1. A k-szerver probléma

Hasonló dokumentumok
1. Online kiszolgálóelhelyezés

Az online algoritmusok k-szerver probléma

Az online algoritmusok k-szerver probléma

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

Alapfogalmak, bevezető

A k-szerver probléma

Online migrációs ütemezési modellek

1. Bevezet példák, síbérlés

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach/ 2005.

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 2. forduló Haladók II. kategória

Abszolút folytonos valószín ségi változó (4. el adás)

Approximációs algoritmusok

Függvények növekedési korlátainak jellemzése

Bevezetés. 1. fejezet. Algebrai feladatok. Feladatok

MBNK12: Permutációk (el adásvázlat, április 11.) Maróti Miklós

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

Permutációk véges halmazon (el adásvázlat, február 12.)

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Általános algoritmustervezési módszerek

Amortizációs költségelemzés

ZH feladatok megoldásai

Írta: DÓSA GYÖRGY IMREH CSANÁD ONLINE ALGORITMUSOK. Egyetemi tananyag

Ha I < B, akkor mind az online algoritmusnak mind pedig az optimális offline algoritmusnak a költsége I, így B(I)/OPT(I)=1.

Online ládapakolás. 1. Ládapakolási modellek

További forgalomirányítási és szervezési játékok. 1. Nematomi forgalomirányítási játék

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

Analitikus térgeometria

Deníciók és tételek a beugró vizsgára

Sorozatok és Sorozatok és / 18

Diszkrét matematika 2.C szakirány

Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27

Nagyságrendek. Kiegészítő anyag az Algoritmuselmélet tárgyhoz. Friedl Katalin BME SZIT február 1.

A brachistochron probléma megoldása

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

1. tétel - Gráfok alapfogalmai

Függvények folytonosságával kapcsolatos tételek és ellenpéldák

: s s t 2 s t. m m m. e f e f. a a ab a b c. a c b ac. 5. Végezzük el a kijelölt m veleteket a változók lehetséges értékei mellett!

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

Az optimális megoldást adó algoritmusok

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

Konvex optimalizálás feladatok

9. Tétel Els - és másodfokú egyenl tlenségek. Pozitív számok nevezetes közepei, ezek felhasználása széls érték-feladatok megoldásában

Analízisfeladat-gyűjtemény IV.

A relációelmélet alapjai

Modellek és Algoritmusok - 2.ZH Elmélet

Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv

Diszkrét matematika I. gyakorlat

Komplex számok trigonometrikus alakja

Diszkrét matematika 2. estis képzés

Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.

Határozatlan integrál

Analitikus térgeometria

Függvények július 13. f(x) = 1 x+x 2 f() = 1 ()+() 2 f(f(x)) = 1 (1 x+x 2 )+(1 x+x 2 ) 2 Rendezés után kapjuk, hogy:

Chomsky-féle hierarchia

d(f(x), f(y)) q d(x, y), ahol 0 q < 1.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Minden x > 0 és y 0 valós számpárhoz létezik olyan n természetes szám, hogy y nx.

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

Tűgörgős csapágy szöghiba érzékenységének vizsgálata I.

Bevezetés. Párhuzamos vetítés és tulajdonságai

HALMAZELMÉLET feladatsor 1.

ANALÍZIS II. Példatár

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Matematikai és matematikai statisztikai alapismeretek

Véges ponthalmazok legrövidebb hálózatai Kábelrakás kis költséggel

Bázistranszformáció és alkalmazásai 2.

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Diszkrét matematika 2.C szakirány

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

Területszámítás Ívhossz számítás Térfogat számítás Felszínszámítás. Integrálszámítás 4. Filip Ferdinánd

Lineáris leképezések. Wettl Ferenc március 9. Wettl Ferenc Lineáris leképezések március 9. 1 / 31

Valószín ségszámítás és statisztika

Polinomok (el adásvázlat, április 15.) Maróti Miklós

Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Felkészülést segítő kérdések Gépszerkesztés alapjai tárgyból

Egy kártyatrükk és ami mögötte van

Relációk. 1. Descartes-szorzat. 2. Relációk

A junior kategória nevezési díja maximum a senior 75%-a, továbbá a csapat nevezési díja maximum 2000 Ft/fő.

Lagrange és Hamilton mechanika

1. Parciális függvény, parciális derivált (ismétlés)

Opkut deníciók és tételek

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Módosítható Prioritási sor Binomiális kupaccal. Wednesday, March 21, 12

1. A vállalat. 1.1 Termelés

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

Wigner tétele kvantummechanikai szimmetriákról

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

A Formális nyelvek vizsga teljesítése. a) Normál A vizsgán 60 pont szerezhet, amely két 30 pontos részb l áll össze az alábbi módon:

KOVÁCS BÉLA, MATEMATIKA I.

Átírás:

1. A k-szerver probléma Az egyik legismertebb on-line probléma a k-szerver probléma. A probléma általános deníciójának megadásához szükség van a metrikus tér fogalmára. Egy (M, d) párost, ahol M a metrikus tér pontjait tartalmazza, d pedig az M M halmazon értelmezett távolságfüggvény metrikus térnek nevezünk, ha a távolságfüggvényre teljesülnek az alábbi tulajdonságok d(x, y) 0 minden x, y M esetén, d(x, y) = d(y, x) minden x, y M esetén, d(x, y) + d(y, z) d(x, z) minden x, y, z M esetén, d(x, y) = 0 akkor és csak akkor teljesül, ha x = y. A k-szerver problémában adott egy metrikus tér, és van k darab szerverünk, amelyek a térben mozoghatnak. A probléma során a tér pontjaiból álló kérések egy listáját kell kiszolgálni azáltal, hogy a megfelel kérések helyére odaküldünk egy-egy szervert. A probléma on-line, ami azt jelenti, hogy a kéréseket egyenként kapjuk meg, és az egyes kéréseket a további kérések ismerete nélkül azok érkezése el tt kell kiszolgálnunk. A cél a szerverek által megtett össztávolság minimalizálása. Ezen modellnek és speciális eseteinek számos alkalmazása van. A továbbiakban azt a metrikus tér pontjaiból álló multihalmaz, amely megadja mely pontokban helyezkednek el a szerverek (azért kell multihalmazokat használnunk, mert egy pontban több szerver is lehet) a szerverek kongurációjának nevezzük. Az els fontos eredményeket a k szerver problémára Manasse, McGeoch és Sleator érték el. A probléma megoldására javasolt els eljárás a következ Egyensúly algoritmus, amelyet a továbbiakban ES-el jelölünk. Az eljárás során a szerverek mindig különböz pontokban helyezkednek el. Az algoritmus futása során minden szerverre számon tartja, hogy az aktuális id pontig összesen mekkora távolságot tett meg. Jelölje rendre s 1,..., s k a szervereket és a pontokat is, ahol a szerverek elhelyezkednek. Továbbá jelölje D 1,..., D k rendre a szerverek által az adott id pontig megtett összutat. Ekkor, amennyiben egy P pontban megjelenik egy kérés akkor a ES algoritmus azt az i szervert választja a kérés kiszolgálására, ahol a D i + d(s i, P ) érték minimális. Tehát az algoritmus számon tartja a szerverek S = {s 1,..., s k } szerver

kongurációját, és a szerverekhez rendelt távolságokat, amelyek kezdeti értékei D 1 =... = D k = 0. Ezt követ en a algoritmus egy I = P 1,..., P n pontsorozatra a következ képpen fut ES(I) for j = 1 to n i = argmin{d i + d(s i, P j )} szolgáljuk ki a kérést az i-edik szerverrel D i := D i + d(s i, P j ) s i := P j Példa Tekintsük a kétdimenziós Euklédeszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két pontnak a, b c, d-nek a távolsága (a c) 2 + (b d) 2. Legyen két szerverünk kezdetben a (0, 0) és (1, 1) pontokban. Kezdetben D 1 = D 2 = 0, s 1 = (0, 0), s 2 = (1, 1). Az els kérés legyen az (1, 4) pontban. Ekkor D 1 + d((0, 0)(1, 4)) = 17 > D 2 + d((1, 1)(1, 4) = 3, így a második szervert használjuk és a kérés kiszolgálása után D 1 = 0, D 2 = 3, s 1 = (0, 0), s 2 = (1, 4) teljesül. Legyen a második kérés (2, 4), ekkor D 1 +d((0, 0)(2, 4)) = 20 > D 2 +d((1, 4)(2, 4) = 3+1 = 4, így ismét a második szervert használjuk, és a kérés kiszolgálása után D 1 = 0, D 2 = 4, s 1 = (0, 0), s 2 = (2, 4) teljesül. A harmadik kérés legyen ismét az (1, 4) pontban, ekkor D 1 + d((0, 0)(1, 4)) = 17 < D 2 + d((2, 4)(1, 4) = 4 + 1 = 5, így az els szervert használjuk és a kérés kiszolgálása után D 1 = 17, D 2 = 4, s 1 = (1, 4), s 2 = (2, 4) teljesül. Az algoritmus hatékony speciális terek esetén, miként ezt a következ állítás mutatja. A tétel bizonyítását nem ismertetjük. tétel Amennyiben a metrikus tér k + 1 pontot tartalmaz, akkor az ES algoritmus enyhén k-versenyképes. Az alábbi állítás mutatja, hogy a k-szerver problémára általában nem adható meg k-versenyképesnél jobb algoritmus. tétel Nincs olyan legalább k + 1 pontból álló metrikus tér, ahol megadható olyan on-line algoritmus, amelynek kisebb a versenyképességi hányadosa, mint k. Bizonyítás Tekintsünk egy tetsz leges legalább k + 1 pontból álló teret, és egy tetsz leges on-line algoritmust. Jelölje az algoritmust ONL, a pontokat ahol kezdetben ONL szerverei állnak P 1, P 2,..., P k, a térnek egy további

pontját jelölje P k+1. Vegyük kéréseknek egy hosszú I = Q 1,..., Q n sorozatát, amelyet úgy kapunk, hogy a következ kérés mindig a P 1, P 2,..., P k+1 pontok közül abban a pontban keletkezik, ahol a ONL algoritmusnak nem tartózkodik szervere. Vizsgáljuk els ként a ONL(I) költséget. Mivel a Q j pont kiszolgálása után a Q j+1 pont lesz szabad, ezért a Q j pontot mindig a Q j+1 pontban álló szerver szolgálja ki, így a kiszolgálás költsége d(q j, Q j+1 ). Következésképpen n ONL(I) = d(q j, Q j+1 ), j=1 ahol Q n+1 azt a pontot jelöli, ahol az n+1-edik kérés lenne, azaz azt a pontot, amelyr l kiszolgáltuk az n-edik kérést. Most vizsgáljuk a OPT(I) költséget. Az optimális o-line algoritmus meghatározása helyett deniálunk k darab o-line algoritmust, és ezek költségeinek az átlagát használjuk, mivel mindegyik algoritmus költsége legalább akkora mint a minimális költség, ezért a költségek átlaga is fels korlátja lesz az optimális költségnek. Deniáljunk k darab o-line algoritmust, jelölje ket OFF 1,..., OFF k. Tegyük fel, hogy a kiindulási állapotban az OFF j algoritmus szerverei a P 1, P 2,..., P k+1 pontok közül a P j pontot szabadon hagyják, és a halmaz további pontjainak mindegyikén egy szerver helyezkedik el. Ez a kiindulási állapot elérhet egy C j konstans extra költség felhasználásával. A kérések kiszolgálása a következ képpen történik. Ha a Q i ponton van az OFF j algoritmusnak szervere, akkor nem mozgat egyetlen szervert sem, ha nincs, akkor a Q i 1 ponton lev szervert használja. Az algoritmusok jól deniáltak, hiszen ha nincs szerver a Q i ponton, akkor a P 1, P 2,..., P k+1 pontok mindegyikén, így Q i 1 -en is van szerver. Továbbá a Q 1 = P k+1 ponton az OFF j algoritmusok mindegyikének áll szervere a kezdeti kongurációban. Vegyük észre, hogy az OFF 1,..., OFF k algoritmusok szerverei rendre különböz kongurációkban vannak. Kezdetben ez az állítás a deníció alapján igaz. Utána a tulajdonság azért marad fenn, mert amely algoritmusok nem mozdítanak szervert a kérés kiszolgálására, azoknak a szerver kongurációja nem változik. Amely algoritmusok mozgatnak szervert, azok a Q i 1 pontról viszik el a szervert, amely pont az el z kérés volt, így ott minden algoritmusnak van szervere. Következésképp ezen algoritmusok szerver kongurációja nem állítódhat azonos pozícióba olyan algoritmus szerver kon- gurációjával, amely nem mozdított szervert. Másrészt, ha több algoritmus

is mozgatná Q i 1 -r l Q i -be a szervert azok szerver kongurációja se válhat azonossá, hisz a mozgatást megel z leg különböz volt. Következésképp egy Q i kérés esetén, minden OFF j algoritmusra más a szerver konguráció. Továbbá minden kongurációnak tartalmaznia kell Q i 1 -et, tehát pontosan egy olyan OFF j algoritmus van, amelynek nincsen szervere a Q i ponton. Tehát a Q i kérés kiszolgálásának a költsége az OFF j algoritmusok egyikénél d(q i 1, Q i ) a többi algoritmus esetén 0. Következésképp k n OFF j (I) = C + d(q i, Q i 1 ), j=1 i=2 ahol C = k j=1 C j egy az input sorozattól független konstans, amely az oline algoritmusok kezdeti kongurációinak beállításának költsége. Másrészt az o-line optimális algoritmus költsége nem lehet nagyobb semelyik o-line algoritmus költségénél sem, így k OPT(I) k j=1 OFF j (I). Következésképpen n k OPT(I) C + d(q i, Q i 1 ) C + ONL(I), i=2 amely egyenl tlenségb l következik, hogy az ONL algoritmus versenyképességi hányadosa nem lehet kisebb, mint k, hiszen az inputsorozat hosszúságának növelésével a OPT(I) érték tetsz legesen nagy lehet. A probléma felvetése nagy érdekl dést keltett, az elkövetkez néhány évben számos eredmény született. Az általános esetre konstans versenyképes algoritmust (O(2 k )-versenyképes algoritmust) els ként Fiat, Rabani és Ravid fejlesztettek ki. Ezt követ en hosszan nem sikerült lényegesen csökkenteni a fels és az alsó korlát közötti rést. Az áttörést Koutsoupias és Papadimitriou eredménye hozta meg, sikerült a probléma megoldására Chrobak és Larmore által javasolt munkafüggvényen alapuló algoritmust elemezniük és igazolniuk, hogy az algoritmus (2k 1)-versenyképes. Nem sikerült meghatározniuk az algoritmus pontos versenyképességi hányadosát, bár általánosan sejtett, hogy az algoritmus valójában k-versenyképes. Ezen versenyképességi hányados pontos meghatározása, illetve egy k-versenyképes algoritmus kifejlesztése azóta is az on-line algoritmusok elméletének legismertebb és sokak által legfontosabbnak tartott nyílt problémája. Az alábbiakban ismertetjük a munkafüggvény algoritmust.

Legyen A 0 az on-line szerverek kezdeti kongurációja. Ekkor a t-edik kérés utáni X multihalmazra vonatkozó munkafüggvény w t (X) a minimális költség, amellyel kiszolgálható az els t kérés az A 0 kongurációból kiindulva úgy, hogy a szerverek az X kongurációba kerüljenek a kiszolgálás végén. A munkafüggvény algoritmus a munkafüggvényt használja. Legyen A t 1 a szervereknek a kongurációja közvetlenül a t-edik kérés érkezése el tt. Ekkor a munkafüggvény algoritmus azzal az s szerverrel szolgálja ki az R t pontban megjelent kérést, amelynek a P helyére a w t 1 (A t 1 \ P R t ) + d(p, R t ) érték a minimális. Példa Tekintsük azt a metrikus teret, amelyben három pont van A, B és C, a távolságok d(a, B) = 1, d(b, C) = 2, d(a, C) = 3. A kezdeti szerver konguráció legyen A, B. Ekkor a kezdeti munkafüggvények w 0 ({A, A}) = 1, w 0 ({A, B}) = 0, w 0 ({A, C}) = 2, w 0 ({B, B}) = 1, w 0 ({B, C}) = 3, w 0 ({C, C}) = 4. Legyen az els kérés a C pontban. Ekkor w 0 ({A, B}\{A} {C})+d(A, C) = 3+3 = 5 és w 0 ({A, B}\{B} {C})+d(B, C) = 2+2 = 4, így a Munkafüggvény algoritmus a B pontban lev szerver küldi a kérés kiszolgálására. A munkafüggvény algoritmusra teljesül a következ állítás. tétel A Munkafüggvény algoritmus enyhén 2k 1-versenyképes. Az általános probléma vizsgálata mellett a probléma speciális eseteit számos dolgozatban vizsgálták. Amennyiben bármely két pont távolsága 1, akkor a lapozási probléma on-line változatához jutunk, amely a számítógépek memóriakezelését modellezi. Egy másik vizsgált speciális tér az egyenes. Az egyenes pontjait a valós számoknak feleltetjük meg, és két pontnak a- nak és b-nek a távolsága a b. Erre az esetre, ahol a metrikus tér egy egyenes, Chrobak és Larmore kifejlesztett egy k-versenyképes algoritmust, amelyet dupla lefed algoritmusnak nevezünk. Az algoritmus a P kérést a P -hez legközelebb es s szerverrel szolgálja ki, és amennyiben vannak szerverek P -nek az s-el átellenes oldalán is, akkor azon szerverek közül a P -hez legközelebbit d(s, P ) egységnyit mozdítja P felé. A továbbiakban a dupla lefed algoritmust DL-el jelöljük. Példa Tegyük fel, hogy három szerverünk van, s 1, s 2, s 3 amelyek az egyenes 0, 1, 2 pontjaiban helyezkednek el. Amennyiben a következ kérés a 4 pontban jelenik meg, akkor DL a legközelebbi s 3 szervert küldi a kérés kiszolgálására a többi szerver helye nem változik, a költség 2 és a kérés kiszolgálása után a szerverek a 0, 1, 4 pontokban lesznek. Amennyiben ezt követ en a következ

kérés a 2 pontban jelenik meg, akkor DL a legközelebbi s 2 szervert küldi a kérés kiszolgálására, de mivel a kérés másik oldalán is van szerver, ezért s 3 is megtesz egy egységnyi utat a kérés felé, így a költség 2 és a kérés kiszolgálása után a szerverek a 0, 2, 3 pontokban lesznek. A DL algoritmusra teljesül a következ állítás. tétel A DL algoritmus k-versenyképes ha a metrikus tér egy egyenes. Bizonyítás Vegyünk egy tetsz leges sorozatát a kéréseknek, jelölje ezt az inputot I. Az eljárás elemzése során feltételezzük, hogy párhuzamosan fut a DL algoritmus és egy optimális o-line algoritmus. Szintén feltesszük, hogy minden kérést els ként az o-line algoritmus szolgál ki, utána pedig az on-line algoritmus. Az on-line algoritmus szervereit és egyben a szerverek pozícióit, (amelyek valós számok az egyenesen) s 1,..., s k jelöli, az optimális o-line algoritmus szervereit és egyben a szerverek pozícióit x 1,..., x k jelöli. Mivel a szerverek rendszeres átjelölésével ez elérhet feltételezzük, hogy s 1 s 2... s k és x 1 x 2... x k mindig teljesül. A tétel állítását a potenciálfüggvény technikájával igazoljuk. A potenciálfüggvény a szerverek aktuális pozíciójához rendel egy értéket, az on-line és az o-line költségeket a potenciálfüggvény változásainak alapján hasonlítjuk össze. Legyen a potenciálfüggvény k Φ = k x i s i + j s i ). i=1 i<j(s Az alábbiakban igazoljuk, hogy a potenciálfüggvényre teljesülnek az alábbi állítások. Amíg OPT szolgálja ki a kérést, addig a potenciálfüggvény növekedése legfeljebb k-szor az OPT szerverei által megtett távolság. Amíg DL szolgálja ki a kérést, addig Φ legalább annyival csökken, mint amennyi a kérés kiszolgálásának költsége. Amennyiben a fenti tulajdonságok teljesülnek, akkor a tétel állítása következik, hiszen ebben az esetben adódik, hogy Φ v Φ 0 k OPT(I) DL(I), ahol Φ v és Φ 0 a potenciálfüggvény kezdeti és végs értékei. Mivel a potenciálfüggvény nemnegatív, ezért adódik, hogy DL(I) kopt(i) + Φ 0, azaz azt kapjuk, hogy a DL algoritmus enyhén k-versenyképes. Most igazoljuk a potenciálfüggvény tulajdonságait.

Els ként vizsgáljuk azt az esetet, amikor OPT valamely szervere d távolságot mozog. Ekkor a potenciálfüggvényben szerepl els rész legfeljebb kd-vel növekszik a második rész nem változik, tehát az els tulajdonsága a potenciálfüggvénynek valóban fennáll. Most vizsgáljuk DL szervereit. Legyen P a kérés melyet ki kell szolgálni. Mivel els ként OPT szolgálta ki a kérést, ezért x j = P valamely szerverre. Most különböztessünk meg két esetet DL szervereinek elhelyezkedését l függ en. Els ként tegyük fel, hogy minden szerver P -nek ugyanarra az oldalára esik. Feltehetjük, hogy minden szerver pozíciója nagyobb P -nél, a másik eset teljesen hasonló. Ekkor s 1 a legközelebbi szerver P -hez és DL s 1 -et küldi P -be, más szervert nem mozgat. Tehát DL költsége d(s 1, P ). A potenciálfüggvényben szerepl els összegben csak az x 1 s 1 tag változik és ez csökken d(s 1, P ) egységgel, tehát az els rész csökken kd(s 1, P ) egységgel. A második tag növekszik (k 1)d(s 1, P ) egységgel, így Φ értéke csökken d(s 1, P ) egységgel. Most tekintsük a másik esetet! Ekkor P -nek mindkét oldalára esik szerver, legyenek ezek a szerverek s i és s i+1. Tegyük fel, hogy s i esik közelebb P -hez, a másik eset teljesen hasonló. Tehát DL költsége 2d(s i, P ). Vizsgáljuk a potenciálfüggvény els részének változásait! Az i-edik és az i + 1-edik tag változik. Az egyik tag növekszik, a másik csökken d(s i, P ) egységgel, tehát az els rész összességében nem változik. A Φ függvény második részének változása d(s i, P )( (k i) + (i 1) (i) + (k (i + 1))) = 2d(s i, P ). Tehát ebben az esetben is fennáll a potenciálfüggvény második tulajdonsága. Mivel több eset nem lehetséges ezért igazoltuk a potenciálfüggvény tulajdonságainak fennállását, amivel a tétel állítását is bebizonyítottuk.