ANYAGOK SZUBMIKROSZKÓPIKUS ÉS MAKROSZKÓPIKUS KRISZTALLOGRÁFIÁJA
|
|
- Gyula Hegedüs
- 9 évvel ezelőtt
- Látták:
Átírás
1 ANYAGOK SZUBMIKROSZKÓPIKUS ÉS MAKROSZKÓPIKUS KRISZTALLOGRÁFIÁJA Dr. Bagyinszki Gyula Tar Albert Budapesti Műszaki Főiskola - Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet - Anyag- és Alakítástechnológiai Szakcsoport Az amorf anyagoknak rendszerint nincs határozott alakjuk, vagy ha igen, az véletlenszerű, esetleg mesterséges. Az ásványvilág jellemzően amorf anyaga az opál, amely kovasav-kocsonyából (gélből) alakul ki. Megjegyzendő, hogy már az opálban is találtak félszabályos szerkezetet, mely kovasav-kocsonyába ágyazott szilíciumoxid gömbsorokból állt. Az anyagnak az amorf állapota rendszerint nem stabil, az anyag kristályos állapotra törekszik, és a körülmények alakulásától függ, hogy ezt mikor éri el. A kristályos anyagokban az atomok, ionok, ill. molekulák szabályszerű, periodikus hosszútávú térbeli elrendeződésben, a kristályrácsban foglalnak helyet, ilyen módon a teret szakaszosan töltik ki. A kristályrács tömegpontjai egy-egy irányban pontsorok mentén helyezkednek el (vonalrácsot alkotva), majd ezek pedig rácssíkokba (síkrácsokba), végül térrácsba rendeződnek. A kristályos állapot jellemzője az anizotrópia, ami azt jelenti, hogy olyan anyagi sajátságai is léteznek, amelyek irányfüggők, azaz számszerű értékük nem független attól, hogy milyen irányban mérjük (ilyen például a törésmutató, az elektromos vezetőképesség, a mechanikai tulajdonságok stb.). Az egyes tulajdonságok anizotróp viselkedése függ az adott kristályrács szimmetriájától. Ma már eléggé ismertek a szerkezet és a kristályalak közötti összefüggések. Mintegy kétszáz éve, hogy a kristályok alakjával tudományos szinten is foglalkoznak. A geometriai kristálytan első törvénye ma is érvényes: Egy bizonyos anyag kristályainak meghatározott lapjai és élei által bezárt szög az illető anyagra jellemző, állandó érték." Ez a szögállandóság törvénye, s egyben azt is jelenti, hogy a kristályoknak - bár nem mindig ideálisak - a torzult lapok ellenére is mindig azonosak a lapszögeik. Egy kősókristály ideális esetben szabályos kocka, ez azonban torzulhat olyan módon, hogy a kockára jellemző négyzetlapok helyett minden oldalon téglalapokat látunk. A lapszögek azonban mégis derékszögek, vagyis az oldallapok 90 -ot zárnak be egymással. Elsősorban ismeretterjesztési célból összeállított cikkünkkel ezen szerteágazó, igen érdekes, sőt esztétikai élményt is nyújtó szakterülethez kapcsolódva, a geometriai krisztallográfia számítógépes modelleket is alkalmazó bemutatását tűztük ki célul, természetesen a teljesség igénye nélkül, kivonatosan, szelektálva az ide vonatkozó ismerethalmazból. Érzékeltetni szeretnénk azt is, hogy a szemmel látható makroszkópikus és a legjobb felbontású (pl. alagút) elektronmikroszkópok segítségével elérhető szubmikroszkópikus szerkezet között milyen geometriai hasonlóságok, összefüggések fedezhetők fel. Olyan térbeli virtuális modellek készítésével is foglalkoztunk, amelyek jól használhatók a kristályszerkezetek szemléltető oktatásában, túllépve a tankönyvi lehetőségek keretein, viszont jól helyettesítve a költségesen építhető valós modelleket. Ezekről készített virtuális fényképeket is jelentős számban bemutatunk
2 A kristályrendszerek és geometriai jellemzőik A kristályrácsokat transzlációs (eltolási) művelettel (jele: T) és más szimmetriaműveletekkel önmagukba vihetjük. Jellegzetes szimmetria-művelet a rácsponton áthaladó tengely körüli forgatás. Megadhatók olyan rácsok, melyek egy-, két-, három-, négy-, és hatfogású tengely körül - rendre 2π, 2π/2, 2π/3, 2π/4 és 2π/6 radiánnal, vagy ezek egész számú többszörösével - elforgatva önmagukba vihetők. Ezeket a forgástengelyeket 1-, 2-, 3-, 4-, és 6-os számmal jelöljük. Nincs azonban olyan rács, melyet 2π/7 vagy 2π/5 radiánnal elforgatva önmagára képezhetnénk. Két dimenzióban öt rácstípus (1. ábra) különböztethető meg, míg három dimenzióban 14 különböző (1 általános és 13 speciális) rácstípus adható meg. Az általános rácstípus az ún. háromhajlású rács. Alkalmas csoportosítással e 14 rácstípust hét rendszerbe soroljuk, a szokásosan választott ún. Bravais-celláknak (Auguste Bravais-ról / / elnevezve) megfelelően: köbös (szabályos vagy izometrikus), tetragonális (négyzetes), ortorombos, hexagonális (haszöges), monoklin (egyhajlású), romboéderes (trigonális vagy háromszöges) és triklin (háromhajlású) cellákat különböztetünk meg. Bravais 1849-ben geometriai úton vezette le, hogy ha a kristályrács felépítésében csak azonos tömegpontok vesznek részt, akkor 14 féle térbeli rács lehetséges (2. ábra). ferdeszögű rács derékszögű rács derékszögű centrált rács paralelogramma elemi cellákból téglalap elemi cellákból középpontos téglalap elemi cellákból négyzetes rács hatszöges rács négyzet ( a = b ) elemi cellákból rombusz (60º ill. 120º szögű) elemi cellákból 1. ábra Az 5 síkbeli Bravais-cella - 2 -
3 2. ábra A 14 térbeli Bravais-cella Az egyes Bravais-cellák speciális tengelyviszonyain alapul a további rendszerezés. Az a 1 vagy a, a 2 vagy b, a 3 vagy c elemi vektorok (transzlációs egységvektorok) a 1 = a, a 2 = b, a 3 = c abszolút értékeket rácsparamétereknek nevezzük. Amennyiben két-két vektor skaláris szorzata (a 2 a 3, a 1 a 3, ill. a 1 a 2 ) nulla, a köztük lévő szög (α, β ill. γ) derékszög. A 2. ábrán látható Bravais-cellák nem minden esetben egyeznek meg az ún. elemi cellákkal. Az elemi cella a kristályrács legkisebb egysége, ami magán viseli a rács jellegzetességeit. Esetenként a Bravais-cella sokkal szemléletesebben tükrözi a szimmetriákat, mint az elemi cella. A 3. ábrán az elemek periódusos rendszerébe foglalva láthatók a jellemző kristályszerkezet típusok ill. az azokat jellemző rácsparaméter értékek. Az anyagok szerkezetében az atomok távolsága m nagyságrendű, ami anyagszerkezettani egységnek tekintendő: m = 0,1 nm = 1 Å (Ångström). A rácsparaméter-értékek ilyen egységben vannak megadva. Egyébként Anders Jonas Ångström ( ) svéd fizikus az elemek spektrumát és a Nap színképét vizsgálta
4 3. ábra Az elemek kristályszerkezete A kristályokat három-, vagy a kristálytanban használatos négytengelyű koordinátarendszer segítségével tájoljuk be. A legegyszerűbb esetben egy három (egymásra merőleges) tengelyű koordinátarendszert helyezzünk a kristály képzeletbeli középpontjába. A három tengely értelmezése: az a tengely, velünk szemben halad, és a + vége van hozzánk közelebb; a b tengely erre merőlegesen vízszintes és a + vége jobbra mutat; a c tengely függőleges és a felső vége a + oldal. Ilyen tengelykereszthez viszonyítva egy-egy kristálylap 7 féle helyzetben lehet: 1. a-tengelyt metszi, b-vel és c-vel párhuzamos; 2. b-tengelyt metszi, a-val és c-vel párhuzamos; 3. c-tengelyt metszi, a-val és b-vel párhuzamos; 4. a- és b-tengelyt metszi, c-vel párhuzamos; 5. b- és c-tengelyt metszi, a-val párhuzamos; 6. a- és c-tengelyt metszi, b-vel párhuzamos; 7. mindhárom tengelyt metszi megegyező vagy eltérő arányban. Kristályokon a következő szimmetriaelemek találhatók: szimmetriacentrum (szimmetriaközéppont) vagy inverziós centrum, jele T; szimmetriasíkok vagy tükörsíkok, jelük m; forgatási szimmetriatengelyek vagy gírek, jelük: 2, 3, 4,
5 Kristályokon a szimmetriák mindig fedési műveletekkel ismerhetők fel. Például egy szimmetriatengely aszerint kapja nevét, hogy körülötte a kristály egy teljes (360 -os) körbeforgatás során hányszor kerül önmagával fedésbe; kétszer, háromszor, négyszer vagy hatszor, és eszerint két-, három-, négy- vagy hatértékű a szimmetriatengely vagy más néven gír. (Egyértékű gírről beszélni értelmetlenség, mert ha bármilyen testet bármilyen tengely körül 360 -kal körbeforgatunk, az önmagával fedésbe kerül.) A kétértékű szimmetriatengely kristálytani elnevezése digír, a háromértékűé trigír, a négyértékűé tetragír és a hatértékűé hexagír. Ötértékű vagy hatnál nagyobb értékű szimmetriatengely - geometriai és kristálykémiai okok miatt - természetes kristályokon nem lehet, nem fér össze a kristály transzlációs szimmetriájával. A szimmetriasík tükrözéses fedési művelet segítségével ismerhető fel. Ha a kristályt egy - a középpontján áthaladó - sík két tükörképi félre osztja, akkor a kristálynak tükörsíkja vagy más néven szimmetriasíkja van. Egy kristályon több tükörsík is lehet. Szimmetriacentrum a kristály középpontja, ami egyben a pont szerinti szimmetriát is kifejezi. Ha a kristályon minden lapnak megtalálható a vele egybevágó, fordított állású, párhuzamos párja, akkor a kristályon szimmetriacentrum van, amit szokás inverziós centrumnak is nevezni (inverzió = megfordítás). A felsoroltak egyszerű szimmetriaelemek. Abban az esetben, ha a kristályon olyan szimmetriaműveletek is végrehajthatók, amelyek forgatás + tükrözés vagy forgatás + inverzió eredményeképpen jönnek létre, akkor összetett szimmetriaelemről beszélünk. Bármilyen szimmetria-kombinációval kísérletezünk, a geometria szabályainak megfelelően mindössze kétféle összetett szimmetriaelem jöhet létre. Ezek: inverziós trigiroid és inverziós tetragiroid. Ha a lehetséges - egyszerű és összetett - szimmetriaelemeket valamennyi megvalósítható módon egymással kombináljuk, akkor ezekből mindössze 32 variációt lehet kialakítani. A hét kristályrendszer tehát összesen 32 kristályosztályt tartalmaz az alapján, hogy az elemi cellákból milyen geometriai formák hozhatók létre ill. valósulhatnak meg, a hézagmentes térkitöltést figyelembe véve. I. A köbös (szabályos vagy izometrikus) rendszer egyszerű, tércentrált és lapcentrált Bravais-celláihoz (4. ábra) 4. ábra A köbös rendszer Bravais-cellái 1. tetraéderes pentagondodekaéderes osztály, 2. diakiszdodekaéderes osztály, 3. pentagonikozitetraéderes osztály, 4. hexakisztetraéderes osztály, 5. hexakiszoktaéderes osztály, rendelhető (5. ábra)
6 5. ábra A köbös rendszer kristályosztályai II. A tetragonális (négyzetes) rendszer egyszerű és tércentrált Bravais-celláihoz (6. ábra) 6. négyzetes piramosos osztály, 7. négyzetes diszfenoidos osztály, 8. négyzetes dipiramisos osztály, 9. négyzetes trapezoéderes osztály, 10. ditetragonális piramisos osztály, 11. négyzetes szkalenoéderes osztály, 12. ditetragonális dipiramisos osztály rendelhető (7. ábra) 6. ábra A tetragonális rendszer Bravais-cellái 7. ábra A tetragonális rendszer kristályosztályai III. Az ortorombos rendszer egyszerű, bázislapon Bravais-celláihoz (8. ábra) centrált, tércentrált és lapcentrált 8. ábra Az ortorombos rendszer Bravais-cellái - 6 -
7 13. ortorombos diszfenoidos osztály, 14. ortorombos piramisos osztály, 15. ortorombos dipiramisos osztály rendelhető (9. ábra). 9. ábra Az ortorombos rendszer kristályosztályai IV. A hexagonális (hatszöges) rend szer egyszerű Bravais-cellájához (10. ábra) 16. hexagonális piramisos osztály, 17. trigonális dipiramisos osztály, 18. hexagonális dipiramisos osztály, 19. hexagonális trapezoéder osztály, 20. dihexagonális piramisos osztály, 21. ditrigonális dipiramisos osztály, 22. dihexagonális dipiramisos osztály re ndelhető (11. ábra). 10. ábra A hexagonális rendszer Bravais-cellája 11. ábra A hexagonális rendszer kristályosztályai V. A monoklin (egyhajlású) rendszer egyszerű és bázislapon centrált Bravaiscelláihoz (12. ábra) - 7 -
8 23. egyhajlású szfenoidos osztály, 24. egyhajlású dómás osztály, 25. egyhajlású prizmás osztály rendelhető (13. ábra). 12. ábra A monoklin rendszer Bravais-cellái 13. ábra A monoklin rendszer kristályosztályai egyszerű Bravais- VI. A romboéderes cellájához (14. ábra) (trigonális vagy háromszöges) rendszer 14. ábra A romboéderes rendszer Bravais-cellája 26. trigonális piramisos osztály, 27. trigonális romboéderes osztály, 28. trigonális trapezoéderes osztály, 29. ditrigonális piramisos osztály, 30. ditrigonális szkalenoéderes osztály rendelhető (15. ábra)
9 15. ábra A romboéderes rendszer kristályosztályai VII. A triklin (háromhajlású) rendszer egyszerű Bravais-cellájához (16. ábra) 31. háromhajlású pedionos osztály, 32. háromhajlású véglapos osztály rendelhető (17. ábra). 16. ábra A triklin rendszer Bravais-cellája 17. ábra A triklin rendszer kristályosztályai A hét kristályrendszer egyben önálló koordinátarendszer is, tengelykeresztjük meghatározó jelentőségű. Az egyes kristályrendszerek tengelykeresztje tartalmazza a rendszer összes lehetséges szimmetriaelemét. A rendszeren belül azt az osztályt, amely ugyanezt a maximális szimmetriát mutatja, holoéderesnek (teljes lapszámúnak) nevezzük. Ez a teljes lapszám mindig az általános helyzetű - a tengelyeket különböző arányban metsző - összetartozó lapokra vonatkozik. Ha az általános helyzetű forma fele lapot tartalmaz a holoédereshez képest, akkor a kristályosztály hemiéderes vagy más néven feles. Ennek a hemiéderes lapszámnak három lehetséges típusát ismerjük: a holoéderes osztály összes gírje megtalálható, tükörsík és inverzió nélkül: ez az enantiomorf osztály; - 9 -
10 a kristályon minden függőleges szimmetriaelem megvan, nincsenek vízszintes szimmetriaelemek: ez a hemimorf osztály; a rendszerre j ellemző fő szimmetriasík és az inverziós centrum is megtalálható: ez a paramorf osztály. Feles lapszámú osztályok előfordulnak inverziós feles formában is, amikor a rendszerre jellemző összetett szimmetriaelemek találhatók az adott kristályosztályban; ezeket a nevezéktan másodfajúnak nevezi. A legkevesebb általános lapot tartalmazó krist ályok a tetratoéderes vagy negyedes kristályosztályokba tarto znak. Ezekben az osztályokban csak a rendszerre jellemző gírek találhatók meg. A köbös (szabályos) rendszer Mint a neve is mutatja, a rendszer geometriai alapja a hexaéder (kocka). Az ilyen szubmikro-kristályráccsal rendelkező anyagok makrokristályai is szabályos testekként (poliéderekként) jelenhetnek meg (18. ábra), vagyis az elemi cella alakját követheti a makrokristály. 18. ábra Az öt szabályos poliéder Platonikus testeknek nevezik a szabályos testeket, a konvex poliédereket, melyeknek élei, élszögei és lapszögei egyenlők. Az élek és élszögek egyenlőségéből következik, hogy a szabályos test lapjai egybevágó szabályos sokszögek. Az élszögek és a lapszögek egyenlőségéből következik, hogy a szabályos test szögletei egybevágó szabályos szögletek, tehát ugyanannyi élűek. 1. Tetraéder (4 szabályos háromszöggel határolt test) A cink vagy nyelvújításból származó nevén horgany szulfidos ércásványát, a szfaleritet mutatja a 19. ábra
11 19. ábra Szfalerit kristály 2. Hexaéder (6 szabályos négyszöggel határolt test, vagyis kocka) A 20. ábrán a fluorit vagy másik elnevezéssel a folypát, míg a 21. ábrán a pirit, mint a legfontosabb szulfidos vasérc makrokristályai láthatók. 20. ábra 21. ábra Fluorit kristályok Pirit kristályok 3. Oktaéder (8 szabályos háromszöggel határolt test) Egy oktaéderes oxidos vasérc, a magnetit makrokristálya és szubmikroszkópikus rácselemekből való felépülési modellje látható a 22. ábrán. 22. ábra Magnetit kristály és az oktaéder felépülése rácselemekből 4. Ikozaéder (20 szabályos háromszöggel határolt test) Az oktaéder éleinek aranymetsző pontjait összekötve, egy ikozaédert kapunk eredményül (23. ábra). Az aranymetszés (sectio aurea) szabálya szerint egy szakaszt úgy kell két részre osztani, hogy a kisebbik résznek a nagyobbikhoz való aránya megegyezzék a nagyobbik résznek az eredeti szakaszhoz való arányával: p : q = q : (p+q) = (5 ½ -1)/2 0,
12 23. ábra Ikozaéder származtatása oktaéderből 5.( Pentagon)dodekaéder (12 szabályos ötszöggel határolt test) A dodekaéder és az ikozaéder között egy k ülönleges kapcsolat van. Ez a két test egymásnak duálisa, ami azt jelenti, hogy az egyik lapközéppontjai a másik csúcspontjait határozzák meg. Tehát az ikozaéder csúcspontjai egy dodekaéder lapközéppontjait határozzák meg, ezért a három aranytéglalap csúcsai egy dodekaéder lapközéppontjaival egyeznek meg (24. ábra bal oldalán piros, zöld és kék színekkel). Ezeknek az aranytéglalapoknak oldalélhosszai az aranymetszés szabálya szerint viszonyulnak egymáshoz. A dél-amerikai (pl. a perui) piritek esetenként dodekaéderes kristályokat mutatnak (25. ábra). 24. ábra Dodekaéder felépülése ikozaéderből és ráscelemekből 25. ábra Dodekaéderes pirit kristályok halmaza A rombdodekaéder félszabályos test, mivel lapjai nem szabályos sokszögek, hanem rombuszok. A magnetit egy másik, rombdodekaéderes módosulata látható a 26. ábrán, a rombdodekaéder felépülésével együtt
13 26. ábra Magnetit kristályok és a rombdodekaéder felépülése rácselemekből A deltoiddikozitetraéder lapjai szintén nem szabályos sokszögek, ugyanis 24 deltoid alakú lap határolja. A tetrakiszhexaéder olyan hexaédernek tekinthető, amelynek minden lapján egy négy lapból álló tető van, és e tetők lapjai egyenlőszárú háromszögek. A kristályok lehetnek még ezek kombinációi, összenövései vagy torzult változatai is. Köbös rendszerben háromféle térrács van: egyszerű köbös (sc = simple cubic), tércentrált köbös (bcc = body-centered cubic), és lapcentrált köbös (fcc = facecentered cubic). A köbös rendszer minden kristályosztályára jellemző formák a hexaéder, a rombdodekaéder és az oktaéder (27. ábra). 27. ábra A köbös rendszer minden kristályosztályára jellemző formák A köbös rendszer nem minden kristályosztályára jellemző, de gyakran előforduló formák a tetraéder, a tetrakiszhexaéder és a pentagondodekaéder (28. ábra). 28. ábra A köbös rendszer nem minden kristályosztályára jellemző formák A 29. ábrából olvashatók ki a három köbös rács jellemzői, a gyémántrács és a hexagonális rács fontosabb geometriai krisztallográfiai adataival összevethetően
14 29. ábra A legfontosabb kristályrácsok geometriai krisztallográfiai adatai A koordinációs szám egy rácspontbeli bázis legközelebbi szomszédainak száma, ami összefüggésbe hozható az anyag keménységével, részecskéi kötéserősségével. A kisebb koordinációs szám (pl. 4) rendszerint nagyobb keménységre, erősebb kötésre utal, míg a nagyobb érték (pl. 12) nagyobb alakváltozó-képességet takar. Az atom- (vagy bázis-) átmérő egy relatív érték a radio-krisztallográfiai (diffrakciós) úton meghatározható rácsparaméterhez viszonyítva, azaz nem a tényleges kiterjedése az atomnak, hanem a legközelebbi atomszomszédok távolsága. Ehhez feltételezzük, hogy a kristályrács atomjai merev gömbökként érintkeznek egymással. Az atomátmérő olyan jellemzője az anyagnak, mint a korábban már említett rácsparaméter, azaz anyagfajtára értelmezhető és utal az anyagok szubsztitúciós (atomhelyettesítéses) ötvözhetőségére is. Az elemi cellában (rácselemben) foglalt atomok (bázisok) száma függ a kristályrendszer altípusától figyelembe véve azt, hogy pl. a köbös elemi cella sarkán helyet foglaló bázis nyolcad-, az élén illeszkedő negyed-, a felületén lévő pedig felerészben vehető számításba a szomszédos cellákkal való összeépülés miatt. Ilyen módon a primitív cella 1, az alaplapon középpontos és a térben középpontos 2, a felületen középpontos 4 részecskét (bázist) tartalmaz. A térkitöltési tényező a kristályrendszerek összehasonlító jellemzője, ami a rácselemben (elemi cellában) a gömböknek feltételezett bázisrészecskék által kitöltött térfogatnak és a rácselem térfogatának a hányadosa
15 A kristályrács legnagyobb hézagainak helye és nagysága az intersztíciós (atombeékelődéses) ötvözési, vagy szennyeződési lehetőségekről tájékoztat, ugyanis a kristályban lévő gömbszerűnek feltételezett bázisok között hézagok vannak. Ezek közül a legnagyobb "gömbrészecskét" befogadni képes hézag középpontjának koordinátáit adjuk meg, ill. a hézag nagyságát a "beférő" gömb átmérőjével jellemezzük. Definiálható a jellemző irányok egységnyi hosszúságára, a kristálysíkok egységnyi felületére és a rácselem térfogategységére eső atomok száma, ill. ezek alapján az iránymenti (vonalmenti), síkbeli és térbeli bázis- vagy atomsűrűség. A legsűrűbb (legszorosabb) illeszkedésű síkok azok, amelyekben a felületegységre eső bázisok száma a legnagyobb, a szomszédokkal való illeszkedés (érintkezés) a legszorosabb. Ezek mentén valószínű a képlékeny alakváltozás, kellően nagy koordinációs szám esetén. Mivel sok azonos tulajdonságú síkról van szó, kapcsos zárójelbe foglalt Miller-indexekkel adhatók meg. A legsűrűbb (legszorosabb) illeszkedésű irányok mentén a hosszegységre jutó bázisok száma a legnagyobb, a részecskék érintkezése hézagmentes. Ezen irányok benne vannak a legsűrűbb (legszorosabb) illeszkedésű síkokban. Megadásuk az összesítő csúcsos zárójelekbe foglalt Miller-indexekkel történhet. A 30. ábrán a tércentrált köbös rács elemi cellája látható, a 31. ábrán pedig a lapcentrált köbös rács elemi rácsvektorai. Az elemi cellák egyetlen bázist tartalmaznak, míg a köbös Bravais-cellákban két (tércentrált köbösnél), ill. négy (lapcentrált köbösnél) bázis van. A bázisok a kristályrácsot alkotó részecskék (atomok, ionok, molekulák) közös (általános) elnevezése. A cellabeli rácspontok helyzete az x, y, z koordinátákkal kifejezve, az egyes tengelyek menti koordináták az a, b és c vektorhosszak tört részei és a kezdőpont a cella egyik csúcsa. Így a cella középpontjának koordinátái: ½, ½, ½, a lapok középpontjaié pedig ½, ½, 0; 0, ½, ½; ½, 0, ½. A lapcentrált köbös és a tércentrált köbös rácsok bázisainak koordinátáit általában a Bravais-cellára vonatkoztatva adják meg. 30. ábra 31. ábra A tércentrált köbös A lapcentrált köbös rács romboéderes rács elemi cellája elemi cellája az elemi rácsvektorokkal A szabályos kristályrendszer képzeletbeli tengelykeresztje 3 egyenértékű, egymásra merőleges tengely, melyek egymással felcserélhetők. Az ilyen tengelykereszttel
16 jellemezhető kristályrendszer elnevezése is szabályos. A szabályos rendszerű kristályokon nem ritkán csak a legegyszerűbb formák (pl. kocka, oktaéder, rombdodekaéder) ismerhetők fel anélkül, hogy a kristályosztályra utaló, általános helyzetű formát találnánk. A szabályos rendszer legjellemzőbb szimmetriaeleme a 4 trigír, amely a kocka testátlóinak irányában keresendő. Osztályai a következők: 1. A kristálytani tengelyirányokban 3 digír, a kockatestátlók irányában 4 trigír vagy inverziós trigiroid jellemzi a szabályos rendszer negyedes kristályosztályát. Itt kristályosodik a kobaltin és a gersdorfit. 2. A paramorf osztályban a tengelyirányokban 3 digírt, a testátlók mentén 4 inverziós trigiroidot, továbbá 3 tükörsíkot és inverziós centrumot találunk. Itt kristályosodik a pirit és a timsók egy része. 3. A szabályos rendszer enantiomorf osztályában megfigyelhető a tengelykereszt összes gírje (4 trigír, 3 tetragír és 6 digír), egyéb szimmetriája nincs. 4. A szabályos hemimorf osztály jellemzője a 4 trigír, 3 inverziós tetragiroid, továbbá 6 szimmetriasík. A fontosabb ásványok közül itt kristályosodik a szfalerit és a tetraedrit. 5. A holoéderes osztály szimmetriáját egy kockán is összeszámlálhatjuk: 4 inverziós trigiroid (a testátló irányokban), 3 tetragír (a kocka lapközepein, a kristálytani tengelyirányokban), 6 digír (a kocka élközepein), 3 fő- és 6 melléktükörsík, továbbá az inverziós centrum. Itt kristályosodnak a termésarany, a gyémánt, a galenit, a kősó és a gránát-csoport ásványai. Térben középpontos köbös rács Térben középponto s köbös (t. k. k.) kristályrácsú fémek: Li, Na, K, Ba, β-ti (1155 K = 882 C < T < 1940 K = 1667 C), V, Nb, Ta, Cr, Mo, W, α-fe (T < 1184K = 911 C) és δ-fe (1665 K = 1392 C< T < 1811 K = 1538 C) stb. Egy példát a 32. ábra mutat be. 32. ábra Makrokristályok nélküli földi termésvas Közös tulajdonságuk, hogy igen nagy az affinitásuk az oxigénhez. Bravais cellájuk olyan kocka, melynek nemcsak a sarkain, hanem a testátló közepén is van egy atom (33. ábra). Ez az ábra és a további ilyen virtuális fotók az általunk készített számítógépes modellekből származnak
17 33. ábra Térközepes köbös cella Az atomok a testátlón érintik egymást. Ebből következik, hogy az atomátmérő a testátló felével egyenlő, azaz d = 3 ½ a/2, ahol a a cella élhossza. Egy cellában két atom van, mert a kocka közepén elhelyezkedő atom csak az adott cellához tartozik, míg a csúcsain lévők további 7 cellához. Egy atom térfogata V a = d 3 π/6 = 0,34a 3. A két atom ennek kétszeresét, a cella térfogatának 68 %-át tölti ki. Ebben a rácsban az atomokkal be nem töltött térfogat több helyen oszlik el (34. ábra), ezért ezek a hézagok jóval kisebbek, mint pl. az egyszerű köbös rácsban. 34. ábra 35. ábra Térközepes rács Torzult lapközepes rács a térközepes rácsban A legnagyobb rácshézag az ½, ¼, 0 típusú helyeken van. Ezeknek legkisebb mérete 0,252a. Ennél kisebb üreg az ½, 0, 0, valamint az ½, ½, 0 helyeken található, amelyeknek a mérete 0,134a. A rács legtöbb atomot tartalmazó síkja a rombdodekaéder {110} sík, a legsűrűbb illeszkedési irány pedig a testátló <111>. A köbös rendszer hat síkja {110} egymással szabályos rombdodekaédert képez, innen
18 az elnevezés. (A köbös rendszer szabályos elnevezése abból adódik, hogy a makrokristályok szabályos testek, másrészt a Bravais cella is szabályos test). A négy testátló mentén két-két legközelebbi szomszéd van, így 8 a koordinációs szám. A 35. ábra a térközepes rácsban található torzult lapközepes rácsot mutatja. Felületen középpontos köbös rács Felületen középpontos köbös (f. k. k) rácsú fémek: Ca, Cu, Au (36. ábra), Ag, Al, Th, Pb, γ-fe (1183 K = 910 C < T < 1665 K = 1392 C), Ni, Rh, Pd, Ir, Pt, Th stb. 36. ábra T ermésréz és termésarany Bravais cellájukban a sarokpontokon kívül minden kockalap középpontjában is van egy-egy atom (37. ábra). Mivel így a felületen levő atomok két cellához tartoznak, egy cellán belül négy atom van. Az atomok a lapátlón érintik egymást, ezért az atomátmérő a lapátló felével egyenlő d = 2 ½ a/2. Egy atom térfogata V a = d 3 π/6 = 0,185a 3 : Ennek négyszerese adja az atomokkal betöltött térfogat nagyságát, ami 0,74a ábra Lapközepes köbös cella Ebben a szerkezetben tehát az atomok az összes tér 74 %-át töltik ki. Ha az atomokat merev gömböknek tekintjük, akkor ez az a térrész, amit az atomok maximálisan kitölthetne k. Ezért nevezik ezt a rácsot a legszorosabb illeszkedésű rácsnak (38. ábra). Minden atomnak tizenkettő legközelebbi szomszédja van, így a koordinációs szám 12. A legtöbb atom az ún. oktaédersíkokon {111} illeszkedik, ezeken pedig a l egszorosabb illeszkedésű irányok az < 110> lapátlók. A legnagyobb rácshézagot az ½, 0, 0 ill. az ½, ½, ½ helyeken találjuk. Ezeknek nagysága 0,293a. Érdekes összevetni ezt az eredményt a térben középpontos szerkezetre
19 megállapított értékkel. Annak ellenére, hogy ez a rács nagyobb térkitöltésű, mint a térben középpontos köbös rács, az elemi celláiban nagyobb az atomok közötti rácshézag. Itt néhány helyre korlátozódik csupán, ott viszont jóval több helyen oszlik meg a rácshézag. 38. ábra 39. ábra Lapközepes rács Torzult hexagonális cella a lapközepes rácsban A {111} síkokban - az ún. oktaédersíkokban - az atomok a legszorosabb illeszkedésben rendeződnek, ami azt jelenti, hogy egy atomnak egy ilyen síkban hat legközelebbi szomszédja van, és mind a hatot érinti. Ezen felül még három atomot érint a szóban forgó sík felett és ugyanannyit az alatt. A felületen középpontos köbös fémeket tehát úgy is elképzelhetjük, hogy ezek ilyen legsűrűbb illeszkedésű síkok rétegeiből állnak. Előfordulhat a felületen középpontos köbös és a hexagonális kristályrács esetében (39. ábra), hogy a jellegzetes atomrétegek (rácssíkok) nem szabályos sorrendben követik egymást (felületen középpontosban ABCABC helyett pl. ABABCA, hexagonálisban ABABAB helyett pl. ABCABA), amit kristálytani rétegződési hibának neveznek. Az acélokban edzéskor - a kritikus hűtési sebesség felett - az allotróp átalakulás dominál a diffúzióval szemben. A karbonnak nincs ideje kiválni a lapközepes köbös rácsból cementit ill. más karbid formájában, ezért a fémionok közé szoruló C atomok elakasztják az allotróp átal akulást is. (A karbon a 6-os rendszámú szén ötvözőként való jelenlétére utaló elnevezés, megkülönböztetésül pl. a szilárd tüzelőanyag nevétől.) Így egy metastabil lapcentrált köbös rács jön létre, benne egy túltelített, tetragonálissá torzult térközepes köbös ráccsal (40. ábra). Az egész struktúra - a keletkező martenzit tűk nyomásának hatására - feszített állapotban van. Mivel a kiinduló ausztenit maximális C-tartalma 2,14% lehet, ezért a modellel ellentétben csak kb. negyed C atom jut egy cellára
20 Gyémánt rács 40. ábra Martenzites átalakulást szemléltető, tetragonálissá torzult térközepes köbös cella a lapközepes köbös rácsban. A tetraéderes kötésszerkezetű (41. ábra) gyémánt (42. ábra) térrácsa olyan lapcentrált köbös (43. ábra), amelyben minden atomnak négy közvetlen és 12 közeli szomszédja van. Az egységkockában nyolc atom foglal helyet. A gyémántrács viszonylag üres, a merev gömbök a térnek legfeljebb 34 %-át töltik ki, ez a legszorosabb illeszkedés kitöltési arányának 46%-a. Gyémántszerkezetű (44. ábra) a szén, a szilícium, a germánium és a szürke ón (α-ón) kristálya, rácsállandójuk rendre 3,56, 5,43, 5,65 és 6,46 Å. A gyémántrács az irányított kovalens kötés velejárója. 41. ábra 42. ábra Gyémánt tetraéderes kötésszerkezete Gyémánt kristály 43. ábra 44. ábra Gyémántrács Gyémánt cella
21 Szfalerit rács A gyémántszerkezetet tekinthetjük két, egymáshoz képest negyed testátlónyival eltolt lapcentrált köbös szerkezet együttesének, eredőjének is. A köbös cinkszulfid (cinkblende) szerkezetét ebből úgy kapjuk, hogy az egyik lapcentrált köbös rácsba cink-, a másikba kénatomokat helyezünk, ahogyan azt a 45. ábra mutatja. 45. ábra Köbös cinkszulfid tetraéderes szerkezete A kocka geometriájú Bravais-cellában a Zn-atomok koordinátái: 0,0,0; 0,½,½; ½,0,½; ½,½,0, a S-atomoké pedig: ¼,¼,¼; ¼,¾,¾; ¾,¼,¾; ¾,¾,¼, így a cellákban négynégy Zn-S pár helyezkedik el. Minden atomot négy ellentett fajtájú atom vesz körül azonos távolságban, szabályos tetraédert alkotva. A gyémántszerkezetben a közvetlenül szomszédos atomokat összekötő szakasz felezőpontjában inverziós szimmetria-középpontok vannak, de a cinkszulfid szerkezetnek nincs inverziós szimmetriája. Az inverzió az r pontot -r-be viszi. A tetraéder nem vihető önmagába a középpontja körüli inverzióval. Ha megfigyeljük az atomok elrendeződését a testátló mentén, a gyémántban CC CC CC a sorrend (a pontok üres helyeket jelölnek), a cinkszulfidban pedig ZnS ZnS ZnS, ami pedig inverzióval a SZn SZn SZn sorrendbe megy át, tehát nem invariáns. Néhány köbös cinkszulfid szerkezetben kristályosodó anyag Ångström-ben megadott rácsparaméterei: Halit rács anyag a [Å] anyag a [Å] CuF 4,26 CdS 5,82 CuCl 5,41 InAs 6,04 AgI 6,47 InSb 6,46 ZnS 5,41 SiC 4,35 ZnSe 5,65 AIP 5,42 Az NaCl cella a 46. ábrán, a rács a 47. ábrán látható. A Bravais-rács lapcentrált köbös, egyetlen Na- és egyetlen Cl-atomot tartalmaz, a két atom közötti távolság egyenlő az egységkocka fél testátlójának hosszával. Minden egységkockában négy Na-Cl páros van, atomjaik koordinátái: Cl: 0,0,0; ½,½,0; ½,0,½; 0,½,½; Na: ½,½,½; 0,0,½; 0,½,0; ½,0,
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 7 KRISTÁLYTAN VII. A KRIsTÁLYOK szimmetriája 1. BEVEZETÉs Az elemi cella és ebből eredően a térrácsnak a szimmetriáját a kristályok esetében az atomok, ionok
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 6 KRISTÁLYTAN VI. A KRIsTÁLYOs ANYAG belső RENDEZETTsÉGE 1. A KRIsTÁLYOs ÁLLAPOT A szilárd ANYAG jellemzője Az ásványok néhány kivételtől eltekintve kristályos
2. előadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia)
2. előadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belső rendezettsége (kristályszerkezet) 2. A kristályok külső alakja (kristálymorfológia) KRISTÁLY FOGALOM A MÚLTBAN Ókorban: jég (= krüsztallosz), a színtelen
American Society of Materials. Szilárdtestek. Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű)
Szilárdtestek Fullerének (C atomok, sokszögek) zárt gömb, tojás cső (egy és többrétegű) csavart alakzatok (spirál, tórusz, stb.) egyatomos vastagságú sík, grafén (0001) Amorf (atomok geometriai rend nélkül)
KRISTÁLYOK GEOMETRIAI LEÍRÁSA
KRISTÁLYOK GEOMETRIAI LEÍRÁSA Kristály Bázis Pontrács Ideális Kristály: hosszútávúan rendezett hibamentes, végtelen szilárd test Kristály Bázis: a kristály legkisebb, ismétlœdœ atomcsoportja Rácspont:
41. ábra A NaCl rács elemi cellája
41. ábra A NaCl rács elemi cellája Mindkét rácsra jellemző, hogy egy tetszés szerint kiválasztott pozitív vagy negatív töltésű iont ellentétes töltésű ionok vesznek körül. Különbség a közvetlen szomszédok
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 8 KRISTÁLYTAN VIII. A KRIsTÁLYOK külső FORMÁJA (KRIsTÁLYMORFOLÓGIA) 1. KRIsTÁLYFORMÁK A kristályforma a kristálylapok azon csoportját jelenti, melyeket a szimmetria
Bevezetés az anyagtudományba III. előadás
Bevezetés az anyagtudományba III. előadás 2010. február 18. Kristályos és s nem-krist kristályos anyagok A kristályos anyag atomjainak elrendeződése sok atomnyi távolságig, a tér mindhárom irányában periodikusan
Ásvány- és kzettan. Bidló András NYME Termhelyismerettani Tanszék
Ásvány- és kzettan Bidló András NYME Termhelyismerettani Tanszék Témakörök Történeti áttekintés Kristálytan Ásványtan Kzettan Magyarország ásványai, kzetei Kristály fogalma Kristály fogalma: Sík lapokkal
2. elıadás A KRISTÁLYTAN ALAPJAI
2. elıadás A KRISTÁLYTAN ALAPJAI TÉRRÁCS ÉS ELEMI CELLA Az elemi cella a térrács azon legkisebb része, amely még rendelkezik a teljes rácsszerkezet tulajdonságaival. Az elemi cellát a rácsállandó jellemzi:
2. elıadás A KRISTÁLYTAN ALAPJAI. 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia)
2. elıadás A KRISTÁLYTAN ALAPJAI 1. A kristályok belsı rendezettsége (kristályszerkezet) 2. A kristályok külsı alakja (kristálymorfológia) RENDEZETTSÉG A KRISTÁLYOKBAN (ÉS A MŐVÉSZETEKBEN) Egydimenziós
Kondenzált anyagok csoportosítása
Szilárdtestfizika Kondenzált anyagok csoportosítása 1. Üvegek Nagy viszkozitású olvadék állapotú anyagok, amelyek nagyon lassan szilárd állapotba mennek át. Folyékony állapotból gyors hűtéssel állíthatók
Ásványtani alapismeretek
Ásványtani és s kőzettani k alapismeretek Előadók: Dr Molnár Ferenc, egyetemi docens, Ásványtani Tanszék Dr Ditrói Puskás Zuárd, egyetemi docens, Kőzettan-Geokémiai Tanszék Gyakorlatvezetők: Dr Molnár
Elemi cellák. Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik.
Kristály: atomok olyan rendeződése, amelyben a mintázat a tér három irányában periódikusan ismétlődik. Elemi cellák amorf vs. mikrokristályos, kristályos anyagok rácspontok lineáris rács síkrács térács
Almandin. Pirit Magnetit. Hexakiszoktaéder
Ásványtani alapismeretek 2. előadás Jellemző kristályformák a monoklin és rombos kristályosztályokban A monoklin rendszer szimmetria ele- mei a maximális szimmetria esetén 1 digír 1 tükörsík 1 inverzíós
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.
Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak
Vázlatos tartalom. Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok
Szilárdtestfizika Kondenzált Anyagok Fizikája Vázlatos tartalom Szerkezet jellemzése és vizsgálata Szilárdtestek elektronszerkezete Rácsdinamika Transzportjelenségek Mágneses tulajdonságok 2 Szerkezet
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 9 KRISTÁLYTAN IX. A KRIsTÁLYOK CsOPORTOsÍTÁsA A szimmetriaelemek ALAPJÁN 1. A HÉT KRIsTÁLYRENDsZER Mint az előzőekben már láthattuk, a hét primitív elemi cella
Kristályos szerkezetű anyagok. Kristálytan alapjai. Bravais- rácsok 1. Bravais- rácsok 2. Dr. Mészáros István Anyagtudomány tárgy előadásvázlat 2004.
Kristályos szerkezetű nygok BME, Anygtudomány és Technológi Tnszék Rácspontok, ideális rend, periodikus szerkezet Rendezettség z tomok között tuljdonságok Szimmetri, síklpok, hsdás, nizotrópi Dr. Mészáros
11. előadás. Konvex poliéderek
11. előadás Konvex poliéderek Konvex poliéder 1. definíció: Konvex poliédernek nevezzük a térben véges sok, nem egysíkú pont konvex burkát. 2. definíció: Konvex poliédernek nevezzük azokat a térbeli korlátos
Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)
1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek
16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési
Geometria 1 összefoglalás o konvex szögek
Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.
Lehet hogy igaz, de nem biztos. Biztosan igaz. Lehetetlen. A paralelogrammának van szimmetria-középpontja. b) A trapéznak két szimmetriatengelye van.
Geometria, sokszögek, szögek, -, 2004_01/5 Lili rajzolt néhány síkidomot: egy háromszöget, egy deltoidot, egy paralelogrammát és egy trapézt. A következő állítások ezekre vonatkoznak. Tegyél * jelet a
3. elıadás KRISTÁLYTANI ALAPOK
3. elıadás KRISTÁLYTANI ALAPOK KRISTÁLYFORMA A kristályforma a kristálylapok azon csoportját jelenti, melyeket a szimmetria megkövetel. Minden egyes kristályforma független! Tehát a kristálylapok száma,
Kristályos szilárd anyagok
Általános és szervetlen kémia 4. hét Elızı héten elsajátítottuk, hogy a kovalens kötés hogyan jön létre, milyen elméletekkel lehet leírni milyen a molekulák alakja melyek a másodlagos kötések Mai témakörök
Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat Fémtan, anyagvizsgálat Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok II.
Vektorok II. DEFINÍCIÓ: (Vektorok hajlásszöge) Két vektor hajlásszögének azt a φ (0 φ 180 ) szöget nevezzük, amelyet a vektorok egy közös pontból felmért reprezentánsai által meghatározott félegyenesek
Anyagszerkezet és vizsgálat
SZÉCHENYI ISTVÁN EGYETEM Anyagtudományi és Technológiai Tanszék Anyagszerkezet és vizsgálat NGB_AJ021_1 Dr. Hargitai Hajnalka hargitai@sze.hu www.sze.hu/~hargitai B 403. (L316) (Csizmazia Ferencné dr.
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!
5. elıadás KRISTÁLYKÉMIAI ALAPOK
5. elıadás KRISTÁLYKÉMIAI ALAPOK KRISTÁLYKÉMIAI ALAPFOGALMAK Atomok: az anyag legkisebb olyan részei, amelyek még hordozzák a kémiai elem jellegzetességeit. Részei: atommag (mely protonokból és neutronokból
Koordináta-geometria feladatok (emelt szint)
Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik
Egyenes mert nincs se kezdő se végpontja
Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY SÍKIDOMOK Síkidom 1 síkidom az a térelem, amelynek valamennyi pontja ugyan abban a síkban helyezkedik el. A síkidomokat
Geometria 1 normál szint
Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1 Írásban, 90 perc. 2 Személyazonosságot igazoló okmány nélkül
Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kri
Ásványtani alapismeretek 3. előadás Polimorfia Egy bizonyos szilárd anyag a külső körülmények függvényében különböző belső szerkezettel rendelkezhet. A grafit kristályrácsa A gyémánt kristályrácsa Polimorf
VEKTOROK. 1. B Legyen a( 3; 2; 4), b( 2; 1; 2), c(3; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(30; 10; 30)]
Bodó Beáta 1 VEKTOROK 1. B Legyen a( ; 2; 4), b( 2; 1; 2), c(; 4; 5), d(8; 5; 7). (a) 2a 4c + 6d [(0; 10; 0)] (b) c + b 7a [(18; 15; 29)] (c) 2d c + b [ (5; ; ) = 6, 56] (d) 4a + 8b 7c [ ( 49; 44; 5) =
1. Mi a drágakő? a. ásványváltozat b. biogén eredetű anyag c. mindkettő lehet. 13. Mit értünk a kristályok külső szimmetriáján?
1. Mi a drágakő? a. ásványváltozat b. biogén eredetű anyag lehet 2. Mit nevezünk ércnek? a. ásvány, amiből fémet nyerhetünk ki b. kőzet, amiből fémet nyerhetünk ki c. kőzet, amiből gazdaságosan fémet nyerhetünk
Reális kristályok, rácshibák. Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC
Reális kristályok, rácshibák Anyagtudomány gyakorlat 2006/2007 I.félév Gépész BSC Valódi, reális kristályok Reális rács rendezetlenségeket, rácshibákat tartalmaz Az anyagok tulajdonságainak bizonyos csoportja
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Határozd meg a szakasz hosszát, ha a végpontok koordinátái: A ( 1; ) és B (5; )! A szakasz hosszához számítsuk ki a két pont távolságát: d AB = AB = (5 ( 1)) + ( ) = 6 + 1 = 7 6,08.. Határozd
9. Írjuk fel annak a síknak az egyenletét, amely átmegy az M 0(1, 2, 3) ponton és. egyenessel;
Síkok és egyenesek FELADATLAP Írjuk fel annak az egyenesnek az egyenletét, amely átmegy az M 0(,, ) ponton és a) az M(,, 0) ponton; b) párhuzamos a d(,, 5) vektorral; c) merőleges a x y + z 0 = 0 síkra;
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
2. ELŐADÁS. Transzformációk Egyszerű alakzatok
2. ELŐADÁS Transzformációk Egyszerű alakzatok Eltolás A tér bármely P és P pontpárjához pontosan egy olyan eltolás létezik, amely P-t P -be viszi. Bármely eltolás tetszőleges egyenest vele párhuzamos egyenesbe
Koordináta - geometria I.
Koordináta - geometria I A koordináta geometria témaköre geometriai problémákat old meg algebrai módszerekkel úgy, hogy a geometriai fogalmaknak algebrai fogalmakat feleltet meg: a pontokat, vektorokat
Programozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:
005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen
A fémek egyensúlyi viselkedése. A fémek kristályos szerkezete
A fémek egyensúlyi viselkedése A fémek kristályos szerkezete Kristályos szerkezet A kristályos szerkezetben az atomok szabályos geometriai rendben helyezkednek el. Azt a legkisebb - több atomból álló -
Fizikai kémia Diffrakciós módszerek. Bevezetés. Történeti áttekintés
06.08.. Fizikai kémia. 6. Diffrakciós módszerek Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Bevezetés A kémiai szerkezet vizsgálatához használatos módszerek közül eddig a különöző
Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.
1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor
Egybevágósági transzformációk. A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá.
Egybevágósági transzformációk A geometriai transzformációk olyan függvények, amelyek ponthoz pontot rendelnek hozzá. Egybevágósági transzformációk azok a geometriai transzformációk, amelyeknél bármely
Háromszögek, négyszögek, sokszögek 9. évfolyam
Háromszögek, négyszögek, sokszögek 9. évfolyam I. Pontok, egyenesek, síkok és ezek kölcsönös helyzetet 1) a pont, az egyenes, a sík és az illeszkedés alapfogalmak 2) két egyenes metsző, ha van közös pontjuk
Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)
Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő
1.2. A szilárd testek szerkezete
1.2. A szilárd testek szerkezete A szilárd halmazállapothoz általában az alkotók (elem, ion, molekula) meghatározott geometriai rendje tartozik (kristályrács-típus, rácstávolság, kötési szögek). A rácselemek
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek
Anyagtudomány: hagyományos szerkezeti anyagok és polimerek Alapfogalmak Fizikai Kémia és Anyagtudományi Tanszék BME Műanyag- és Gumiipari Laboratórium H ép. I. emelet Vázlat Kötések Ionos, kovalens és
2013.11.24. Villamosmérnök MSc, Anyagtudomány. CaF 2 (fluorit rács) kicsit torzul: pl H 2 O (két nemkötő pár, 105 ), NH 3 (egy nemkötő pár, 107 ).
Ionos kötés ionrács Anyagszerkezet Tulajdonságok: Erős, elsőrendű, magas olvadáspont Részben irányított kötés, rideg anyagok Koordinációt, térkitöltést a kation/anion méretarány és az ionok töltésaránya
Tematika. Az atomok elrendeződése Kristályok, rácshibák
Anyagtudomány 2013/14 Kristályok, rácshibák Dr. Szabó Péter János szpj@eik.bme.hu Tematika 1. hét: Bevezetés. 2. hét: Kristályok, rácshibák. 3. hét: Ötvözetek. 4. hét: Mágneses és elektromos anyagok. 5.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Tekintsük az alábbi szabályos hatszögben a következő vektorokat: a = AB és b = AF. Add meg az FO, DC, AO, AC, BE, FB, CE, DF vektorok koordinátáit az (a ; b ) koordinátarendszerben! Alkalmazzuk
Ásvány- és kőzettan. Kristálytan Ásványtan Kőzettan Magyarország ásványai, kőzetei Történeti áttekintés. Bidló A.: Ásvány- és kőzettan
Ásvány- és kőzettan Kristálytan Ásványtan Kőzettan Magyarország ásványai, kőzetei Történeti áttekintés Ásványok Ásványok fogalma Az ásvány a földkéreg szilárd, homogén, természetes eredetű része kb. 4000
Kondenzált anyagok fizikája 1. zárthelyi dolgozat
Név: Neptun-kód: Kondenzált anyagok fizikája 1. zárthelyi dolgozat 2015. november 5. 16 00 18 00 Fontosabb tudnivalók Ne felejtse el beírni a nevét és a Neptun-kódját a fenti üres mezőkbe. Minden feladat
Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk
Ásványtani alapismeretek 4. előadás Az ásványok rendszerezése Az ásványok osztályokba sorolásának alapelvei: - Összetétel - Kristályszerkezet - Előfordulás Összesen 9 osztályba soroljuk az ásványokat,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI
SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 30 Műszeres ÁSVÁNYHATÁROZÁS XXX. Műszeres ÁsVÁNYHATÁROZÁs 1. BEVEZETÉs Az ásványok természetes úton, a kémiai elemek kombinálódásával keletkezett (és ma is keletkező),
GEOMETRIA 1, alapszint
GEOMETRIA 1, alapszint Kiss György 4-723 Fogadóóra: péntek 8. 15-10. 00 email: kissgy@cs.elte.hu Előadás: 11. 15-13. 45, közben egyszer 15 perc szünet GEOMETRIA 1, alapszint Ajánlott irodalom: Hajós Gy.:
Koordináta-geometria feladatok (középszint)
Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy
ÁSVÁNY-KŐZETTAN Előadás
ÁSVÁNY-KŐZETTAN Előadás Földrajz BSc I. évfolyam Dr. Benkó Zsolt benko.zsolt@ttk.nyme.hu Geológia Geográfia Ásványtan Kőzettan Őslénytan Szerkezetföldtan Szedimentológia Nyersanyagkutatás stb. Általános
λ 1 u 1 + λ 2 v 1 + λ 3 w 1 = 0 λ 1 u 2 + λ 2 v 2 + λ 3 w 2 = 0 λ 1 u 3 + λ 2 v 3 + λ 3 w 3 = 0
Vektorok a térben Egy (v 1,v 2,v 3 ) valós számokból álló hármast vektornak nevezzünk a térben (R 3 -ban). Használni fogjuk a v = (v 1,v 2,v 3 ) jelölést. A v 1,v 2,v 3 -at a v vektor komponenseinek nevezzük.
Összeállította: dr. Leitold Adrien egyetemi docens
Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 5 cm 3 cm. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egyszerű, hasonlósággal kapcsolatos feladatok 1. Határozd meg az x, y és z szakaszok hosszát! y cm cm z x 2, cm 2. Határozd meg az x, y, z és u szakaszok hosszát! x
Kristályos szerkezetű anyagok
Kristályos szerkezetű anyagok Rácspontok, ideális rend, periodikus szerkezet Rendezettség az atomok között tulajdonságok Szimmetria, síklapok, hasadás, anizotrópia Egyatomos gáz Nincs rend, pl.: Ar Kristályos
Az elektronpályák feltöltődési sorrendje
3. előadás 12-09-17 2 12-09-17 Az elektronpályák feltöltődési sorrendje 3 Az elemek rendszerezése, a periódusos rendszer Elsőként Dimitrij Ivanovics Mengyelejev és Lothar Meyer vette észre az elemek halmazában
Elektrokémiai fémleválasztás. Kristálytani alapok A kristályos állapot szerepe a fémleválásban
Elektrokémiai fémleválasztás Kristálytani alapok A kristályos állapot szerepe a fémleválásban Péter László Elektrokémiai fémleválasztás Kristálytani alapok - 1 Kristályok Kristály: olyan szilárd test,
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS
Kémiai kötések és kristályrácsok ISMÉTLÉS, GYAKORLÁS Milyen képlet adódik a következő atomok kapcsolódásából? Fe - Fe H - O P - H O - O Na O Al - O Ca - S Cl - Cl C - O Ne N - N C - H Li - Br Pb - Pb N
Érettségi feladatok: Síkgeometria 1/6
Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
Helyvektorok, műveletek, vektorok a koordináta-rendszerben
Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK
5. előadás AZ ÁSVÁNYOK RENDSZEREZÉSE TERMÉSELEMEK, SZULFIDOK, HALOGENIDEK AZ ÁSVÁNYOK RENDSZEREZÉSE A mai ásványrendszerezés alapja a kristálykémia. A rendszer vázát az egyszerű és összetett anionok által
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Koordináta geometria III.
Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
Egybevágóság szerkesztések
Egybevágóság szerkesztések 1. Adott az ABCD trapéz, alapjai AB és CD. Szerkesszük meg a vele tengelyesen szimmetrikus trapézt, ha az A csúcs tükörképe a BC oldal középpontja. Nyilvánvaló, hogy a tengelyes
Fogorvosi anyagtan fizikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek
Fémek törékeny/képlékeny nemesémek magas/alacsony o.p. Fogorvosi anyagtan izikai alapjai 5. Általános anyagszerkezeti ismeretek Fémek, ötvözetek ρ < 5 g cm 3 könnyűémek 5 g cm3 < ρ nehézémek 2 Fémek tulajdonságai
Középpontos hasonlóság szerkesztések
Középpontos hasonlóság szerkesztések 1. Adott az AV B konvex szög és a belsejében egy P pont. Húzzunk a P ponton át egy egyenest úgy, hogy a szög száraiból kimetszett szeletek aránya 3 : 4 legyen. Legyen
A tér lineáris leképezései síkra
A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása
Vektorok összeadása, kivonása, szorzás számmal, koordináták
Vektorok összeadása, kivonása, szorzás számmal, koordináták 1. Mik lesznek a P (3, 4, 8) pont C (3, 7, 2) pontra vonatkozó tükörképének a koordinátái? 2. Egy szabályos hatszög középpontja K (4, 1, 4),
Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
Bevezetés s az anyagtudományba. nyba. Geretovszky Zsolt május 13. XIV. előadás. Adja meg a következő ionok elektronkonfigurációját! N e P.
Bevezetés s az anyagtudományba nyba XIV. előadás Geretovszky Zsolt. május. Adja meg a következő ionok elektronkonfigurációját! = N 5 = 5 5= = N+ = 5+ = = N 4 = 5 4= 46 = N+ = 4+ = 6 = N+ = 5+ = 54 = N
3. előadás. Elemi geometria Terület, térfogat
3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt
5 1 6 (2x3 + 4) 7. 4 ( ctg(4x + 2)) + c = 3 4 ctg(4x + 2) + c ] 12 (2x6 + 9) 20 ln(5x4 + 17) + c ch(8x) 20 ln 5x c = 11
Bodó Beáta ISMÉTLÉS. ch(6 d.. 4.. 6. 7. 8. 9..... 4.. e (8 d ch (9 + 7 d ( + 4 6 d 7 8 + d sin (4 + d cos sin d 7 ( 6 + 9 4 d INTEGRÁLSZÁMÍTÁS 7 6 sh(6 + c 8 e(8 + c 9 th(9 + 7 + c 6 ( + 4 7 + c = 7 4
Analitikus térgeometria
5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T
Zárthelyi dolgozat I. /A.
Zárthelyi dolgozat I. /A. 1. Az FCC rács és reciprokrácsa (és tudjuk, hogy: V W.S. * V B.z. /() 3 = 1 / mindig!/) a 1 = ½ a (0,1,1) ; a = ½ a (1,0,1) ; a 3 = ½ a (1,1,0) b 1 = (/a) (-1,1,1); b = (/a) (1,-1,1);
NULLADIK MATEMATIKA ZÁRTHELYI
NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.
Az atomok elrendeződése
Anyagtudomány 2015/16 Kristályok, rácshibák, ötvözetek, termikus viselkedés (ismétlés) Dr. Szabó Péter János szpj@eik.bme.hu Az atomok elrendeződése Hosszú távú rend (kristályok) Az atomok elhelyezkedését
Skaláris szorzat: a b cos, ahol α a két vektor által bezárt szög.
1 Összeadás: Legyen a (7; 3) és b (- 2; 4), akkor az összegük a + b (7 + (-2); 3 + 4) = (5; 7) Kivonás: Legyen a (7; 3) és b (- 2; 4), akkor a különbségük a b (7 - (-2); 3-4)=(9; - 1) Valós számmal való
Villamosmérnök MSc, Anyagtudomány
Anyagszerkezet Villamosmérnök MSc, Anyagtudomány Vázlat Kötéstípusok, rácstípusok (emlékeztető) Molekulaszerkezet, koordináció Kristályszerkezet leírása Elemi cellák Kristálysíkok, Miller-indexindex Kristályhibák
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
Anyagtudomány. Kristálytani alapismeretek
Anyagtudomány Kristálytani alapismeretek 1 Szilárd szerkezeti formák szilárd anyagok megjelenési formái: amorf: nincs szabályos kristályszerkezet, megszilárdult folyadékok polikristályos anyagok: szabályos
Koordinátageometria. M veletek vektorokkal grakusan. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Koordinátageometria M veletek vektorokkal grakusan 1. Az ABCD négyzet oldalvektorai közül a = AB és b = BC. Adja meg az AC és BD vektorokat a
Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol
Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések
A GEOMETRIA TÉMAKÖR FELOSZTÁSA. Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria
GEOMETRIA A GEOMETRIA TÉMAKÖR FELOSZTÁSA Síkgeometria Térgeometria Geometriai mérések Geometriai transzformációk Trigonometria Koordináta-geometria A SÍKGEOMETRIA TANÍTÁSA 5-10. OSZTÁLY Síkgeometriai fogalmak
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Vektorok I.
Vektorok I. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított (kezdő és végponttal rendelkező) szakaszoknak a halmazát vektornak nevezzük. Jele: v ; v; AB (ahol A a vektor kezdőpontja,