Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok"

Átírás

1 Szilárdtestfizika Kondenzált Anyagok Fizikája

2 Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2

3 Szerkezet jellemzése és vizsgálata z i-ik ik atom Időátlag (statisztikus átlag) i-ik atom helyének eloszlásfüggvénye: y x Mi a valószínűsége, ű hogy r helyen találunk atomot? t? egyrészecskés eloszlásfv. Mi a valószínűsége, hogy r 1 és r 2 helyen találunk két atomot? kétrészecskés eloszlásfv. hosszútávú rend hiánya: 3

4 homogén rendszer: rövidtávú rend: normált páreloszlásfv. Szerkezeti tényező: 4

5 Kondenzált anyagok osztályozása szerkezetük szerint Szilárd fázis atomok helyének időbeli fluktuációja kicsi - Kristályos anyagok: hosszútávú rendezettség, periodicitás - Nem-kristályos szilárd anyagok: legfeljebb rövidtávú rend üvegek, fémüvegek, amorf anyagok, kvázikristályok Folyadékfázis atomok helyének időbeli fluktuációja nagy merev gömb (Bernal-féle) model Folyékony argon 85 K-en neutronszórással mért szerkezeti tényezője és az abból számolt páreloszlás függvénye K max = 2π / r 0 5

6 Mezomorf fázisok a molekulák helyének és térbeli orientációjának rendezettsége szétválik - Folyadékkristályok: pálcika, lapos korong v. tégla alakú molekulák alak és rendeződés módja szerint különböző fázisok nematikus nematikus diszkotikus szmektikus koleszterikus - Plasztikus kristályok: helyeloszlás rendezett irányeloszlás nem - Polimerek: nagy szerves molekulák láncok közötti összefonódás részleges rend 6

7 Kristályok szimmetriái Eltolási szimmetria a 3 Pontrács (Bravais rács) a 1 a 2 Bázis (dekoráció) Elemi cella: térfogata Wigner-Seitz cella (Voronoj poliéder) 7

8 Kristálytani síkok: az m 1 + m 2 + m 3 rácsvektorra merőleges síkok (m 1 m 2 m 3 ) A köbös rács három fősíkja: (320) 8

9 Reciprokrács primitív vektorok reciprokrács vektorai reciprokrács elemi cellája Brillouin zóna térfogata rácsperiódikus függvény Rácssík jellemzése reciprok rácsvektorral: Miller index (h 1 h 2 h 3 ) 9

10 Példa: lapcentrált köbös kristály (face centered cubic, fcc) valós rács reciprokrács a Brillouin zónával 10

11 Pontcsoport szimmetriák Egybevágósági á transzformációk forgatások, középpontos tükrözés, síktükrözések k Példa: köbös (O h ) pontcsoport C 4 C 3 σ C 2 3 C 4, 4 C 3, 6 C 2 24 forgatás (E, egységtranszformációval g együtt) I középpontos tükrözés, 3 I C 4, 4 I C 3, 6 I C 2 24 tükrözés Összesen 48 szimmetria művelet (pontcsoport elem) 11

12 Kristályrendszerek Bravais-csoport: a Bravais-rácsot önmagába vívő transzformációk pl. a forgatás szöge csak π/3, π/2 ill. ezek egészszámú többszöröse Kétdimenziós rácsok: négy Bravais-csoport öt Bravais-rács Háromdimenziós rácsok: hét kristályrendszer derékszögű primitív és négyzetes (8) hatszöges (6) centrált (4) háromhajlású egyhajlású ortorombos négyzetes (triklin) (monoklin) (tetragonális) romboéderes hatszöges köbös Ezeken belül összesen 14 Bravais-rács létezik A bázis (több atom/elemi cella) csökkenti a kristály szimmetriáját iáját A kristály teljes szimmetriája a tércsoport: eltolás + pontcsoport 12

13 Szerkezet kísérleti meghatározása Rugalmas szórási kísérletek (diffrakció) röntgendiffrakció elektromágneses sugárzás hullámhossza ~ atomok közötti távolság ~ nm neutrondiffrakció (termikus neutronok), elektrondiffrakció (~100 ev, LEED) Bragg-feltétel atomi síkok Laue-feltétel atom Kapcsolat: Laue-feltétel 13

14 Kvantitatív tárgyalás Bejövő síkhullám Kimenő síkhullám Elektronok sűrűsége: Elektromágneses tér és elektronok kölcsönhatása (kvantummechanika) szórási óá iintenzitás: itá Atomi alaktényező: információ az elemi cellán belüli elektroneloszlásról 14

15 Laue-feltétel ábrázolása Ewald szerkesztéssel Ewald szerkesztés forgókristályos os mérésre 15

16 Kvázikristályok van hosszútávú rend, de eltolási szimmetria nincsen kváziperiódikus (inkommenzurábilis) szerkezetek kétfajta periódicitás (atomok és elektronok) Al 86 Mn 14 ötvözet diffrakciós képében két, három és ötfogású (!) szimmetriát figyeltek meg (1984) A sík Penrose-féle lefedése 36 és 72 -os hegyesszögű rombuszokkal 16

KRISTÁLYOK GEOMETRIAI LEÍRÁSA

KRISTÁLYOK GEOMETRIAI LEÍRÁSA KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:

Részletesebben

Kondenzált anyagok fizikája

Kondenzált anyagok fizikája Kondenzált anyagok fizikája Rácsszerkezetek Groma István ELTE September 13, 2018 Groma István, ELTE Kondenzált anyagok fizikája, Rácsszerkezetek 1/22 Periódikus rendszerek Elemi rácsvektorok a 1, a 2,

Részletesebben

Kondenzált anyagok csoportosítása

Kondenzált anyagok csoportosítása Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 6 KRISTÁLYTAN VI. A KRIsTÁLYOs ANYAG belső RENDEZETTsÉGE 1. A KRIsTÁLYOs ÁLLAPOT A szilárd ANYAG jellemzője Az ásványok néhány kivételtől eltekintve kristályos

Részletesebben

Elemi cellák. Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik.

Elemi cellák. Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik. Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik. Elemi cellák amorf vs. mikrokristályos, kristályos anyagok rácspontok lineáris rács síkrács térács

Részletesebben

Bevezetés az anyagtudományba III. előadás

Bevezetés az anyagtudományba III. előadás Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan

Részletesebben

Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés

Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés 06.08.. Fizikai kémia. 6. Diffrakciós módszerek Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Bevezetés A kémiai szerkezet vizsgálatához használatos módszerek közül eddig a különöző

Részletesebben

Kondenzált anyagok fizikája 1. zárthelyi dolgozat

Kondenzált anyagok fizikája 1. zárthelyi dolgozat Név: Neptun-kód: Kondenzált anyagok fizikája 1. zárthelyi dolgozat 2015. november 5. 16 00 18 00 Fontosabb tudnivalók Ne felejtse el beírni a nevét és a Neptun-kódját a fenti üres mezőkbe. Minden feladat

Részletesebben

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek

Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és

Részletesebben

American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)

American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) Szilárdtestek Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) csavart alakzatok (spirál, tórusz, stb.) egyatomos vastagságú sík, grafén (0001) Amorf (atomok geometriai rend nélkül)

Részletesebben

Szilárdtest-fizika gyakorlat, házi feladatok, ősz

Szilárdtest-fizika gyakorlat, házi feladatok, ősz Szilárdtest-fizika gyakorlat, házi feladatok, 2017. ősz A HF-ek után zárójelben az szerepel, hogy hány hallgatónak szánjuk kiadni, utána pedig a hallgatókat azonosító sorszám (1-21), így: (hallgató/feladat,

Részletesebben

): olyan vektor, mely mentén ha eltoljuk a rácsot, önmagába megy át. (ez a transzlációs vektor is)

): olyan vektor, mely mentén ha eltoljuk a rácsot, önmagába megy át. (ez a transzlációs vektor is) 1 / 12 A TételWiki wikiből 1 Pontcsoportok, Bravais-rácsok, szimmetriák. 1.1 Szimmetriák 1.2 Bravais-rácsok 1.3 Fontosabb kristályszerkezetek [2] 1.4 Bloch tétel, adiabatikus szétcsatolás. 2 Röntgen- és

Részletesebben

Diffrakciós szerkezetvizsgálati módszerek

Diffrakciós szerkezetvizsgálati módszerek Diffrakciós szerkezetvizsgálati módszerek Röntgendiffrakció Angler Gábor ELTE TTK Fizika BSc hallgató 2009. december 3. Kondenzált anyagok fizikája szeminárium Az előadás vázlata Bevezetés, motiváció,

Részletesebben

Zárthelyi dolgozat I. /A.

Zárthelyi dolgozat I. /A. Zárthelyi dolgozat I. /A. 1. Az FCC rács és reciprokrácsa (és tudjuk, hogy: V W.S. * V B.z. /() 3 = 1 / mindig!/) a 1 = ½ a (0,1,1) ; a = ½ a (1,0,1) ; a 3 = ½ a (1,1,0) b 1 = (/a) (-1,1,1); b = (/a) (1,-1,1);

Részletesebben

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium

Fázisátalakulások, avagy az anyag ezer arca. Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Fázisátalakulások, avagy az anyag ezer arca Sasvári László ELTE Fizikai Intézet ELTE Bolyai Kollégium Atomoktól a csillagokig, Budapest, 2016. december 8. Fázisátalakulások Csak kondenzált anyag? A kondenzált

Részletesebben

Elektrokémiai fémleválasztás. Kristálytani alapok A kristályos állapot szerepe a fémleválásban

Elektrokémiai fémleválasztás. Kristálytani alapok A kristályos állapot szerepe a fémleválásban Elektrokémiai fémleválasztás Kristálytani alapok A kristályos állapot szerepe a fémleválásban Péter László Elektrokémiai fémleválasztás Kristálytani alapok - 1 Kristályok Kristály: olyan szilárd test,

Részletesebben

41. ábra A NaCl rács elemi cellája

41. ábra A NaCl rács elemi cellája 41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok

Részletesebben

2013.11.24. Villamosmérnök MSc, Anyagtudomány. CaF 2 (fluorit rács) kicsit torzul: pl H 2 O (két nemkötő pár, 105 ), NH 3 (egy nemkötő pár, 107 ).

2013.11.24. Villamosmérnök MSc, Anyagtudomány. CaF 2 (fluorit rács) kicsit torzul: pl H 2 O (két nemkötő pár, 105 ), NH 3 (egy nemkötő pár, 107 ). Ionos kötés ionrács Anyagszerkezet Tulajdonságok: Erős, elsőrendű, magas olvadáspont Részben irányított kötés, rideg anyagok Koordinációt, térkitöltést a kation/anion méretarány és az ionok töltésaránya

Részletesebben

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez 1 Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez Havancsák Károly Dankházi Zoltán Ratter Kitti Varga Gábor Visegrád 2012. január Elektron diffrakció 2 Diffrakció - kinematikus elmélet

Részletesebben

Szilárdtestfizika II. gyakorlat, 2. zh május 10. a. Rajzold fel a rézoxid síkot! Határozd meg a bázisát! Hány atomból áll?

Szilárdtestfizika II. gyakorlat, 2. zh május 10. a. Rajzold fel a rézoxid síkot! Határozd meg a bázisát! Hány atomból áll? Szilárdtestfizika II. gyakorlat, 2. zh 2004. május 10. 1.feladat Tekintsük a rézoxid (CuO 2 ) síkot az (xy) síkban és szűkítsük le az egyes atomok lehetséges elmozdulásait a z-irányra. Vizsgáljuk a q=(

Részletesebben

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t

Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok

Részletesebben

Tematika. Az atomok elrendeződése Kristályok, rácshibák

Tematika. Az atomok elrendeződése Kristályok, rácshibák Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.

Részletesebben

Villamosmérnök MSc, Anyagtudomány

Villamosmérnök MSc, Anyagtudomány Anyagszerkezet Villamosmérnök MSc, Anyagtudomány Vázlat Kötéstípusok, rácstípusok (emlékeztető) Molekulaszerkezet, koordináció Kristályszerkezet leírása Elemi cellák Kristálysíkok, Miller-indexindex Kristályhibák

Részletesebben

Szemcsehatárok geometriai jellemzése a TEM-ben. Lábár János

Szemcsehatárok geometriai jellemzése a TEM-ben. Lábár János Szemcsehatárok geometriai jellemzése a TEM-ben Lábár János Szemcsehatárok geometriai jellemzése Rácsok relatív orientációja Coincidence Site Lattice (CSL) O-lattice Határ közelítése síkkal Határsík orientációja

Részletesebben

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek

Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)

Részletesebben

2. elıadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia)

2. elıadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia) 2. elıadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia) RENDEZETTSÉG A KRISTÁLYOKBAN (ÉS A MŐVÉSZETEKBEN) Egydimenziós

Részletesebben

2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia)

2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) 2. előadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) KRISTÁLY FOGALOM A MÚLTBAN Ókorban: jég (= krüsztallosz), a színtelen

Részletesebben

Az atomok elrendeződése

Az atomok elrendeződése Anyagtudomány 2015/16 Kristályok, rácshibák, ötvözetek, termikus viselkedés (ismétlés) Dr. Szabó Péter János szpj@eik.bme.hu Az atomok elrendeződése Hosszú távú rend (kristályok) Az atomok elhelyezkedését

Részletesebben

Rend, rendezetlenség, szimmetriák (rövidített változat)

Rend, rendezetlenség, szimmetriák (rövidített változat) Rend, rendezetlenség, szimmetriák (rövidített változat) dr. Tasnádi Tamás 1 2018. február 16. 1 BME, Matematikai Intézet Tartalom Mi a rend? Érdekes grafikáktól a periodikus rácsokig Nem periodikus parkettázások

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony nincs saját alakja szilárd van saját alakja (deformálás után úgy marad, nem (deformálás után visszaalakul, mert ébrednek benne visszatérítő nyíróerők) visszatérítő nyíróerők léptek

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Folyadékok víz Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok 1 saját térfogat nincs saját alak/folyékony nincsenek belső nyíróerők

Részletesebben

Kristálytani alapok. Anyagtudomány gyakorlat. Ajánlott irodalom: Tisza Miklós: Metallográfia

Kristálytani alapok. Anyagtudomány gyakorlat. Ajánlott irodalom: Tisza Miklós: Metallográfia Kristálytni lpok Anygtudomány gykorlt Ajánlott irodlom: Tisz Miklós: Metllográfi Az nygtuljdonságokt meghtározó tényezők: z nygot felépítő tomok fjtáj (kémi) z tomok közötti kötés jellege és erőssége elsődleges

Részletesebben

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004.

Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004. Kristályos szerkezetű nygok BME, Anygtudomány és Technológi Tnszék Rácspontok, ideális rend, periodikus szerkezet Rendezettség z tomok között tuljdonságok Szimmetri, síklpok, hsdás, nizotrópi Dr. Mészáros

Részletesebben

Kvázikristályok es Kémia Nobel-díj

Kvázikristályok es Kémia Nobel-díj Kvázikristályok 2011-es Kémia Nobel-díj A felfedezés 1982. április 8-án reggel, a washingtoni Nemzeti Szabványügyi Irodában Daniel Schechtman furcsa dolgot látott az elektronmikroszkópja alatt található

Részletesebben

Szilárdtest-fizika gyakorlat. Bácsi Ádám, Kanász-Nagy Márton, Kézsmárki István

Szilárdtest-fizika gyakorlat. Bácsi Ádám, Kanász-Nagy Márton, Kézsmárki István Szilárdtest-fizika gyakorlat Bácsi Ádám, Kanász-Nagy Márton, Kézsmárki István Tartalomjegyzék 1. Kristályszerkezet 1.1. Rács, elemi rácsvektorok........................... 1.. Reciprok rács.................................

Részletesebben

Modern Fizika Labor. 17. Folyadékkristályok

Modern Fizika Labor. 17. Folyadékkristályok Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok

Részletesebben

Ásványtani alapismeretek

Ásványtani alapismeretek Ásványtani és s kőzettani k alapismeretek Előadók: Dr Molnár Ferenc, egyetemi docens, Ásványtani Tanszék Dr Ditrói Puskás Zuárd, egyetemi docens, Kőzettan-Geokémiai Tanszék Gyakorlatvezetők: Dr Molnár

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 3. Fényelhajlás (Diffrakció) Cserti József, jegyzet, ELTE, 2007. Akadályok között elhaladó hullámok továbbterjedése nem azonos a geometriai árnyékkal.

Részletesebben

2. elıadás A KRISTÁLYTAN ALAPJAI

2. elıadás A KRISTÁLYTAN ALAPJAI 2. elıadás A KRISTÁLYTAN ALAPJAI TÉRRÁCS ÉS ELEMI CELLA Az elemi cella a térrács azon legkisebb része, amely még rendelkezik a teljes rácsszerkezet tulajdonságaival. Az elemi cellát a rácsállandó jellemzi:

Részletesebben

Ásvány- és kzettan. Bidló András NYME Termhelyismerettani Tanszék

Ásvány- és kzettan. Bidló András NYME Termhelyismerettani Tanszék Ásvány- és kzettan Bidló András NYME Termhelyismerettani Tanszék Témakörök Történeti áttekintés Kristálytan Ásványtan Kzettan Magyarország ásványai, kzetei Kristály fogalma Kristály fogalma: Sík lapokkal

Részletesebben

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november

Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció

Részletesebben

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD)

Röntgenanalitika. Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) Röntgenanalitika Röntgenradiológia, Komputertomográfia (CT) Röntgenfluoreszcencia (XRF) Röntgenkrisztallográfia Röntgendiffrakció (XRD) A röntgensugárzás Felfedezése (1895, W. K. Röntgen, katódsugárcső,

Részletesebben

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Elektronmikroszkópia

Elektronmikroszkópia Elektronmikroszkópia Tóth Bence fizikus, 3. évfolyam 006.05.04. csütörtök beadva: 006.05.4. . Ismertesse röviden a transzmissziós elektronmikroszkóp működési elveit, főbb üzemmódjait!. Vázolja fel az elektronmikroszkóp

Részletesebben

dinamikai tulajdonságai

dinamikai tulajdonságai Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.

ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.

Részletesebben

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.

Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely

Részletesebben

http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja

Részletesebben

Bevezetés s az anyagtudományba. nyba. Geretovszky Zsolt május 13. XIV. előadás. Adja meg a következő ionok elektronkonfigurációját! N e P.

Bevezetés s az anyagtudományba. nyba. Geretovszky Zsolt május 13. XIV. előadás. Adja meg a következő ionok elektronkonfigurációját! N e P. Bevezetés s az anyagtudományba nyba XIV. előadás Geretovszky Zsolt. május. Adja meg a következő ionok elektronkonfigurációját! = N 5 = 5 5= = N+ = 5+ = = N 4 = 5 4= 46 = N+ = 4+ = 6 = N+ = 5+ = 54 = N

Részletesebben

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC

Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja

Részletesebben

Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István

Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István Dódony István: TEM, vázlat vegyészeknek, 1996 1 Vázlat a transzmissziós elektronmikroszkópiához (TEM) dr. Dódony István A TEM a szilárd anyagok kémiai és szerkezeti jellemzésére alkalmas vizsgálati módszer.

Részletesebben

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze

Röntgen sugárzás. Wilhelm Röntgen. Röntgen feleségének keze Röntgendiffrakció Kardos Roland 2010.03.08. Előadás vázlata Röntgen sugárzás Interferencia Huygens teória Diffrakció Diffrakciós eljárások Alkalmazás Röntgen sugárzás 1895 röntgen sugárzás felfedezés (1901

Részletesebben

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára

TANMENET ... Az iskola fejbélyegzője. a matematika tantárgy. tanításához a 9. a, b osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 9. a, b osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz

Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz 2005. Fizika C3 KÖZÖS MINIMUM KÉRDÉSEK Kvantummechanika 1. Rajzolja fel a fekete test sugárzását jellemző kísérleti görbéket T 1 < T 2 hőmérsékletek

Részletesebben

Kristályok optikai tulajdonságai. Debrecen, december 06.

Kristályok optikai tulajdonságai. Debrecen, december 06. Kristályok optikai tulajdonságai Debrecen, 2018. december 06. A kristályok fizikai tulajdonságai Anizotrópia - kristályos anyagokban az egyes irányokban az eltérő rácspontsűrűség miatt a fizikai tulajdonságaik

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

EGYKRISTÁLY RÖNTGEN DIFFRAKCIÓ

EGYKRISTÁLY RÖNTGEN DIFFRAKCIÓ EGYKRISTÁLY RÖNTGEN DIFFRAKCIÓ 1 EGYKRISTÁLY RÖNTGEN DIFFRAKCIÓ Balogh Levente, Gubicza Jen és Zsoldos Lehel 1. BEVEZET A röntgen diffrakció a mai tudomány egyik meghatározó, nagyon változatos vizsgálati

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Beugró kérdések. Elektrodinamika 2. vizsgához. Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban! Beugró kérdések Elektrodinamika 2. vizsgához. Görbült koordináták Henger koordináták: r=(ρ cos φ, ρ sin φ, z) Számítsa ki a gradienst, divergenciát és a skalár Laplace operátort henger koordinátákban!

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2.

Fogorvosi anyagtan fizikai alapjai 2. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Víz és nyál Kristályok - apatit Polimorfizmus Kristályhibák

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 8 KRISTÁLYTAN VIII. A KRIsTÁLYOK külső FORMÁJA (KRIsTÁLYMORFOLÓGIA) 1. KRIsTÁLYFORMÁK A kristályforma a kristálylapok azon csoportját jelenti, melyeket a szimmetria

Részletesebben

Anyagtudomány. Kristálytani alapismeretek

Anyagtudomány. Kristálytani alapismeretek Anyagtudomány Kristálytani alapismeretek 1 Szilárd szerkezeti formák szilárd anyagok megjelenési formái: amorf: nincs szabályos kristályszerkezet, megszilárdult folyadékok polikristályos anyagok: szabályos

Részletesebben

KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK

KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK ÓBUDAI EGYETEM ANYAGTUDOMÁNYI SZEMINÁRIUMOK, 2014. JÚNIUS 2. PEKKER SÁNDOR MTA WIGNER SZFI KONJUGÁLT KÖTÉSŰ POLIMEREK ÉS SZÉN-NANOSZERKEZETEK I. FULLERÉNEK 2. rész: A fullerének szerkezete és tulajdonságai

Részletesebben

5. osztály. Matematika

5. osztály. Matematika 5. osztály A természetes számok értelmezése 100 000-ig. A tízes számrendszer helyértékes írásmódja. A A természetes számok írásbeli összeadása, kivonása. A műveleti eredmények becslése. Ellenőrzés 3. A

Részletesebben

ω mennyiségek nem túl gyorsan változnak

ω mennyiségek nem túl gyorsan változnak Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára

Részletesebben

Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet

Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet 2017.09.28. 15:57 1 Miért fontos a kristályosítás a gyógyszertechnológiában? Gyógyszerkészítmény

Részletesebben

Kvalitatív fázisanalízis

Kvalitatív fázisanalízis MISKOLCI EGYETEM ANYAG ÉS KOHÓMÉRNÖKI KAR FÉMTANI TANSZÉK GYAKORLATI ÚTMUTATÓ PHARE HU 9705000006 ÖSSZEÁLLÍTOTTA: NAGY ERZSÉBET LEKTORÁLTA: DR. MERTINGER VALÉRIA Kvalitatív fázisanalízis. A gyakorlat célja

Részletesebben

A szilárd testek szerkezete

A szilárd testek szerkezete F F Kérdések A szilárd testek szerkezete Reális kristályok, kristályhib lyhibák Milyen rend szerint épülnek fel a kristályok? Milyen hatással van a kristályszerkezet az anyag makroszkópikus tulajdonságaira?

Részletesebben

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok.

Folyadékok. Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok. Folyadékok folyékony szilárd Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Folyadékok, szilárd anyagok, folyadékkristályok Kiemelt témák: Viszkozitás Apatit Kristályhibák és

Részletesebben

2. ELŐADÁS. Transzformációk Egyszerű alakzatok

2. ELŐADÁS. Transzformációk Egyszerű alakzatok 2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

ANYAGSZERKEZETTAN II.

ANYAGSZERKEZETTAN II. ANYAGSZERKEZETTAN II. ANYAGMÉRNÖK BSc KÉPZÉS (levelező munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIAI INTÉZET

Részletesebben

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1

Paritássértés FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM PARITÁSSÉRTÉS 1 Paritássértés SZEGEDI DOMONKOS FIZIKA BSC III. MAG- ÉS RÉSZECSKEFIZIKA SZEMINÁRIUM 2013.11.27. PARITÁSSÉRTÉS 1 Tartalom 1. Szimmetriák 2. Paritás 3. P-sértés 1. Lee és Yang 2. Wu kísérlet 3. Lederman kísérlet

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

ANYAGSZERKEZETTAN II.

ANYAGSZERKEZETTAN II. ANYAGSZERKEZETTAN II. ANYAGMÉRNÖK BSc KÉPZÉS (nappali munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR FÉMTANI, KÉPLÉKENYALAKÍTÁSI ÉS NANOTECHNOLÓGIAI INTÉZET Miskolc,

Részletesebben

Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet

Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet Dr. Széchenyi Aleksandar Pécsi Tudományegyetem, Gyógyszertudományi Kar Gyógyszertechnológiai és Biofarmáciai Intézet 2019.09.05. 7:20 1 Szilárd anyagok rendezettség mértéke A tér három irányába mutatott

Részletesebben

ANYAGOK SZUBMIKROSZKÓPIKUS ÉS MAKROSZKÓPIKUS KRISZTALLOGRÁFIÁJA

ANYAGOK SZUBMIKROSZKÓPIKUS ÉS MAKROSZKÓPIKUS KRISZTALLOGRÁFIÁJA ANYAGOK SZUBMIKROSZKÓPIKUS ÉS MAKROSZKÓPIKUS KRISZTALLOGRÁFIÁJA Dr. Bagyinszki Gyula Tar Albert Budapesti Műszaki Főiskola - Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai

Részletesebben

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok

Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti ismeretek Molekulák, folyadékok, szilárd anyagok, folyadékkristályok Molekulák energiaállapotai E molekula E elektron E (A tankönyvben nem található téma!) vibráció E rotáció pl. vibráció 1 ev 0,1 ev 0,01 ev Fogorvosi anyagtan fizikai alapjai 2. Általános anyagszerkezeti

Részletesebben

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon.

17. Kapcsolok. 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. Fotonika 4.ZH 17. Kapcsolok 26. Mit nevezünk crossbar kapcsolónak? Egy olyan kapcsoló, amely több bemenet és több kimenet között kapcsol mátrixos módon. 27. Soroljon fel legalább négy optikai kapcsoló

Részletesebben

Osztályozóvizsga-tematika 8. évfolyam Matematika

Osztályozóvizsga-tematika 8. évfolyam Matematika Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév

FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2017/18-es tanév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül, valamint egy számolási feladatot az év közben

Részletesebben

Kristályos szerkezetű anyagok

Kristályos szerkezetű anyagok Kristályos szerkezetű anyagok Rácspontok, ideális rend, periodikus szerkezet Rendezettség az atomok között tulajdonságok Szimmetria, síklapok, hasadás, anizotrópia Egyatomos gáz Nincs rend, pl.: Ar Kristályos

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Folyadékkristályok: szépek és hasznosak

Folyadékkristályok: szépek és hasznosak Folyadékkristályok: szépek és hasznosak Dr. Éber Nándor Szilárdtest-fizikai és Optikai Intézet MTA Wigner Fizikai Kutatóközpont Atomoktól a csillagokig, 2012. március 22. Folyadékkristályok mindennapi

Részletesebben

Bevezetés s az anyagtudományba. nyba február 25. Interferencia. IV. előadás. Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ,

Bevezetés s az anyagtudományba. nyba február 25. Interferencia. IV. előadás. Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ, Bevezetés s az anyagtudományba nyba IV. előadás 2010. február 25. A rácsparamr csparaméterek mérésem Interferencia Intenzitásmaximum (konstruktív interferencia): az útkülönbség nλ, Intenzitásminimum (destruktív

Részletesebben

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat

2. tétel Egész számok - Műveletek egész számokkal. feleletvázlat 1. tétel Természetes számok tízes számrendszer műveletek és tulajdonságaik Természetes számok, jele, jelölések, ábrázolása számegyenesen műveletek a természetes számok halmazán belül Tízes számrendszer

Részletesebben

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Kérdések és feladatok a Bevezetés az anyagtudományba kurzus anyagához

Kérdések és feladatok a Bevezetés az anyagtudományba kurzus anyagához Kérdések és feladatok a Bevezetés az anyagtudományba kurzus anyagához Atomszerkezet és kémiai kötések Alapvető fogalmak, elektronok az atomokban 1. Mi a különbség az atomsúly és az atomtömeg között? 2.

Részletesebben