Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem
|
|
- Emil Nagy
- 6 évvel ezelőtt
- Látták:
Átírás
1 Geometriai fázisok és spin dinamika Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem
2 Vázlat Hogyan manipulálnak egyetlen spint? Mitől relaxál egy spin? Magspinek (hiperfinom kölcsönhatás) Elektromágneses tér fluktuációi Geometriai (Berry fázis) effektusok!! Lehet-e pusztán elektromos térrel manipulálni egy spint illetve spin áramot generálni? Van-e T=0 hőmérsékleten spin relaxáció?
3 A kísérleti technológia
4 Mezoszkópikus áramkörök, kvantum pöttyök Félvezető áramkörök: Top elektróda 2D elektron gáz GaAs GaAlAs elektronok Mesterséges atomok és molekulák Nanocsövek, vertikális dotok [Leo Kowenhoven weboldala] [Jarillo-Herrero et al., Nature 434, 484 (2005)] [Sasaki et al., PRL 93, (2004) ]
5 Egy spin kiolvasás Egyetlen elektron spinje mérhető áramkörök segítségével! Kvantum pötty Akár egyetlen izolált elektron! ionizációs enegria V P J. M. Elzerman, R. Hanson, et al. Nature 430, 431 (2004).
6 Két spin kvantummechanikai kontrollja Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta, et al. Science (2005)
7 Mitől relaxál egy spin?
8 Magspinek Hiperfinom kölcsönhatás B hf 1mT (100 ns) [Khaetskii, Loss, Glazman, 2002] A központi spin probléma: r r z H = Sc Ji Si B (gelµ B S + g c Nµ i i N S z i ) elektron spin J r 2 i ~ A hf ϕ(ri ) magspin (Egzaktul megoldható Richardson magmodellje) 6 majdnem statikus N ~ 10 spin spin echo technikával kezelhető
9 Fonon-indukálta relaxáció Piezoelektromos fononok + spin-pálya csatolás [Khaetskii, Nazarov (2001); Golovach, Khaetskii, Loss (2004); Stano, Fabian (2005)] B = 0 r p r H + 2m 2 0 = + V(r ) H * SO Spin-pálya csatolás Kramers degenerált spin-textúrák: δ µ g r r B B σ +δv(t 2 ) elektromos tér Fluktuációi (fononok) V = 0, (időtükrözés) B 0 B 0 δ V ~ B 1/ T ~ B B
10 Teljes a kép? Amasha et al., PRL 2008 Kérdések: Mi történik, ha B 0? Milyen más relaxációs forrás van? Létezik T=0 hőmérsékleten spin relaxáció Berry fázis indukálta relaxáció Ohmikus fluktuációk Igen???
11 Berry fázis két dimenzióban, szemiklasszikus kép y 2D elektrongáz Vigyük körbe az elektront! δa l x l y r2 p H = +αm( v y σx vxσ y) 2m x v v x y 0 0 B B (síkra merőleges elektromos tér) eff eff, y, x Rashba kölcsönhatás 0 0 V SO r r r ~ (p E) σ U x = e U y = e i l x αmσ / 2 i 2 y l y αm σ / 2 2 x A ciklus utáni forgatás: U = U + y U + x U y U δϕ = 8δA / λ x 2 SO e i δϕ σ z / 2 ( λ SO ~ 1/ mα) Arányos az irányított területtel!
12 Bezárt elektron fluktuáló klasszikus térben r p r H + 2m 2 0 = + V(r ) H * SO g µ r r B B σ +δv(t 2 ) EM fluktuációk Lassú fluktuációk: δv(t) = eδe x (t) xˆ eδe y (t) ŷ +K (energiaszintek távolságához viszonyítva lassú) Formálisan: δv(t) = X (t) k k Ô k (fononok, töltés fluktuációk)
13 B=0 adiabatikus közelítés Az elektron minden pillanatban a Kramers-degenerált alapállapotban van: r X(t) ( δe x, y (t)) Ψ(t) a (t) Φ r (X(t)) + a (t) Φ r (X(t)) Pillanatnyi alapállapoti dublett i da dt σ = H eff σσ' (t) a σ' H eff σσ' (B = 0) = i dφ r (X dt σ t ) φ σ' r (X t ) nem-ábeli Berry fázis
14 Elektromos tér: r X = Perturbatív számítás r δe(t) H eff (t) = Beff (t) σ z B eff (t) = dδe dt x δe y δe x dδe dt y C ~ da / dt C = i e xˆ ŷ 2,n n, 2 n σ ( εσ εn ) Fluktuációk δe y(t) Véletlen területarányos spin forgatás δe x(t) RELAXÁCIÓ E. Abrahams, Phys. Rev. 107, !
15 Újrafelösszegezzük az S-mátrixot: Adiabatikus közelítés: U(t) = Tt exp[ i dτδ V( τ)] t B 0 egy foton Statikus két foton, Van Vleck cancellation Berry fázis tag
16 Kvantum tárgyalás (pályaintegrál, korrespondencia elv) ρ ( ω δe ) A környezetre vonatkozó információ a spektrálfüggvényben van rejtve Például Berry fázis tag járuléka: ρ Fononok ( ω) = λ ω ph x 0 ph 3 Ohmikus fluktuációk ρω ( ω) = λ Ω ω / TBerry ~ max{b,t } 1/ TBerry ~ max{b,t } 1/ T 1 foton ~ B 4 max{b, T} 1/ T 1 foton ~ B 2 max{b, T} [P. San-Jose, G.Z., A. Shnirman, and G. Schon, PRL 97, (2006)]
17 Tisztán kvantumos tárgyalás Térelmélet a redukált sűrűségmátrixra a Keldysh kontúron: Mozgásegyenlet: i[ ~ ρ D (t),h Z ] Dyson egyenlet : Ezek tartalmazzák a Berry fázis járulékot [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)]
18 Relaxáció [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)] 2-foton 1-foton Fémes elektródák hatása? geometriai relaxáció Fémes elektródák Geometriai relaxáció picike Megfigyelhető??? p-típusú kvantum dotok! Gerardot et al, Nature 2008 M.Trif, P. Simon, D. Loss, PRL 103, (2009) picit nagyobb kvantum dotok.
19 Lehet-e ilyen geometriai effektusokat használni?
20 Két-dot rendszerbeli spin transzfer λso >> x 0 Messzire kell mozgatnunk az elektront d Hamilton operátor (szimmetriák): alagutazás aszimmetria ~ egzaktul kiszámítható Forgatás szöge ~ d / λ SO
21 Spin-pumpálás mezoszkópikus áramkörökben Csak elektródákat használva pumpálható-e adiabatikusan spin? [Sharma and Brouwer, PRL 91, (2003).] Kaotikus üreg: Szórási mátrix: r S = t LL RL t r LR RR Λ L Id = L Véletlen terek Pumpált spin pici
22 Lehet kontrolláltan, rezonancián keresztül? szimmetrikus dot Aszimmetrikus dot [V. Brosco et al. (preprint)]
23 Relaxál a spin T=0 hőmérsékleten?
24 Hamilton operátor Elektron a gyűrűn Túl sok közelítést tettünk (Markov folyamat, perturbatív tárgyalás) Egyszerű modell: Elektron gyűrűn, ohmikus (Caldeira Leggett) fluktuációkhoz csatolva Radiális beszorítás: δr Tangenciális tagok: 2r Határeset : Rashba δr 0, r finite Dresselhaus legalacsonyabb radiális móduson mozog
25 szögfüggő effektív Hamilton operátor Effective Hamilton operátor: Radiális módus H ring ( ϑ) = 0 H ' 0 0 H E n 0 n 0 ' E n n H ' 0 Analítikusan kiszámítható Szögfüggő effektív tér: Megmaradó mennyiség: Független a bezáró potenciáltól! [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)]
26 Elektromos fluktuációk H ring ( θ) H ring ( θ) + V( θ, ξ) V( θ, ξ) = ξ Fluktuációk, pl. x cos( θ) + ξ y sin( θ) Mozgásegyenlet: Helykoordináta: Spin és θ szétcsatolódnak!!! Spin: r ( h( θ ) h0 zˆ ) geometrikus spinfejlődés
27 Nem egyensúlyi pályaintegrál kiszámítható Merre mutat a spin t idő után? S α (t) = 2π + dθ0 dθ0 dθt Dθ+ Dθ e G +,G kezdeti sűrűségmátrix ( ρ 0 particle ) G + θ θ G t + 0 θ θ t 0 i(s[ θ +, ξ + ] S[ θ + * α iq+ ( θ0 θt ) iq ( θ0 θt ) ( Ψ ( θ )S Ψ ( θ )) e e G t G Alapállapoti spinor + t, ξ ]) ξ Effektív hatás (spinfüggetlen) Spin-pálya momentum Végső kérdés: i ρ θt t e 0??? ξ
28 Csillapodik-e a spin? Valószínűleg igen!!! Imaginárius időben: S[ θ( τ)] = dτ [H. Spohn and W. Zwerger, J. Stat. Phys. 94, 1037 (1999)] 2 θ& + η 2M sin dτdτ' 2 ( θ( τ) θ( τ')) 2 ( τ τ') cosθ( τ)cosθ( τ') ~ 1 ( τ τ') 2 Valós időben? szemiklasszikus számítás pszeudofermionok renormálási csoport Nem tudjuk még Biztosan
29 Konklúzió A spin relaxációt egy geometriai effektus adja B 0 esetén Nagy és p-típusú kvantum dotoknál jelentős Ohmikus fluktuációk szerepe Pablo San-Jose (Lancester), Sasha Shnirman, Gerd Schön (Karlsruhe) Rezonáns spin pumpálás spin-pálya kölcsönhatás felhasználásával Valentina Brosco (Roma) Pablo San-Jose (Lancester), Sasha Shnirman, Gerd Schön (Karlsruhe) Algebrai spin relaxáció a gyűrűn T = 0? Baruch Horvitz (BerSheva), Pierre Le Doussal (Ecole Normale)
Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói
Spin Hall effect Egy kis spintronika Spin-pálya kölcsönhatás Miért nem szeretjük a spin-pálya pálya kölcsönhatást? Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect: a kezdetek Dyakonov
RészletesebbenForgó molekulák áthaladása apertúrán
Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés
RészletesebbenIdegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
RészletesebbenFluktuáló terű transzverz Ising-lánc dinamikája
2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2
RészletesebbenSinkovicz Péter, Szirmai Gergely október 30
Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés
RészletesebbenAZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
RészletesebbenA nemegyensúlyi Anderson szennyez modell vizsgálata perturbatív térelméleti módszerekkel
A nemegyensúlyi Anderson szennyez modell vizsgálata perturbatív térelméleti módszerekkel Horváth Bertalan Budapesti M szaki és Gazdaságtudományi Egyetem Elméleti Fizika Tanszék Témavezet : Prof. Zaránd
RészletesebbenUltrahideg atomok topológiai fázisai
Ultrahideg atomok topológiai fázisai Szirmai Gergely MTA SZFKI 2011. június 14. Szirmai Gergely (MTA SZFKI) Ultrahideg atomok topológiai fázisai 2011. június 14. 1 / 1 Kvantum fázisátalakulások I (spontán
RészletesebbenKvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Részletesebbendinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
RészletesebbenBeugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Részletesebbenθ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:
3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:
RészletesebbenKvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi
RészletesebbenΨ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
Részletesebben2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
RészletesebbenKirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
RészletesebbenFoton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
RészletesebbenAlkalmazott spektroszkópia
Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp
RészletesebbenPonthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával
Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával (munkabeszámoló) Szász Krisztián MTA Wigner SZFI, PhD hallgató 2013.05.07. Szász Krisztián Ponthibák azonosítása 1/ 13 Vázlat
RészletesebbenVan-e a vákuumnak energiája? A Casimir effektus és azon túl
Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?
RészletesebbenAz BF61726 számú, Nem egyensúlyi spin transzport és korrelációk nanostruktúrákban című OTKA projekt zárójelentése
Az BF61726 számú, Nem egyensúlyi spin transzport és korrelációk nanostruktúrákban című OTKA projekt zárójelentése Ez a projekt atomi és mesterséges atomi struktúrák ill. felületek, vékony rétegek vizsgálatát
RészletesebbenBevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
RészletesebbenA spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
Részletesebben2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
Részletesebben"Flat" rendszerek. definíciók, példák, alkalmazások
"Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.
RészletesebbenBordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano
Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:
RészletesebbenKevert állapoti anholonómiák vizsgálata
Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom
Részletesebbenu u IR n n = 2 3 t 0 <t T
IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε
RészletesebbenEgyesített funkcionális renormálási csoport egyenlet
Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika
RészletesebbenÖsszefonódottság detektálása tanúoperátorokkal
Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák
Részletesebbenhttp://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
RészletesebbenKvantum renormálási csoport a
Kvantum renormálási csoport a Nagy Sándor, Polonyi János, Steib Imola Debreceni Egyetem, Elméleti Fizikai Tanszék Szeged, 2016. augusztus 25. a S. Nagy, J. Polonyi, I. Steib, Quantum renormalization group,
RészletesebbenA TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:
1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)
Részletesebben3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
RészletesebbenJanuary 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
RészletesebbenSötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban
Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Szilárdtestfizikai és Optikai Kutatóintézet H- Budapest, Konkoly-Thege
RészletesebbenUniverzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
RészletesebbenPósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369
arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz
RészletesebbenDiszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
RészletesebbenFizika M1 - A szilárdtestfizika alapjai. Gépészmérnök és Energetikai mérnök mesterszak
Fizika M1 - A szilárdtestfizika alapjai Gépészmérnök és Energetikai mérnök mesterszak Kondenzált anyagok fizikája Tematika: Szerkezet jellemzése, vizsgálata A kristályrácsot összetartó erők Rácsdinamika
Részletesebben3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
Részletesebbena Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
RészletesebbenAtomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Részletesebben1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Részletesebben3. A kémiai kötés. Kémiai kölcsönhatás
3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes
RészletesebbenStern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
RészletesebbenEgzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális
RészletesebbenFemtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata
Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. házi védés Rácz Péter Témavezető: Dombi Péter Felületi plazmonok Propagáló felületi plazmon Lokalizált felületi plazmon
RészletesebbenEvans-Searles fluktuációs tétel
Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,
RészletesebbenMágneses monopólusok?
1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus
RészletesebbenMTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék
Koherencia és kvantum-klasszikus megfeleltetés ultragyors lézer-atom kölcsönhatásban Ayadi Viktor MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont Szeminárium: SZTE Elmélteti
RészletesebbenSZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
RészletesebbenBeszámoló Munka kezdete és befejezése: I. Félév
Beszámoló Munka kezdete és befejezése: 2005-2009. I. Félév A kutatásokat kezdetben a munkatervnek megfelelően végeztük. Ahogyan azt a pályázatban előre jeleztük a tudományág gyors fejlődésének megfelelően
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenA SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.
A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Részletesebbenösszetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
Részletesebbenelemi gerjesztéseinek vizsgálata
Hatszögrácson kialakuló spin-folyadék fázis elemi gerjesztéseinek vizsgálata Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2013 április 29 Áttekintés
RészletesebbenMUNKATERV / BESZÁMOLÓ
MUNKATERV / BESZÁMOLÓ Werner Miklós Antal, Ph.D. hallgató 3. szemeszter (2014/2015 tanév őszi félév) email cím: wernermiklos@gmail.com állami ösztöndíjas* önköltséges* Témaleírás: Rendezetlen és korrelált
Részletesebben1. ábra. 24B-19 feladat
. gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,
Részletesebben1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
RészletesebbenMagszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
RészletesebbenElektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
RészletesebbenKvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
RészletesebbenHolográfia a részecskefizikában
Atomoktól a csillagokig: 2017. október 12. Holográfia a részecskefizikában Bajnok Zoltán MTA, Wigner Fizikai Kutatóközpont 4D Minkowski tér 5D gömb 5D anti de Sitter tér idö tér extra dimenzió Hány dimenziós
RészletesebbenMagfizika szeminárium
Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos
RészletesebbenEgyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Részletesebben2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György
Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek
RészletesebbenBell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.
Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell
RészletesebbenBŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan
RészletesebbenA +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra
. Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától
RészletesebbenKvantumkáosz és véletlen mátrixok I.
Hagymási Imre V. éves fizikus Bolyai Kollégium fizikus szeminárium 2009. október 7. 1 / 35 1 Bevezetés Az előadás menete Káosz a klasszikus mechanikában Mi a kvantumkáosz? 2 A kvantumkáosz kísérleti bizonyítékai
Részletesebben1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
RészletesebbenA Dirac egyenlet pozitivitás-tartása
A Dirac egyenlet pozitivitás-tartása Barankai Norbert MTA-ELTE Theoretical Physics Research Group 1 Barankai Norbert A Dirac egyenlet pozitivitás-tartása Outline 1 Bevezetés Pályaintegrálok és szimuláció
RészletesebbenAz elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
RészletesebbenBelső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai
Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben
Részletesebbenalapvető tulajdonságai
A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása
RészletesebbenSajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István
Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága
RészletesebbenA gamma-sugárzás kölcsönhatásai
Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok
RészletesebbenMonte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
RészletesebbenA kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált
RészletesebbenParitássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1
Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet
RészletesebbenHibrid mágneses szerkezetek
Zárójelentés Hibrid mágneses szerkezetek OTKA T046267 Négy és fél év időtartamú pályázatunkban két fő témakörben végeztünk intenzív elméleti kutatásokat: (A) Mágneses nanostruktúrák ab initio szintű vizsgálata
Részletesebben6. Zeeman-effektus. Tartalomjegyzék. Koltai János április. 1. Bevezetés 2
6. Zeeman-effektus Koltai János 2013. április Tartalomjegyzék 1. Bevezetés 2 2. A Fábry Perot-interferométer 3 2.1. Az interferométeren átmenő fény intenzitása................ 4 2.2. Kísérleti alkalmazások............................
RészletesebbenBKT fázisátalakulás és a funkcionális renormálási csoport módszer
BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenÁtmenetifém-komplexek mágneses momentuma
Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú
Részletesebbenvizsgálata többszintű modellezéssel
Mágneses nanoszerkezetek elméleti vizsgálata többszintű modellezéssel Szunyogh László BME TTK Fizikai Intézet Elméleti Fizika Tanszék ELFT Anyagtudományi és Diffrakciós Szakcsoportjának Őszi Iskolája,
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenLineáris algebra mérnököknek
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA
RészletesebbenA kovalens kötés polaritása
Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása
RészletesebbenMOLEKULÁRIS TULAJDONSÁGOK
7 MOLKULÁIS TULAJDONSÁGOK Az elektronszerkezet számítások fókuszában többnyire az energiának és a hullámfüggvénynek egy adott geometriában történ kiszámítása áll Bár a gyakorlati kémiában a relatív energiák
RészletesebbenElektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
RészletesebbenKémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
RészletesebbenSztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
RészletesebbenA gradiens törésmutatójú közeg I.
10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek
RészletesebbenAlap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
RészletesebbenEgy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
RészletesebbenMátrixhatvány-vektor szorzatok hatékony számítása
Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis
Részletesebben