Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Geometriai fázisok és spin dinamika. Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem"

Átírás

1 Geometriai fázisok és spin dinamika Zaránd Gergely Budapesti Műszaki és Gazdaságtudományi Egyetem

2 Vázlat Hogyan manipulálnak egyetlen spint? Mitől relaxál egy spin? Magspinek (hiperfinom kölcsönhatás) Elektromágneses tér fluktuációi Geometriai (Berry fázis) effektusok!! Lehet-e pusztán elektromos térrel manipulálni egy spint illetve spin áramot generálni? Van-e T=0 hőmérsékleten spin relaxáció?

3 A kísérleti technológia

4 Mezoszkópikus áramkörök, kvantum pöttyök Félvezető áramkörök: Top elektróda 2D elektron gáz GaAs GaAlAs elektronok Mesterséges atomok és molekulák Nanocsövek, vertikális dotok [Leo Kowenhoven weboldala] [Jarillo-Herrero et al., Nature 434, 484 (2005)] [Sasaki et al., PRL 93, (2004) ]

5 Egy spin kiolvasás Egyetlen elektron spinje mérhető áramkörök segítségével! Kvantum pötty Akár egyetlen izolált elektron! ionizációs enegria V P J. M. Elzerman, R. Hanson, et al. Nature 430, 431 (2004).

6 Két spin kvantummechanikai kontrollja Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots J. R. Petta, et al. Science (2005)

7 Mitől relaxál egy spin?

8 Magspinek Hiperfinom kölcsönhatás B hf 1mT (100 ns) [Khaetskii, Loss, Glazman, 2002] A központi spin probléma: r r z H = Sc Ji Si B (gelµ B S + g c Nµ i i N S z i ) elektron spin J r 2 i ~ A hf ϕ(ri ) magspin (Egzaktul megoldható Richardson magmodellje) 6 majdnem statikus N ~ 10 spin spin echo technikával kezelhető

9 Fonon-indukálta relaxáció Piezoelektromos fononok + spin-pálya csatolás [Khaetskii, Nazarov (2001); Golovach, Khaetskii, Loss (2004); Stano, Fabian (2005)] B = 0 r p r H + 2m 2 0 = + V(r ) H * SO Spin-pálya csatolás Kramers degenerált spin-textúrák: δ µ g r r B B σ +δv(t 2 ) elektromos tér Fluktuációi (fononok) V = 0, (időtükrözés) B 0 B 0 δ V ~ B 1/ T ~ B B

10 Teljes a kép? Amasha et al., PRL 2008 Kérdések: Mi történik, ha B 0? Milyen más relaxációs forrás van? Létezik T=0 hőmérsékleten spin relaxáció Berry fázis indukálta relaxáció Ohmikus fluktuációk Igen???

11 Berry fázis két dimenzióban, szemiklasszikus kép y 2D elektrongáz Vigyük körbe az elektront! δa l x l y r2 p H = +αm( v y σx vxσ y) 2m x v v x y 0 0 B B (síkra merőleges elektromos tér) eff eff, y, x Rashba kölcsönhatás 0 0 V SO r r r ~ (p E) σ U x = e U y = e i l x αmσ / 2 i 2 y l y αm σ / 2 2 x A ciklus utáni forgatás: U = U + y U + x U y U δϕ = 8δA / λ x 2 SO e i δϕ σ z / 2 ( λ SO ~ 1/ mα) Arányos az irányított területtel!

12 Bezárt elektron fluktuáló klasszikus térben r p r H + 2m 2 0 = + V(r ) H * SO g µ r r B B σ +δv(t 2 ) EM fluktuációk Lassú fluktuációk: δv(t) = eδe x (t) xˆ eδe y (t) ŷ +K (energiaszintek távolságához viszonyítva lassú) Formálisan: δv(t) = X (t) k k Ô k (fononok, töltés fluktuációk)

13 B=0 adiabatikus közelítés Az elektron minden pillanatban a Kramers-degenerált alapállapotban van: r X(t) ( δe x, y (t)) Ψ(t) a (t) Φ r (X(t)) + a (t) Φ r (X(t)) Pillanatnyi alapállapoti dublett i da dt σ = H eff σσ' (t) a σ' H eff σσ' (B = 0) = i dφ r (X dt σ t ) φ σ' r (X t ) nem-ábeli Berry fázis

14 Elektromos tér: r X = Perturbatív számítás r δe(t) H eff (t) = Beff (t) σ z B eff (t) = dδe dt x δe y δe x dδe dt y C ~ da / dt C = i e xˆ ŷ 2,n n, 2 n σ ( εσ εn ) Fluktuációk δe y(t) Véletlen területarányos spin forgatás δe x(t) RELAXÁCIÓ E. Abrahams, Phys. Rev. 107, !

15 Újrafelösszegezzük az S-mátrixot: Adiabatikus közelítés: U(t) = Tt exp[ i dτδ V( τ)] t B 0 egy foton Statikus két foton, Van Vleck cancellation Berry fázis tag

16 Kvantum tárgyalás (pályaintegrál, korrespondencia elv) ρ ( ω δe ) A környezetre vonatkozó információ a spektrálfüggvényben van rejtve Például Berry fázis tag járuléka: ρ Fononok ( ω) = λ ω ph x 0 ph 3 Ohmikus fluktuációk ρω ( ω) = λ Ω ω / TBerry ~ max{b,t } 1/ TBerry ~ max{b,t } 1/ T 1 foton ~ B 4 max{b, T} 1/ T 1 foton ~ B 2 max{b, T} [P. San-Jose, G.Z., A. Shnirman, and G. Schon, PRL 97, (2006)]

17 Tisztán kvantumos tárgyalás Térelmélet a redukált sűrűségmátrixra a Keldysh kontúron: Mozgásegyenlet: i[ ~ ρ D (t),h Z ] Dyson egyenlet : Ezek tartalmazzák a Berry fázis járulékot [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)]

18 Relaxáció [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)] 2-foton 1-foton Fémes elektródák hatása? geometriai relaxáció Fémes elektródák Geometriai relaxáció picike Megfigyelhető??? p-típusú kvantum dotok! Gerardot et al, Nature 2008 M.Trif, P. Simon, D. Loss, PRL 103, (2009) picit nagyobb kvantum dotok.

19 Lehet-e ilyen geometriai effektusokat használni?

20 Két-dot rendszerbeli spin transzfer λso >> x 0 Messzire kell mozgatnunk az elektront d Hamilton operátor (szimmetriák): alagutazás aszimmetria ~ egzaktul kiszámítható Forgatás szöge ~ d / λ SO

21 Spin-pumpálás mezoszkópikus áramkörökben Csak elektródákat használva pumpálható-e adiabatikusan spin? [Sharma and Brouwer, PRL 91, (2003).] Kaotikus üreg: Szórási mátrix: r S = t LL RL t r LR RR Λ L Id = L Véletlen terek Pumpált spin pici

22 Lehet kontrolláltan, rezonancián keresztül? szimmetrikus dot Aszimmetrikus dot [V. Brosco et al. (preprint)]

23 Relaxál a spin T=0 hőmérsékleten?

24 Hamilton operátor Elektron a gyűrűn Túl sok közelítést tettünk (Markov folyamat, perturbatív tárgyalás) Egyszerű modell: Elektron gyűrűn, ohmikus (Caldeira Leggett) fluktuációkhoz csatolva Radiális beszorítás: δr Tangenciális tagok: 2r Határeset : Rashba δr 0, r finite Dresselhaus legalacsonyabb radiális móduson mozog

25 szögfüggő effektív Hamilton operátor Effective Hamilton operátor: Radiális módus H ring ( ϑ) = 0 H ' 0 0 H E n 0 n 0 ' E n n H ' 0 Analítikusan kiszámítható Szögfüggő effektív tér: Megmaradó mennyiség: Független a bezáró potenciáltól! [P. San-Jose, B. Scharfenberger, G. Schön, A. Shnirman, and G.Z. PRB 77, (2008)]

26 Elektromos fluktuációk H ring ( θ) H ring ( θ) + V( θ, ξ) V( θ, ξ) = ξ Fluktuációk, pl. x cos( θ) + ξ y sin( θ) Mozgásegyenlet: Helykoordináta: Spin és θ szétcsatolódnak!!! Spin: r ( h( θ ) h0 zˆ ) geometrikus spinfejlődés

27 Nem egyensúlyi pályaintegrál kiszámítható Merre mutat a spin t idő után? S α (t) = 2π + dθ0 dθ0 dθt Dθ+ Dθ e G +,G kezdeti sűrűségmátrix ( ρ 0 particle ) G + θ θ G t + 0 θ θ t 0 i(s[ θ +, ξ + ] S[ θ + * α iq+ ( θ0 θt ) iq ( θ0 θt ) ( Ψ ( θ )S Ψ ( θ )) e e G t G Alapállapoti spinor + t, ξ ]) ξ Effektív hatás (spinfüggetlen) Spin-pálya momentum Végső kérdés: i ρ θt t e 0??? ξ

28 Csillapodik-e a spin? Valószínűleg igen!!! Imaginárius időben: S[ θ( τ)] = dτ [H. Spohn and W. Zwerger, J. Stat. Phys. 94, 1037 (1999)] 2 θ& + η 2M sin dτdτ' 2 ( θ( τ) θ( τ')) 2 ( τ τ') cosθ( τ)cosθ( τ') ~ 1 ( τ τ') 2 Valós időben? szemiklasszikus számítás pszeudofermionok renormálási csoport Nem tudjuk még Biztosan

29 Konklúzió A spin relaxációt egy geometriai effektus adja B 0 esetén Nagy és p-típusú kvantum dotoknál jelentős Ohmikus fluktuációk szerepe Pablo San-Jose (Lancester), Sasha Shnirman, Gerd Schön (Karlsruhe) Rezonáns spin pumpálás spin-pálya kölcsönhatás felhasználásával Valentina Brosco (Roma) Pablo San-Jose (Lancester), Sasha Shnirman, Gerd Schön (Karlsruhe) Algebrai spin relaxáció a gyűrűn T = 0? Baruch Horvitz (BerSheva), Pierre Le Doussal (Ecole Normale)

Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói

Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect Egy kis spintronika Spin-pálya kölcsönhatás Miért nem szeretjük a spin-pálya pálya kölcsönhatást? Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect: a kezdetek Dyakonov

Részletesebben

Forgó molekulák áthaladása apertúrán

Forgó molekulák áthaladása apertúrán Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés

Részletesebben

Idegen atomok hatása a grafén vezet képességére

Idegen atomok hatása a grafén vezet képességére hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség

Részletesebben

Fluktuáló terű transzverz Ising-lánc dinamikája

Fluktuáló terű transzverz Ising-lánc dinamikája 2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2

Részletesebben

Sinkovicz Péter, Szirmai Gergely október 30

Sinkovicz Péter, Szirmai Gergely október 30 Hatszögrácson kialakuló spin-folyadék fázis véges hőmérsékletű leírása Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2012 október 30 Áttekintés

Részletesebben

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.

AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus

Részletesebben

A nemegyensúlyi Anderson szennyez modell vizsgálata perturbatív térelméleti módszerekkel

A nemegyensúlyi Anderson szennyez modell vizsgálata perturbatív térelméleti módszerekkel A nemegyensúlyi Anderson szennyez modell vizsgálata perturbatív térelméleti módszerekkel Horváth Bertalan Budapesti M szaki és Gazdaságtudományi Egyetem Elméleti Fizika Tanszék Témavezet : Prof. Zaránd

Részletesebben

Ultrahideg atomok topológiai fázisai

Ultrahideg atomok topológiai fázisai Ultrahideg atomok topológiai fázisai Szirmai Gergely MTA SZFKI 2011. június 14. Szirmai Gergely (MTA SZFKI) Ultrahideg atomok topológiai fázisai 2011. június 14. 1 / 1 Kvantum fázisátalakulások I (spontán

Részletesebben

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje

Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont:

θ & új típusú differenciálegyenlet: vektormező egy körön lehetségesek PERIODIKUS MEGOLDÁSOK példa: legalapvetőbb modell az oszcillátorokra fixpont: 3. előadás & θ új típusú differenciálegyenlet: vektormező egy körön f ( θ ) lehetségesek PERIODIKUS MEGOLDÁSOK legalapvetőbb modell az oszcillátorokra példa: & θ sinθ θ & fixpont: θ & 0 θ θ & > 0 nyilak:

Részletesebben

Kvantumos jelenségek lézertérben

Kvantumos jelenségek lézertérben Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi

Részletesebben

Ψ - 1/v 2 2 Ψ/ t 2 = 0

Ψ - 1/v 2 2 Ψ/ t 2 = 0 ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben

Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció

Részletesebben

Alkalmazott spektroszkópia

Alkalmazott spektroszkópia Alkalmazott spektroszkópia 009 Bányai István MR és a fémionok: koordinációs kémiai alkalmazások Bányai István Debreceni Egyetem TEK Kolloid- és Környezetkémiai Tanszék A mágnesség A mágneses erő: F pp

Részletesebben

Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával

Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával Ponthibák azonosítása félvezető szerkezetekben hiperfinom tenzor számításával (munkabeszámoló) Szász Krisztián MTA Wigner SZFI, PhD hallgató 2013.05.07. Szász Krisztián Ponthibák azonosítása 1/ 13 Vázlat

Részletesebben

Van-e a vákuumnak energiája? A Casimir effektus és azon túl

Van-e a vákuumnak energiája? A Casimir effektus és azon túl Van-e a vákuumnak energiája? és azon túl MTA-ELTE Elméleti Fizikai Kutatócsoport Bolyai Kollégium, 2007. október 3. Van-e a vákuumnak energiája? és azon túl Vázlat 1 2 3 4 5 Van-e a vákuumnak energiája?

Részletesebben

Az BF61726 számú, Nem egyensúlyi spin transzport és korrelációk nanostruktúrákban című OTKA projekt zárójelentése

Az BF61726 számú, Nem egyensúlyi spin transzport és korrelációk nanostruktúrákban című OTKA projekt zárójelentése Az BF61726 számú, Nem egyensúlyi spin transzport és korrelációk nanostruktúrákban című OTKA projekt zárójelentése Ez a projekt atomi és mesterséges atomi struktúrák ill. felületek, vékony rétegek vizsgálatát

Részletesebben

Bevezetés a részecske fizikába

Bevezetés a részecske fizikába Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:

Részletesebben

A spin. November 28, 2006

A spin. November 28, 2006 A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,

Részletesebben

2015/16/1 Kvantummechanika B 2.ZH

2015/16/1 Kvantummechanika B 2.ZH 2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges

Részletesebben

"Flat" rendszerek. definíciók, példák, alkalmazások

Flat rendszerek. definíciók, példák, alkalmazások "Flat" rendszerek definíciók, példák, alkalmazások Hangos Katalin, Szederkényi Gábor szeder@scl.sztaki.hu, hangos@scl.sztaki.hu 2006. október 18. flatness - p. 1/26 FLAT RENDSZEREK: Elméleti alapok 2006.

Részletesebben

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano

Bordács Sándor doktorjelölt. anyagtudományban. nyban. Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Bordács Sándor doktorjelölt Túl l a távoli t infrán: THz spektroszkópia pia az anyagtudományban nyban Dr. Kézsmárki István Prof. Yohinori Tokura Prof. Ryo Shimano Terahertz sugárz rzás THz tartomány: frekvencia:

Részletesebben

Kevert állapoti anholonómiák vizsgálata

Kevert állapoti anholonómiák vizsgálata Kevert állapoti anholonómiák vizsgálata Bucz Gábor Témavezet : Dr. Fehér László Dr. Lévay Péter Szeged, 2015.04.23. Bucz Gábor Kevert állapoti anholonómiák vizsgálata Szeged, 2015.04.23. 1 / 27 Tartalom

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

Egyesített funkcionális renormálási csoport egyenlet

Egyesített funkcionális renormálási csoport egyenlet Egyesített funkcionális renormálási csoport egyenlet Nándori István MTA-DE Részecskefizikai Kutatócsoport, MTA-Atomki, Debrecen Magyar Fizikus Vándorgyűles, Debrecen, 2013 Kvantumtérelmélet Részecskefizika

Részletesebben

Összefonódottság detektálása tanúoperátorokkal

Összefonódottság detektálása tanúoperátorokkal Összefonódottság detektálása tanúoperátorokkal Tóth Géza Max-Plank-Intitute für Quantenoptik, Garching, Németország Budapest, 2005. október 4. Motiváció Miért érdekes a kvantum-informatika? Alapvető problémák

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Kvantum renormálási csoport a

Kvantum renormálási csoport a Kvantum renormálási csoport a Nagy Sándor, Polonyi János, Steib Imola Debreceni Egyetem, Elméleti Fizikai Tanszék Szeged, 2016. augusztus 25. a S. Nagy, J. Polonyi, I. Steib, Quantum renormalization group,

Részletesebben

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:

A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert: 1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)

Részletesebben

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék

3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék 3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal

Részletesebben

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,

January 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r, Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,

Részletesebben

Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban

Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Sötét állapotok szerepe fénnyel indukált koherens kontroll folyamatokban Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Szilárdtestfizikai és Optikai Kutatóintézet H- Budapest, Konkoly-Thege

Részletesebben

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza

Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,

Részletesebben

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369

Pósfay Péter. arxiv: [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 arxiv:1604.01717 [hep-th] Eur. Phys. J. C (2015) 75: 2 PoS(EPS-HEP2015)369 Pósfay Péter ELTE, Wigner FK Témavezetők: Jakovác Antal, Barnaföldi Gergely G. Motiváció FRG módszer bemutatása Kölcsönható Fermi-gáz

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

Fizika M1 - A szilárdtestfizika alapjai. Gépészmérnök és Energetikai mérnök mesterszak

Fizika M1 - A szilárdtestfizika alapjai. Gépészmérnök és Energetikai mérnök mesterszak Fizika M1 - A szilárdtestfizika alapjai Gépészmérnök és Energetikai mérnök mesterszak Kondenzált anyagok fizikája Tematika: Szerkezet jellemzése, vizsgálata A kristályrácsot összetartó erők Rácsdinamika

Részletesebben

3.1. ábra ábra

3.1. ábra ábra 3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség

Részletesebben

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )

a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( ) a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj

Részletesebben

Atomok és molekulák elektronszerkezete

Atomok és molekulák elektronszerkezete Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre

Részletesebben

1. fejezet. Gyakorlat C-41

1. fejezet. Gyakorlat C-41 1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Stern Gerlach kísérlet. Készítette: Kiss Éva

Stern Gerlach kísérlet. Készítette: Kiss Éva Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet

Részletesebben

Egzotikus elektromágneses jelenségek alacsony hőmérsékleten Mihály György BME Fizikai Intézet Hall effektus Edwin Hall és az összenyomhatatlan elektromosság Kvantum Hall effektus Mágneses áram anomális

Részletesebben

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata

Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Femtoszekundumos felületi plazmonok által keltett elektronnyalábok vizsgálata Ph. D. házi védés Rácz Péter Témavezető: Dombi Péter Felületi plazmonok Propagáló felületi plazmon Lokalizált felületi plazmon

Részletesebben

Evans-Searles fluktuációs tétel

Evans-Searles fluktuációs tétel Az idő folyásának iránya Evans-Searles fluktuációs tétel Osváth Szabolcs Semmelweis Egyetem a folyamatok iránya a termodinamikai második főtétele alapján Nincs olyan folyamat, amelynek egyetlen eredménye,

Részletesebben

Mágneses monopólusok?

Mágneses monopólusok? 1 Mágneses monopólusok? (Atomcsill 2015 február) Palla László ELTE Elméleti Fizikai Tanszék 2 Maxwell egyenletek potenciálok, mértéktranszformáció legegyszerűbb e.m. mezők A klasszikus e g rendszer A monopólus

Részletesebben

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék

MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont. Szeminárium: SZTE Elmélteti Fizikai Tanszék Koherencia és kvantum-klasszikus megfeleltetés ultragyors lézer-atom kölcsönhatásban Ayadi Viktor MTA Lendület Ultragyors nanooptika kutatócsoport MTA Wigner Fizikai Kutatóközpont Szeminárium: SZTE Elmélteti

Részletesebben

SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.

SZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17. Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika

Részletesebben

Beszámoló Munka kezdete és befejezése: I. Félév

Beszámoló Munka kezdete és befejezése: I. Félév Beszámoló Munka kezdete és befejezése: 2005-2009. I. Félév A kutatásokat kezdetben a munkatervnek megfelelően végeztük. Ahogyan azt a pályázatban előre jeleztük a tudományág gyors fejlődésének megfelelően

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel.

A SZILÁRDTEST FOGALMA. Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. molekula klaszter szilárdtest > σ λ : rel. A SZILÁRDTEST FOGALMA Szilárdtest: makroszkópikus, szilárd, rendezett anyagdarab. a) Méret: b) Szilárdság: molekula klaszter szilárdtest > ~ 100 Å ideálisan rugalmas test: λ = 1 E σ λ : rel. megnyúlás

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

elemi gerjesztéseinek vizsgálata

elemi gerjesztéseinek vizsgálata Hatszögrácson kialakuló spin-folyadék fázis elemi gerjesztéseinek vizsgálata Sinkovicz Péter, Szirmai Gergely MTA Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet 2013 április 29 Áttekintés

Részletesebben

MUNKATERV / BESZÁMOLÓ

MUNKATERV / BESZÁMOLÓ MUNKATERV / BESZÁMOLÓ Werner Miklós Antal, Ph.D. hallgató 3. szemeszter (2014/2015 tanév őszi félév) email cím: wernermiklos@gmail.com állami ösztöndíjas* önköltséges* Témaleírás: Rendezetlen és korrelált

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

Magszerkezet modellek. Folyadékcsepp modell

Magszerkezet modellek. Folyadékcsepp modell Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus

Részletesebben

Elektronegativitás. Elektronegativitás

Elektronegativitás. Elektronegativitás Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:

Részletesebben

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel

Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált

Részletesebben

Holográfia a részecskefizikában

Holográfia a részecskefizikában Atomoktól a csillagokig: 2017. október 12. Holográfia a részecskefizikában Bajnok Zoltán MTA, Wigner Fizikai Kutatóközpont 4D Minkowski tér 5D gömb 5D anti de Sitter tér idö tér extra dimenzió Hány dimenziós

Részletesebben

Magfizika szeminárium

Magfizika szeminárium Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos

Részletesebben

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata

Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása

Részletesebben

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György

2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek

Részletesebben

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016.

Bell-kísérlet. Máté Mihály, Fizikus MSc I. ELTE. Eötvös Loránd Tudományegyetem. Modern zikai kísérletek szemináriuma, 2016. Bell-kísérlet Máté Mihály, Fizikus MSc I. ELTE Eötvös Loránd Tudományegyetem Modern zikai kísérletek szemináriuma, 2016. Máté Mihály (ELTE) Bell-kísérlet 1 / 15 Tartalom 1 Elmélet Összefonódás EPR Bell

Részletesebben

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz

BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Kvantumkáosz és véletlen mátrixok I.

Kvantumkáosz és véletlen mátrixok I. Hagymási Imre V. éves fizikus Bolyai Kollégium fizikus szeminárium 2009. október 7. 1 / 35 1 Bevezetés Az előadás menete Káosz a klasszikus mechanikában Mi a kvantumkáosz? 2 A kvantumkáosz kísérleti bizonyítékai

Részletesebben

1 A kvantummechanika posztulátumai

1 A kvantummechanika posztulátumai A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra

Részletesebben

A Dirac egyenlet pozitivitás-tartása

A Dirac egyenlet pozitivitás-tartása A Dirac egyenlet pozitivitás-tartása Barankai Norbert MTA-ELTE Theoretical Physics Research Group 1 Barankai Norbert A Dirac egyenlet pozitivitás-tartása Outline 1 Bevezetés Pályaintegrálok és szimuláció

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai

Belső szimmetriacsoportok: SU(2), SU(3) és a részecskék rendszerezése, a kvarkmodell alapjai Belső szimmetriacsoportok: SU(), SU() és a részecskék rendszerezése, a kvarkmodell alapjai Izospin Heisenberg, 9: a proton és a neutron nagyon hasonlít egymásra, csak a töltésük különbözik. Ekkor, -ben

Részletesebben

alapvető tulajdonságai

alapvető tulajdonságai A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása

Részletesebben

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István

Sajátértékek és sajátvektorok. mf1n1a06- mf1n2a06 Csabai István Sajátértékek és sajátvektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Lineáris transzformáció Vektorok lineáris transzformációja: általános esetben az x vektor iránya és nagysága

Részletesebben

A gamma-sugárzás kölcsönhatásai

A gamma-sugárzás kölcsönhatásai Ref. [3] A gamma-sugárzás kölcsönhatásai Az anyaggal való kölcsönhatás kis valószínűségű hatótávolság nagy A sugárzás gyengülését 3 féle kölcsönhatás okozza. fotoeffektus Compton-szórás párkeltés A gamma-fotonok

Részletesebben

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás

Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte

Részletesebben

A kémiai kötés magasabb szinten

A kémiai kötés magasabb szinten A kémiai kötés magasabb szinten 11-1 Mit kell tudnia a kötéselméletnek? 11- Vegyérték kötés elmélet 11-3 Atompályák hibridizációja 11-4 Többszörös kovalens kötések 11-5 Molekulapálya elmélet 11-6 Delokalizált

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Hibrid mágneses szerkezetek

Hibrid mágneses szerkezetek Zárójelentés Hibrid mágneses szerkezetek OTKA T046267 Négy és fél év időtartamú pályázatunkban két fő témakörben végeztünk intenzív elméleti kutatásokat: (A) Mágneses nanostruktúrák ab initio szintű vizsgálata

Részletesebben

6. Zeeman-effektus. Tartalomjegyzék. Koltai János április. 1. Bevezetés 2

6. Zeeman-effektus. Tartalomjegyzék. Koltai János április. 1. Bevezetés 2 6. Zeeman-effektus Koltai János 2013. április Tartalomjegyzék 1. Bevezetés 2 2. A Fábry Perot-interferométer 3 2.1. Az interferométeren átmenő fény intenzitása................ 4 2.2. Kísérleti alkalmazások............................

Részletesebben

BKT fázisátalakulás és a funkcionális renormálási csoport módszer

BKT fázisátalakulás és a funkcionális renormálási csoport módszer BKT fázisátalakulás és a funkcionális renormálási csoport módszer Nándori István MTA-DE Részecskefizikai Kutatócsoport, Debreceni Egyetem MTA-Atomki, Debrecen Wigner FK zilárdtestfizikai és Optikai Intézet,

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Átmenetifém-komplexek mágneses momentuma

Átmenetifém-komplexek mágneses momentuma Átmenetifém-komplexek mágneses momentuma Csakspin-momentum μ g e S(S 1) μ B μ n(n 2) μ B A komplexek mágneses momentuma többnyire közel van ahhoz a csakspin-momentum értékhez, ami az adott elektronkonfigurációjú

Részletesebben

vizsgálata többszintű modellezéssel

vizsgálata többszintű modellezéssel Mágneses nanoszerkezetek elméleti vizsgálata többszintű modellezéssel Szunyogh László BME TTK Fizikai Intézet Elméleti Fizika Tanszék ELFT Anyagtudományi és Diffrakciós Szakcsoportjának Őszi Iskolája,

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

MOLEKULÁRIS TULAJDONSÁGOK

MOLEKULÁRIS TULAJDONSÁGOK 7 MOLKULÁIS TULAJDONSÁGOK Az elektronszerkezet számítások fókuszában többnyire az energiának és a hullámfüggvénynek egy adott geometriában történ kiszámítása áll Bár a gyakorlati kémiában a relatív energiák

Részletesebben

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=

Elektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B= Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V

Részletesebben

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39

Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39 Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

A gradiens törésmutatójú közeg I.

A gradiens törésmutatójú közeg I. 10. Előadás A gradiens törésmutatójú közeg I. Az ugrásszerű törésmutató változással szemben a TracePro-ban lehetőség van folytonosan változó törésmutatójú közeg definiálására. Ilyen érdekes típusú közegek

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Mátrixhatvány-vektor szorzatok hatékony számítása

Mátrixhatvány-vektor szorzatok hatékony számítása Mátrixhatvány-vektor szorzatok hatékony számítása Izsák Ferenc ELTE TTK, Alkalmazott Analízis és Számításmatematikai Tanszék & ELTE-MTA NumNet Kutatócsoport munkatárs: Szekeres Béla János Alkalmazott Analízis

Részletesebben