségeinek számtani átlaga. G = N N i=1 j=1 X i X j k k i=1 j=1 N 2 illetve G = f if j X i X j N 2
Az aszimmetria és mérőszámai bal oldali szimmetrikus jobb oldali aszimmetria eloszlás aszimmetria Mo < Me < X Mo = Me = X Mo > Me > X Q 3 Me > Me Q 1 Q 3 Me = Me Q 1 Q 3 Me < Me Q 1
Az aszimmetria és mérőszámai bal oldali szimmetrikus jobb oldali aszimmetria eloszlás aszimmetria Mo < Me < X Mo = Me = X Mo > Me > X Q 3 Me > Me Q 1 Q 3 Me = Me Q 1 Q 3 Me < Me Q 1 A > 0 A = 0 A < 0 Pearson-féle mutató A számtani átlag és a módusz viszonyán alapul: A = X Mo σ
Az aszimmetria és mérőszámai bal oldali szimmetrikus jobb oldali aszimmetria eloszlás aszimmetria Mo < Me < X Mo = Me = X Mo > Me > X Q 3 Me > Me Q 1 Q 3 Me = Me Q 1 Q 3 Me < Me Q 1 A > 0 A = 0 A < 0 F > 0 F = 0 F < 0 F-mutató Az alsó és felső kvartilis mediántól való eltérésének egymáshoz viszonyított nagyságán alapul: F = (Q 3 Me) (Me Q 1 ) (Q 3 Me) + (Me Q 1 ) Kiszámítható más kvantilisből, pl. decilisekből is. Többmóduszú eloszlásoknál is alkalmazható
Koncentráció Koncentráció A sokasághoz tartozó teljes értékösszeg jelentős része kevés egységre összpontosul. (Általában: tömörülés, összpontosulás) A relatív gyakoriságok (g i ) és relatív értékösszegek (Z i ) összehasonĺıtásával mutatható ki. Lorenz-görbe kumulált relatív értékösszeg a kum. gyakoriságok függvényében. Koncentrációs együttható (K) koncentrációs terület aránya az átló alatti területhez. K = G 2X.
Koncentráció Koncentráció A sokasághoz tartozó teljes értékösszeg jelentős része kevés egységre összpontosul. (Általában: tömörülés, összpontosulás) A relatív gyakoriságok (g i ) és relatív értékösszegek (Z i ) összehasonĺıtásával mutatható ki. Lorenz-görbe kumulált relatív értékösszeg a kum. gyakoriságok függvényében. Koncentrációs együttható (K) koncentrációs terület aránya az átló alatti területhez. K = G 2X.
Koncentráció Koncentráció A sokasághoz tartozó teljes értékösszeg jelentős része kevés egységre összpontosul. (Általában: tömörülés, összpontosulás) A relatív gyakoriságok (g i ) és relatív értékösszegek (Z i ) összehasonĺıtásával mutatható ki. Lorenz-görbe kumulált relatív értékösszeg a kum. gyakoriságok függvényében. Koncentrációs együttható (K) koncentrációs terület aránya az átló alatti területhez. K = G 2X.
Idősorok Idősor (Y 1, Y 2,..., Y t,..., Y n ) Társadalmi/gazdasági jelenség egyenlő időközönként mért értékei. állapotidősor, v. tartamidősor
Idősorok Idősor (Y 1, Y 2,..., Y t,..., Y n ) Társadalmi/gazdasági jelenség egyenlő időközönként mért értékei. állapotidősor : álló sokaságok időbeli változását mutatja; állapotfelvételek eredménye. tartamidősor: mozgó sokaságok időbeli változását mutatja; időtartam folyamán bekövetkezett események.
Idősorok Idősor (Y 1, Y 2,..., Y t,..., Y n ) Társadalmi/gazdasági jelenség egyenlő időközönként mért értékei. állapotidősor tartamidősor Dinamikus viszonyszámok Bázisviszonyszám b t = Yt Y b Láncviszonyszám l t = Yt Y t 1
Idősorok Idősor (Y 1, Y 2,..., Y t,..., Y n ) Társadalmi/gazdasági jelenség egyenlő időközönként mért értékei. állapotidősor tartamidősor Dinamikus viszonyszámok Bázisviszonyszám b t = Yt Y b b t = l b+1 l b+2... l t = t i=b+1 l i Láncviszonyszám l t = Yt l t = Y t 1 bt b t 1
Idősorok grafikus ábrázolása Vonaldiagrammal, a vízszintes tengelyen az időszakok, a függőleges tengelyen az idősor adatai.
Idősorok elemzése: Átlagos értékek Tartamidősorok Az adatok összegezhetők. n t=1 Y = Y t n A jelenség egy időszakra jutó átlagos értéke. (Pl. egy weboldal átlagos látogatottsága) Állapotidősorok Az összegzésnek nincs értelme: kronologikus átlag Y k = Y k = Y 1 +Y 2 2 + + Y n 1+Y n 2 n 1 Y 1 2 + n 1 t=2 Y t + Yn 2 n 1 Egyfajta súlyozott átlag.
Idősorok elemzése: Átlagos változás vizsgálata Fejlődés átlagos mértéke A bekövetkezett átlagos abszolút változás d = (Y 2 Y 1 ) + (Y 3 Y 2 ) + + (Y n Y n 1 ) n 1 = Y n Y 1 n 1 Fejlődés átlagos üteme A bekövetkezett átlagos relatív változás l = n 1 l 2 l 3 l n = n 1 n t=2 l t = n 1 Yn Y 1
Idősorok elemzése: Átlagos változás vizsgálata Fejlődés átlagos mértéke A bekövetkezett átlagos abszolút nominális változás d = (Y 2 Y 1 ) + (Y 3 Y 2 ) + + (Y n Y n 1 ) n 1 = Y n Y 1 n 1 Fejlődés átlagos üteme A bekövetkezett átlagos relatív változás l = n 1 l 2 l 3 l n = n 1 n t=2 l t = n 1 Yn Y 1
Idősorok elemzése: Átlagos változás vizsgálata Fejlődés átlagos mértéke A bekövetkezett átlagos abszolút nominális változás d = (Y 2 Y 1 ) + (Y 3 Y 2 ) + + (Y n Y n 1 ) n 1 = Y n Y 1 n 1 Fejlődés átlagos üteme A bekövetkezett átlagos relatív változás l = n 1 l 2 l 3 l n = n 1 n t=2 l t = n 1 Yn Y 1