Kvantumkáosz és véletlen mátrixok I.
|
|
- Teréz Pappné
- 5 évvel ezelőtt
- Látták:
Átírás
1 Hagymási Imre V. éves fizikus Bolyai Kollégium fizikus szeminárium október 7. 1 / 35
2 1 Bevezetés Az előadás menete Káosz a klasszikus mechanikában Mi a kvantumkáosz? 2 A kvantumkáosz kísérleti bizonyítékai biliárd kísérletek mezoszkopikus rendszerek gyenge lokalizáció univerzális vezetőképesség fluktuáció 3 Véletlen mátrix elmélet alapjai Szimmetriák, univerzalitási osztályok 4 Véletlen mátrix elmélet eredményei sajátértékek együttes eloszlásfüggvénye szinttávolság statisztika 5 Szemiklasszikus dinamika EBK kvantálás, Gutzwiller-féle trace-formula alkalmazás: scarok 2 / 35
3 Káosz a klasszikus mechanikában Disszipatív rendszerek Általában: A fázistér két közeli pontjából indított trajektóriák exponenciálisan távolodnak. Fázistér összehúzódik (különös) attraktor Konzervatív rendszerek A H(q i,p i ) Hamilton-függvény, N szabadsági fok, N-nél kevesebb mozgásállandó van kaotikus a rendszer 3 / 35
4 Konzervatív rendszerek Integrálható rendszerek H(q i,p i ) Hamilton-függvény, N szabadsági fok, legalább N mozgásállandó van. A fázistérbeli mozgás tóruszokon megy végbe. Kaotikus rendszerek kis perturbáció a tóruszok egy része felbomlik, kaotikus tartományok jönnek létre (KAM-tétel) a perturbáció további növelésével a tóruszok eltűnnek, csak kaotikus tartomány marad 4 / 35
5 Mi a kvantumkáosz? Probléma (80-as évek) A káosz klasszikus mechanikában adott definíciója nem vihető át a kvantummechanikába. Hogy jelentkezik egy klasszikusan kaotikus rendszer kvantumos megfelelőjében a káosz? Mérhető mennyiségek? Csak Ψ 2 és az {E n } energiaszintek mérhetők. ezeket vizsgáljuk Véletlen mátrixok először Wigner, Dyson, Mehta alkalmazta az atommagok spektrumának számítására 80-as évek: a kaotikus rendszerek energiaspektruma jól leírható véletlen mátrixok segítségével 5 / 35
6 Wigner-Dyson sokaság Véletlen mátrixok N N-es hermitikus mátrixok sokasága, a következő valószínűség eloszlással: P(H) = c exp[ βtrv(h)] Ha V(H) H 2, gausszi-sokaságról beszélünk. Ekkor a mátrixelemek független eloszlásúak. β = 1, 2, 4 a mátrixelemek szabadsági fokát számolja (valós, komplex, valós kvaternió) a H UHU 1 transzformáció hatására P(H) invariáns, annak megfelelően, hogy U ortogonális (β = 1), unitér (β = 2), szimplektikus (β = 4) mátrix, beszélünk ortogonális, unitér, szimplektikus sokaságokról. 6 / 35
7 Univerzalitási osztályok Univerzális viselkedés, attól függően, hogy melyik véletlen mátrix sokaságba tartozik a Hamilton-operátor. Gaussian Unitary Ensemble (GUE) A Hamilton operátornak nincs időtükrözési szimmetriája, pl H = 1 2m (p ea)2 + V(x) Gaussian Orthogonal Ensemble (GOE) A Hamilton-operátornak van időtükrözési szimmetriája, de nincs benne spin-pálya kölcsönhatás, pl. H = p2 2m + V(x) Gaussian Symplectic Ensemble (GSE) A Hamilton-operátornak van időtükrözési szimmetriája és van benne spin-pálya kölcsönhatás, pl. H = p2 2m + V(x) + ALS 7 / 35
8 Vizsgált mennyiségek A véletlen mátrix elmélet néhány eredménye sajátértékek együttes eloszlásfüggvénye: P(E 1,...,E N ) n>m(e ( n E m ) β exp A n E 2 n ) szinttávolság statisztika: P(s) s β exp( As 2 ), s = E n E n 1 β = 1, 2, 4 rendre a GOE, GUE, GSE sokaságokra Integrálható rendszerek Az energiasajátértékek korrelálatlanok, a szinttávolság statisztika Poisson-eloszlást követ: P(s) = exp( s) 8 / 35
9 Szinttaszítás 9 / 35
10 Biliárd kísérletek Első kísérletek: rezgő lemezek (Chladni) A kitérésfüggvény: Ψ n = k ( ) 2 Ψ n = knψ 4 n 2Ψ Ψ n = kn 2 }{{ Ψ } Helmholtz-egyenlet rögzített perem esetén kvantummechanikai problémával analóg nem alkalmas kvantitatív mérésekre 10 / 35
11 Felszíni vízhullám kísérletek Biliárd kísérletek Ha az f (x,y) amplitúdó kicsi a mélységhez képest, a Navier-Stokes egyenletek linearizálhatók: +Neumann határfeltétel ( + k 2 )f = 0 11 / 35
12 Ultrahang kísérletek Biliárd kísérletek Hengeres tartályban lévő folyadékot gerjesztenek néhány MHz-es ultrahanggal a nyomáseloszlás eleget tesz a Helmholtz-egyenletnek: ( + k 2 )p = 0, +Neumann hat. felt. I diffraktált p 2 12 / 35
13 Új jelenség: Scarok További ultrahangos kísérletek A hullámfüggvény nagy értékeket vesz fel a klasszikus periodikus pályák mentén. (Pl. bouncing ball, whispering gallery módusok.) 13 / 35
14 Mikrohullám biliárdok Mikrohullám kísérletek Különböző alakú üregrezonátorok, E, B kielégíti a Helmholtz-egyenletet: ( + k 2 )E = 0 n E S = 0 ( + k 2 )B = 0 nb S = 0 n a felület normális irányú egységvektora TM-módus E z (x,y,z) = E(x,y)cos [ + k 2 ( nπ d ( nπz ), B z (x,y,z) = 0 d ) 2 ] E = 0, E(x,y) S = 0 n = 0 esetén teljesen analóg a kvantummechanikai problémával 14 / 35
15 Mikrohullám kísérletek Vizsgált mennyiségek A rezonátor sajátfrekvenciái kimérhetők szinttávolság statisztika E z szintén mérhető hullámfüggvény 15 / 35
16 Szinttávolság statisztika Integrálható rendszerek Az energiaszintek teljesen korrelálatlannak tekinthetők. Szinttávolság statisztikát ekkor a Poisson-eloszlás írja le: P(s) = exp( s) 16 / 35
17 Mikrohullám kísérletek Hullámfüggvények Scarok ismét láthatók a periodikus pályák mentén. 17 / 35
18 Kétdimenziós elektrongáz 18 / 35
19 Kétdimenziós elektrongáz Tulajdonságok Fermi-hullámhossz 400 Å szabad úthossz nm fáziskoherencia hossz 200 nm összemérhetők a minta méreteivel Az elektronok zárt térrészbe terelhetők, ahol ballisztikusan, fáziskoherensen mozognak. 19 / 35
20 S-mátrix Transzportfolyamatok Hullámfüggvény alakja a csőben: ψ ± n (r) = Φ n (y,z)e ±iknx n a propagáló módusokat indexeli, Φ n (y,z) a transzverzális hullámfüggvény. Az S-mátrix a be- és kiféle propagáló elektronok hullámfüggvényének amplitúdóit kapcsolja össze: c in = (a + 1,a+ 2,... a+ N,b 1,b 2,...,b N ), c out = (a 1,a 2,... a N,b+ 1,b+ 2,...,b+ N ), c out = Sc in 20 / 35
21 Az S-mátrix fontosabb tulajdonságai Unitaritás Az S-mátrix unitér, az árammegmaradás miatt, S = S 1. A particionált alak Az S-mátrix a következő blokkokra bontható: ( ) r t S = t r Landauer-formula A G vezetőképesség: Mérhető mennyiség! G = 2e2 h Tr(tt ) 21 / 35
22 Néhány jelenség a mezoszkopikus rendszerekben I. Univerzális vezetőképesség fluktuáció (UCF) A vezetőképesség valamilyen paraméter függvényében mindig e2 h nagyságrendben oszcillál. Független a minta paramétereitől. 22 / 35
23 Néhány jelenség a mezoszkopikus rendszerekben II. Gyenge lokalizáció Klasszikusan a reflexió és transzmisszió valószínűsége egyenlő. Kvantumosan a reflexió kicsit nagyobb az időtükrözött pályák interferenciája miatt. Reflektált intenzitás klasszikusan: A p 2 + T A p 2 = 2 A p 2 kvantumosan: A p + T A p 2 = 4 A p 2 23 / 35
24 A jelenség leírása Gyenge lokalizáció Vezetőképesség meghatározásához kell az S-mátrix. S nm 2 CXE = 1 (1 2/β)δ nm N 1 + N /β, β = 1,2,4 N 1 G = G 0 N 2 n=1 m=n 1 +1 S nm 2, G 0 = 2e2 h N 1,N 2 nyitott csatornák száma jobb és bal oldalon. A gyenge lokalizációs korrekció (N 1,N 2 1): δg = 1 ( 1 2 ) G 0 4 β Mért érték: 0.2G 0, számolt 1 4 G / 35
25 Univerzális vezetőképesség fluktuáció A jelenség leírása A szórásmátrixok cirkuláris sokaságára való átlagolás után a következőt kapjuk: VarG/G 0 = 2(N 1N 2 ) 2 β(n 1 + N 2 ) 4, ha N 1,N 2 1. β = 1 esetén 0.41(e 2 /h) 2, β = 2 esetén 0.27(e 2 /h) 2. Mért érték sokkal kisebb az elméletinél, ennek oka a rugalmatlan szórás. 25 / 35
26 Szemiklasszikus vizsgálat A közelítés célja rendszer kvantumos viselkedésének megértése (pl. scarok) az energiasajátértékek közelítése A szemiklasszikus hullámfüggvény ( ) i Ψ sc = A(q,I)exp S(q,I) A(q,I), lassan változó amplitúdó, S(q,I) a klasszikus hatás 26 / 35
27 Integrálható rendszerek EBK-kvantálás A hullámfüggvény egyértékűségének megköveteléséből: I i := 1 ( pdq = n i + ν ) i 2π C i 4 n i,ν i Z, ν i : Maslov indexek Az integrált a tóruszokon fekvő, egymásba folytonosan át nem deformálható C i kontúrok mentén kell kiszámolni. periodikus pályákhoz kvantált energiaszintek tartoznak 27 / 35
28 Kaotikus rendszerek Problémák Kaotikus rendszerekben nem működik az EBK-kvantálás. Az állapotsűrűségre tudunk csak állítást kimondani. Gutzwiller-féle trace formula A szemiklasszikus Green-függvény G sc (q,q,e) = G 0 (q,q,e) + G }{{} j (q,q,e) sima rész j }{{} G 0 (q,q,e) H (1) D 2 D oszcilláló rész 2mE ( 2 q q ) 28 / 35
29 Gutzwiller-féle trace formula következményei Weyl-formula A (E) állapotsűrűség: A sima rész: (E) = 0(E) + oszc (E) 0(k) = A 2π k ± L ( 4π +... E = 2 k 2 ) 2m a biliárd klasszikus paraméterei jelennek meg a sorban az alak meghatározza a spektrumot? nem 29 / 35
30 Ellenpélda 30 / 35
31 Scarok Scarok Periodikus pályák nyomai a hullámfüggvényben. Bogomolny-féle leírás ψ(q) 2 = w(e) n ψ n (q) 2 δ(e E n )de n G(q A,q B,E) = n ψ n(q B )ψ n (q A ) E E n δ(e E n )ψn(q B )ψ n (q A ) = 1 π lim Im[G(q A,q B,E + iε)] ε 0 ψ(q) 2 = 1 ( ) π Im w(e)g(q,q,e)de 31 / 35
32 Scarok Bogomolny-féle leírás G(q,q,E) = G 0 (q,q,e) + G oszc (q,q,e) ( ) 1 d ψ(q) 2 0 = 0(q,E), 0(q,E) = dpδ[e H(p,q)] 2π A Green-függvény oszcilláló része G oszc = i ( ) 1 (d 1)/2 [ i r 1/2 exp 2πi S r(q,q,e) i ν ] rπ 2 r 32 / 35
33 Scarok Energia szerinti integrál elvégzése: S r (q,q,e) = S r (q,q,e 0 ) + T r (q,e 0 )(E E 0 ) +... G oszc (q,q,e) = = i ( ) 1 (d 1)/2 2πi r ŵ(t r (q,e 0 )) = [ i r 1/2 exp S r(q,q,e 0 ) i ν rπ 2 [ ] i w(e)exp T r(q,e)(e E 0 ) de ] ŵ(t r (q,e 0 )) Kérdés Az összegzés jelenleg minden zárt pályára kiterjed. Miért a periodikus pályák adják a lényeges járulékot? 33 / 35
34 Scarok Tekintsünk egy zárt trajektóriát, amelyhez tartozó hatás S r (q,q,e 0 ). Vegyünk ettől egy kezdő és végállapotban infinitezimálisan eltérő pályát: ( Sr S r (q + q,q + q,e 0 ) = S r (q,q,e 0 ) + q + S ) r q B q }{{ A } p B q p A q q eltérés oszcillálást eredményez az exponensben kiátlagolódnak Kivétel azok a pályák, ahol p B q = p A q periodikus pályák 34 / 35
35 Amiről nem esett szó atommagok Riemann-zeta függvény periodikus időfüggésű rendszerek vegyes fázisterű rendszerek szupravezetőhöz kapcsolt rendszerek, Andreev-biliárdok / 35
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
RészletesebbenSzilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
RészletesebbenElektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty
Elektronok mozgása nanostruktúrákban 2-D elektrongáz, kvantumdrót és kvantumpötty Dr. Berta Miklós bertam@sze.hu 2017. október 26. 1 / 11 Tekintsünk egy olyan kristályrácsot, amelynek minden mérete sokkal
RészletesebbenOptika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Részletesebben1. Példa. A gamma függvény és a Fubini-tétel.
. Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +
RészletesebbenA hőterjedés dinamikája vékony szilikon rétegekben. Gambár Katalin, Márkus Ferenc. Tudomány Napja 2012 Gábor Dénes Főiskola
A hőterjedés dinamikája vékony szilikon rétegekben Gambár Katalin, Márkus Ferenc Tudomány Napja 2012 Gábor Dénes Főiskola Miről szeretnék beszélni: A kutatás motivációi A fizikai egyenletek (elméleti modellek)
RészletesebbenAzonos és egymással nem kölcsönható részecskékből álló kvantumos rendszer makrókanónikus sokaságban.
Kvantum statisztika A kvantummechanika előadások során már megtanultuk, hogy az anyagot felépítő részecskék nemklasszikus, hullámtulajdonságokkal is rendelkeznek aminek következtében viselkedésük sok szempontból
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenA spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Részletesebbenx, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
RészletesebbenAZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
RészletesebbenMegoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Részletesebben1 A kvantummechanika posztulátumai
A kvantummechanika posztulátumai October 29, 2006 A kvantummechanika posztulátumai Célunk felépíteni a kvantummechanikát posztulátumok segítségével úgy ahogy az elemi hullámmechanika során eljártunk. Arra
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenMonte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás
Monte Carlo módszerek a statisztikus fizikában. Az Ising modell. 8. előadás Démon algoritmus az ideális gázra időátlag fizikai mennyiségek átlagértéke sokaságátlag E, V, N pl. molekuláris dinamika Monte
RészletesebbenExplicit hibabecslés Maxwell-egyenletek numerikus megoldásához
Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenJanuary 16, ψ( r, t) ψ( r, t) = 1 (1) ( ψ ( r,
Közelítő módszerek January 16, 27 1 A variációs módszer A variációs módszer szintén egy analitikus közelítő módszer. Olyan esetekben alkalmazzuk mikor ismert az analitikus alak amelyben keressük a sajátfüggvényt,
RészletesebbenIdegen atomok hatása a grafén vezet képességére
hatása a grafén vezet képességére Eötvös Loránd Tudományegyetem, Komplex Rendszerek Fizikája Tanszék Mahe Tisk'11 Vázlat 1 Kisérleti eredmények Kémiai szennyez k hatása a Fermi-energiára A vezet képesség
RészletesebbenLagrange egyenletek. Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását
Lagrange egyenletek Úgy a virtuális munka mint a D Alembert-elv gyakorlati alkalmazását megnehezíti a δr i virtuális elmozdulások egymástól való függősége. (F i ṗ i )δx i = 0, i = 1, 3N. (1) i 3N infinitezimális
RészletesebbenPere Balázs október 20.
Végeselem anaĺızis 1. előadás Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2014. október 20. Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)? Mi az a VégesElem Anaĺızis (VEA)?
Részletesebbenω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
RészletesebbenMiért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek
Az november 23-i szeminárium témája Rövid összefoglaló Miért fontos számunkra az előző gyakorlaton tárgyalt lineáris algebrai ismeretek felfrissítése? Tekintsünk ξ 1,..., ξ k valószínűségi változókat,
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
Részletesebben2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
RészletesebbenTárgymutató. dinamika, 5 dinamikai rendszer, 4 végtelen sok állapotú, dinamikai törvény, 5 dinamikai törvények, 12 divergencia,
Tárgymutató állapottér, 3 10, 107 általánosított impulzusok, 143 147 általánosított koordináták, 143 147 áramlás, 194 197 Arisztotelész mozgástörvényei, 71 77 bázisvektorok, 30 centrifugális erő, 142 ciklikus
RészletesebbenAtomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Részletesebben3. (b) Kereszthatások. Utolsó módosítás: április 1. Dr. Márkus Ferenc BME Fizika Tanszék
3. (b) Kereszthatások Utolsó módosítás: 2013. április 1. Vezetési együtthatók fémekben (1) 1 Az elektrongáz hővezetési együtthatója A levezetésben alkalmazott feltételek: 1. Minden elektron ugyanazzal
RészletesebbenAtomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz
Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas
RészletesebbenVéletlen mátrix extrém-érték statisztika: Tracy-Widom eloszlás
Véletlen mátrix extrém-érték statisztika: Ábel Dániel June 15, 2006 1 / 34 2 / 34 Előző alkalommal bevezetett dolgok, amiket használni fogunk: 3 / 34 Előző alkalommal bevezetett dolgok, amiket használni
RészletesebbenVégeselem analízis. 1. el adás
Végeselem analízis 1. el adás Pere Balázs Széchenyi István Egyetem, Alkalmazott Mechanika Tanszék 2016. szeptember 7. Mi az a VégesElem Analízis (VEA)? Parciális dierenciálegyenletek (egyenletrendszerek)
RészletesebbenModern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
RészletesebbenWigner tétele kvantummechanikai szimmetriákról
Szegedi Tudományegyetem, Bolyai Intézet és MTA-DE "Lendület" Funkcionálanalízis Kutatócsoport, Debreceni Egyetem 2014. Október 30. Elméleti Fizika Szeminárium A tétel története Wigner tétele Tétel Legyen
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenBiometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
RészletesebbenBiomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
RészletesebbenAbszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
RészletesebbenCompton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
RészletesebbenSZTE Elméleti Fizikai Tanszék. Dr. Czirják Attila tud. munkatárs, c. egyetemi docens. egyetemi docens. Elméleti Fizika Szeminárium, december 17.
Időfüggő kvantumos szórási folyamatok Szabó Lóránt Zsolt SZTE Elméleti Fizikai Tanszék Témavezetők: Dr. Czirják Attila tud. munkatárs, c. egyetemi docens Dr. Földi Péter egyetemi docens Elméleti Fizika
RészletesebbenΨ - 1/v 2 2 Ψ/ t 2 = 0
ELTE II. Fizikus 005/006 I. félév KISÉRLETI FIZIKA Optika 7. (X. 4) Interferencia I. Ψ (r,t) = Φ (r,t)e iωt = A(r) e ikl(r) e iωt hullámfüggvény (E, B, E, B,...) Ψ - /v Ψ/ t = 0 ω /v = k ; ω /c = k o ;
RészletesebbenFolyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Részletesebbendinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
RészletesebbenNagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
RészletesebbenForgó molekulák áthaladása apertúrán
Forgó molekulák áthaladása apertúrán Egy egyszer kvantummechanikai modell Dömötör Piroska SZTE-TTIK Elméleti Fizikai Tanszék Tanszéki szeminárium, Szeged, 215. február 26. Bevezetés A vizsgálandó kérdés
Részletesebbenösszetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.
A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske
RészletesebbenModern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
RészletesebbenDekoherencia Markovi Dinamika Diósi Lajos. Elméleti Fizikai Iskola Tihany, augusztus szeptember 3.
Dekoherencia Markovi Dinamika Diósi Lajos Elméleti Fizikai Iskola Tihany, 2010. augusztus 30. - szeptember 3. Tartalomjegyzék 1 Projektív dekoherencia 2 Nyitott rendszer - Lindblad egy. 3 Dekoherencia
RészletesebbenTartószerkezet-rekonstrukciós Szakmérnöki Képzés
1_5. Bevezetés Végeselem-módszer Végeselem-módszer 1. A geometriai tartomány (szerkezet) felosztása (véges)elemekre.. Lokális koordináta-rendszer felvétele, kapcsolat a lokális és globális koordinátarendszerek
RészletesebbenHamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
RészletesebbenReciprocitás - kvantumos és hullámjelenségek egy szimmetriája
Reciprocitás - kvantumos és hullámjelenségek egy szimmetriája Fülöp Tamás + Deák László MTA Wigner FK RMI MTA Wigner FK RMI, Budapest, 2012.06.22 Mi a reciprocitás? A fénysugár útja megfordítható G. Stokes,
RészletesebbenValószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
RészletesebbenVIK A3 Matematika, Gyakorlati anyag 2.
VIK A3 Matematika, Gyakorlati anyag 2. 208. november Sorok. Konvergensek-e az alábbi sorok? Ha igen, adjuk meg a határértéküket! n(n+3) n(n+)(n+2) 9n 2 3n 2 ( n + 2 2 n + + n) 2n+ n 2 (n+) 2 (f) ( 3) k+2
RészletesebbenNemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével. Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215
Nemlineáris jelenségek és Kao2kus rendszerek vizsgálata MATHEMATICA segítségével Előadás: 10-12 Szerda, 215 Labor: 16-18, Szerda, 215 Célok: Ismerkedés a kao2kus dinamikával és ennek tanulmányozása. A
RészletesebbenUniverzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza
Univerzalitási osztályok nemegyensúlyi rendszerekben, Ódor Géza odor@mfa.kfki.hu 1. Bevezetõ, dinamikus skálázás, kritikus exponensek, térelmélet formalizmus, renormalizáció, topológius fázis diagrammok,
RészletesebbenTartalom. Typotex Kiadó
Tartalom Előszó 13 1. A kvantumelmélet kezdetei 15 1.1. A Planck-féle sugárzási törvény és a szigetelő kristályok hőkapacitása 15 1.2. A fényelektromos jelenség: Lénárd és Einstein 19 1.3. Az atomos gázok
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Részletesebben1.1. Vektorok és operátorok mátrix formában
1. Reprezentáció elmélet 1.1. Vektorok és operátorok mátrix formában A vektorok és az operátorok mátrixok formájában is felírhatók. A végtelen dimenziós ket vektoroknak végtelen sok sort tartalmazó oszlopmátrix
RészletesebbenA kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Részletesebbenegyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
RészletesebbenMagfizika szeminárium
Paritássértés a Wu-kísérletben Körtefái Dóra Magfizika szeminárium 2019. 03. 25. Áttekintés Szimmetriák Paritás Wu-kísérlet Lederman-kísérlet Szimmetriák Adott transzformációra invaráns mennyiségek. Folytonos
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Részletesebbenaz Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai
az Aharonov-Bohm effektus a vektorpotenciál problémája E = - 1/c A/ t - φ és B = x A csak egy mértéktranszformáció erejéig meghatározott nincs fizikai jelentése? a kvantummechanikában ih m» a hullámfüggvény
RészletesebbenKVANTUMKAOTIKUS RENDSZEREK VIZSGÁLATA
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TERMÉSZETTUDOMÁNYI KAR KVANTUMKAOTIKUS RENDSZEREK VIZSGÁLATA Siska Ádám Témavezető: Dr. Varga Imre, PhD. BME TTK Elméleti Fizika Tanszék BME TTK Elméleti
RészletesebbenHangfrekvenciás mechanikai rezgések vizsgálata
KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A
Részletesebbenhttp://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
RészletesebbenVéletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.
2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)
RészletesebbenKészítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
RészletesebbenKör alakú szupravezető grafén rendszer kvantumos és szemiklasszikus vizsgálata
Kör alakú szupravezető grafén rendszer kvantumos és szemiklasszikus vizsgálata Hagymási Imre IV. éves fizikus Témavezető: Cserti József Eötvös Loránd Tudományegyetem Természettudományi Kar Komplex Rendszerek
RészletesebbenMilyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez
1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet
Részletesebben14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
RészletesebbenT obbv altoz os f uggv enyek integr alja. 3. r esz aprilis 19.
Többváltozós függvények integrálja. 3. rész. 2018. április 19. Kettős integrál Kettős integrál téglalap alakú tartományon. Ismétlés Ha = [a, b] [c, d] téglalap-tartomány, f : I integrálható függvény, akkor
RészletesebbenÁtmenetifém-komplexek ESR-spektrumának jellemzıi
Átmenetifém-komplexek ESR-spektrumának jellemzıi A párosítatlan elektron d-pályán van. Kevéssé delokalizálódik a fémionról, a fém-donoratom kötések meglehetısen ionos jellegőek. A spin-pálya csatolás viszonylag
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenKabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
RészletesebbenSCHRÖDINGER-EGYENLET SCHRÖDINGER-EGYENLET
SCHRÖDINGER-EGYENLET A Scrödinger-egyenlet a kvantummecanika mozgásegyenlet, Newton II. törvényével analóg. Nem vezetető le korábbi elvekből, de intuitívan bevezetető. Egy atározott energiával és impulzussal
RészletesebbenÁltalánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.22. Valószínűségi változó Véletlentől függő számértékeket (értékek sokasága) felvevő változókat valószínűségi változóknak nevezzük(jelölés: ξ, η, x). (pl. x =
RészletesebbenAz egydimenziós harmonikus oszcillátor
Az egydimenziós harmonikus oszcillátor tárgyalása az általános formalizmus keretében November 7, 006 Példaképpen itt megmutatjuk, hogyan lehet a kvantumos egydimenziós harmonikus oszcillátort tárgyalni
Részletesebben2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
RészletesebbenKísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
RészletesebbenMatematika II. 1 sin xdx =, 1 cos xdx =, 1 + x 2 dx =
Matematika előadás elméleti kérdéseinél kérdezhető képletek Matematika II Határozatlan Integrálszámítás d) Adja meg az alábbi alapintegrálokat! x n 1 dx =, sin 2 x dx = d) Adja meg az alábbi alapintegrálokat!
RészletesebbenElektrodinamika. Maxwell egyenletek: Kontinuitási egyenlet: div n v =0. div E =4 div B =0. rot E = rot B=
Elektrodinamika Maxwell egyenletek: div E =4 div B =0 rot E = rot B= 1 B c t 1 E c t 4 c j Kontinuitási egyenlet: n t div n v =0 Vektoranalízis rot rot u=grad divu u rot grad =0 div rotu=0 udv= ud F V
RészletesebbenVázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
RészletesebbenKOMPOZITLEMEZ ORTOTRÓP
KOMPOZITLEMEZ ORTOTRÓP ANYAGJELLEMZŐINEK MEGHATÁROZÁSA ÉS KÍSÉRLETI IGAZOLÁSA Nagy Anna anna.nagy@econengineering.com econ Engineering econ Engineering Kft. 2019 H-1116 Budapest, Kondorosi út 3. IV. emelet
RészletesebbenBeugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!
RészletesebbenNemparaméteres próbák
Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu
RészletesebbenLagrange és Hamilton mechanika
Lagrange és 2010. október 17. Lagrange és Tartalom 1 Variáció Lagrange egyenlet Legendre transzformáció Hamilton egyenletek 2 3 Szimplektikus sokaság Hamilton mez Hamilton és Lagrange egyenletek ekvivalenciája
RészletesebbenFluktuáló terű transzverz Ising-lánc dinamikája
2016. szeptember 8. Phys. Rev. B 93, 134305 Modell H(t) = 1 2 L 1 σi x σi+1 x h(t) 2 i=1 h(t)-fluktuáló mágneses tér. Hogyan terjednek jelek a zajos rendszerben? L σi z, i=1 Zajok típusai 1 fehér zaj 2
RészletesebbenMolekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
RészletesebbenTANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
RészletesebbenMatematika A2 vizsga mgeoldása június 4.
Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont
RészletesebbenZ v 1 (t)v 2 (t τ)dt. R 12 (τ) = 1 R 12 (τ) = lim T T. ill. periódikus jelekre:
1 Korrelációs fügvények Hasonlóság mértéke a két függvény szorzatának integrálja Időbeli változások esetén lehet vizsgálni a hasonlóságot a τ relatív időkülönbség szerint: Keresztkorrelációs függvény:
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenSaj at ert ek-probl em ak febru ar 26.
Sajátérték-problémák 2018. február 26. Az alapfeladat Adott a következő egyenlet: Av = λv, (1) ahol A egy ismert mátrix v ismeretlen, nem zérus vektor λ ismeretlen szám Azok a v, λ kombinációk, amikre
Részletesebben