Szélsőérték problémák elemi megoldása I. rész Izoperimetrikus problémák Tuzson Zoltán, Székelyudvarhely
|
|
- Áron Gulyás
- 9 évvel ezelőtt
- Látták:
Átírás
1 Szélsőérték problémák elemi megoldás I. rész Izoperimetrikus problémák uzson Zoltán, Székelyudvrhely Ebben dolgoztbn szélsőértékek számolásávl fogllkozunk, de csupán csk elemi módszereket hsználunk. Ez zt jelenti, hogy teljesen mellőzzük mtemtiki nlízis eszközeit. Ez egyes feldtok esetén nem is hsználhtó, más esetben inkább z elemi módszerek szépségeire, sokszínűségére és változtosságár fektetjük hngsúlyt. A szélsőérték foglm gyűjtő foglom, legngyobb (mximum) és legkisebb (minimum) értékek közös megnevezésére hsználják. Ezek értelmezése következő:. Értelmezés: Az f : D R R függvénynek M = f ( ) globális mximum (egyszerűen mximum), h f ( x) M minden x Desetén.. Értelmezés: Az f : D R R függvénynek m = f (b) globális minimum (egyszerűen minimum), h f ( x) m minden x Desetén. Amennyiben z egyenlőtlenségek D hlmznk csk egy részhlmzán teljesülnek, szélsőértékek csk lokáli vgy helyi szélsőértékek. Egy függvénynek lehet több lokális minimum vgy mximum is, és lokális mximum kisebb is lehet mint lokális minimum. A lokális mximum közül legngyobb függvény globális mximum, lokális minimumok közül legkisebb függvény globális minimum. A szélsőérték problémák közül egyik legrégibb problémák z úgynevezett izoperimetrikus problémák. Az izoperimetrikus szó z izo = állndó, periméter = kerület szóösszetételből ered. A problém következő: A síkbeli izoperimetrikus tétel: ) Az dott kerületű síklkztok közül kör legngyobb területű. b) Az dott területű síklkztok közül kör legkisebb kerületű. Euklidész ki i.e. 00 körül élt, már ismerte tégllpok izoperimetrikus problémájánk megoldását, mely vlószínűleg már előtte is ismert volt. Arkhimédesz (i.e. 87-), ismerte z izoperimetrikus tétel állítását. Időszámításunk kezdete táján geometrii szélsőértékek tnulmányozás már meglehetősen fejlett volt. udomásunk vn rról, hogy Zenodórosz, ki kb. i.e. 00 és i.sz. 90 között élt, írt egy Izoperimetrikus lkztok című könyvet, ennek sjnos egyetlen példány sem mrdt hátr, de z ő eredményeit újr ismertette és bebizonyított z lexndrii Ppposz i.sz. 00 körül. A mond szerint z izoperimetrikus problém eredete következő: Dido, yrosz királyánk lány volt. Ngybátyjához, Acerbászhoz ment feleségül, kit zonbn mesés vgyon mitt hmrosn meggyilkoltk. Dido ekkor Acerbász kincseivel együtt Ciprusr menekült, mjd innen tovább hjózott Afrik Szicíliához közeli prtjir. Elment vidék urlkodójához és elmondt neki, hogy szeretne tengerprt mentén egy földdrbot vásárolni, de nem ngyobbt, mint mekkorát egy mrhbőrrel körül tud keríteni. Az urlkodó mosolyogv beleegyezett szépséges királynő kérésébe, sőt ngylelkűen még meg is jándékozt egy jókor mrhbőrrel. Az okos Dido keskeny csíkokr vágt zt szét és szeleteket összecsomózv olyn hosszú kötélhez jutott, melyikkel jóvl ngyobb (tengerbenyúló) földterületet lehetett elkeríteni tengerprton, mint mekkorát z urlkodó elképzelt. Így lpított meg Krthágó virágzó városát, minek később ő lett királynője. A középkorbn számos neves mtemtikus fogllkozott ezzel témkörrel. Néhány híres nevet említve: Descrtes ( ), Jcob Bernoulli (65-705), Johnn Bernoulli (667-78), Euler (707-78), Lgrnge (76-8), és mások Kétségtelenül Jcob Steiner (796-86) svájci mtemtikus volt z, kinek munkásság korábbi eredmények betetőzését jelentette, szintetizált korábbi eredményeket, új ötletekkel gzdgított e problémkört, de mindegyikük (kárcsk Zenodórosz is), nyilvánvlónk trtott és nem bizonyított zt, hogy létezik megoldás ennek problémánk. (v.ö. [], 9. oldl). Dirichlet ( ) vette észre először z izoperimetrikus tétel eddigi bizonyításánk hiányosságát, és csk 870-ben, Weierstrss (85-89) küszöbölte ki ezt, ugynis szigorún bebizonyított kör nevezetes szélsőérték tuljdonságát. Ezek után számos más
2 mtemtikus fogllkozott problém különböző bizonyításávl (v. ö. [], 6. oldl), de mindmáig egyetlen igzán elemi bizonyítás sem született. A síkbeli izoperimetrikus tétel bizonyításánk menete következő: ) A Weierstrss tétel segítségével belátjuk, hogy z dott k kerületű n oldlú sokszögek között létezik mximális területű, h n rögzített. ) Belátjuk, hogy z zonos hosszúságú, n oldlú, zárt sokszögvonlk közül szbályos sokszög területe legngyobb. ) Belátjuk, hogy z dott k kerületű, szbályos sokszögek területének vn szuprémum, midőn befutj N-et, k kerületű kör területe. Mivel erre nincs elemi bizonyítás, dolgoztunkbn ezt nem is muttjuk be, ellenben megjegyezzük, hogy bizonyításnk számos láncszeme elemi, és ezeket részben fellelhetjük következő feldtok bizonyításábn. ) A háromszög izoperimetrikus tételei: ) Adott kerületű háromszögek közül z egyenlő oldlúnk legngyobb területe. b) Adott területű háromszögek közül z egyenlő oldlúnk legkisebb kerülete. + b + c Bizonyítás: Jelölje, b, c z ABC háromszög megfelelő oldlink hosszát, és legyen p = háromszög félkerülete, és területe. Ekkor Heron képlete szerint = p( p )( p b)( p c). + z De számtni és mértni közepeknek z xyz egyenlőtlensége lpján felírhtó, hogy ( p ) + ( p b) + ( p c) p = p( p )( p b)(p c) p = vgyis p (*) 7 Mivel (*) egyenlőtlenségben z egyenlőség =b=c esetben áll fenn, ezért két tétel állítás nyilvánvló, sőt mi több, z ) esetben h p állndó, kkor állndó, kkor pmin =. 9 mx = p, b) esetben pedig h ) A négyszög izoperimetrikus tételei: ) Adott kerületű négyszögek közül négyzetnek legngyobb területe. b) Adott területű négyszögek közül négyzetnek legkisebb kerülete. Bizonyítás: Jelölje, b, c, d z ABCD négyszög megfelelő oldlink hosszát, és legyen + b + c + d p = négyszög félkerülete, és területe. A négyszögek esetében is fennáll Heron B + D képlethez hsonló összefüggés: = ( p )( p b)( p c)(p d) bcd cos. + z + t De számtni és mértni közepeknek z xyzt egyenlőtlensége lpján felírhtó, ( p ) + ( p b) + ( p c) + (p d) p hogy ( p )( p b)(p c)(p d) = (**) B + D Egyenlőség kkor áll fenn, h először is cos = 0 B + D = 80 vgyis négyszög körbeírhtó, továbbá még = b= c= d is kell teljesüljön. Ezért (**) egyenlőtlenség lpján két állítás
3 bizonyítás nyilvánvló, sőt mi több, z ) esetben h p állndó, kkor pedig h állndó, kkor p min =. nulságos külön megvizsgálni következő sjátos esetet: mx p =, b) esetben ) A tégllp izoperimetrikus tételei: ) Adott kerületű tégllpok közül négyzetnek legngyobb területe. b) Adott területű tégllpok közül négyzetnek legkisebb kerülete. Bizonyítás: Jelöljük, x, y-nk tégllp méreteit, -vel területét, K-vl kerületét. ehát =xy és K K=(x+y). Az xy középrányos egyenlőtlenség lpján zonnl dódik, hogy. És mivel z egyenlőség csk x=y esetben áll fenn, ezzel beláttuk z állításinkt. ) Keressük meg egy dott R sugrú kör köré írt egyenlő szárú trpéz kerületének minimumát! Megoldás: A mellékelt ábr szerint jelölje x illetve y csúcsok távolságát z érintési pontoktól. Meghúzv trpéz két mgsságát, Pitgorsz tétele lpján ( R) = ( ) ( x y) honnn xy = R. Ezzel feltétellel meg kell állpítnunk p=(x+y) trpézkerület legkisebb értékét. Mivel ezért p 8 xy, R p 8R és egyenlőség z x = y = R esetben áll fenn, mikor is trpéz négyzetté lkul, és ekkor pmin = 8R. 5) Mekkor minimális kerületű rombusz oldl, h beírhtó kör sugr R? Megoldás: A mellékelt ábr szerint jelölje x illetve y csúcsok távolságát z érintési pontoktól. Mivel rombusz átlói merőlegesek egymásr, ezért mgsságtétel értelmében R = xy xy = R. Ezzel feltétellel meg kell állpítnunk p=(x+y) rombuszkerület p legkisebb értékét. Mivel xy, ezért R p 8R és 8 egyenlőség z x = y = R esetben áll fenn, mikor is rombusz négyzetté lkul, és ekkor pmin = 8R. 6) Htározzuk meg z R sugrú körbe írt tégllpok közül zt, melyiknek legngyobb területe! Megoldás: A tégllp oldlit jelöljük x illetve y-nl. Felírhtó, hogy = R. ovábbá h tégllp területe, kkor = xy. Képezzük következő függvényt: f ( x, y) x y x ( R x ) x R x = = = +. Ekkor z x = t jelöléssel, z f ( t) = t + R t függvény minimumát kell b meghtározni, mit t = = R esetben vesz fel, honnn x = R és így y = R mi zt jelenti, hogy tégllp kkor veszi fel legngyobb területet, mikor éppen négyzet.
4 7) Htározzuk meg, hogy dott négyzetbe írt négyzetek közül melyiknek minimális területe! Megoldás: Legyen z eredeti négyzet oldl. A mellékelt ábr jelöléseit hsználv felírhtjuk, hogy beírt négyzet oldlhossz egyenlő x + ( x) = x x +, ezért beírt négyzet területe = x x + minek minimum vn, és ezt minimumot b x = = esetben veszi föl, vgyis kkor, mikor beírt négyzet csúcsi éppen oldlfelező pontok. 8) Htározzuk meg z dott szbályos háromszögbe írt tégllpok közül zt, melynek legngyobb területe! Megoldás: A szbályos háromszög oldlhossz legyen, továbbá tégllp méretei pedig x és y. A mellékelt ábr jelöléseit hsználv számítsuk ki tégllp y méretű oldlhosszát: x y = ( x) = ( x). ehát tégllp területe = x( x) = x + x. Ennek b másodfokú kifejezésnek mximum vn, és ezt x = = esetben veszi föl, mikor is vgyis tégllp vízszintes oldl középvonl, függőleges oldl szbályos háromszög mgsságánk felével egyenlő. y = 9) Az R sugrú negyedkörbe tégllpot írunk úgy, hogy egyik csúcs negyedkör középpontjábn, másik csúcs negyedkörön legyen. Mikor legngyobb ennek területe? Megoldás: A mellékelt ábr jelöléseit hsználv felírjuk tégllp területét: = ( R x)( R y) és ugynkkor (R x) + (R y) = R Az + b válsztássl mikor is b egyenlőtlenség lpján = R x, b = R y R dódik, egyenlőség = b vgyis x= y esetben áll fenn R R x = R y = vgyis tégllp tuljdonképpen négyzet. 0) Adv vn egy háromszög lpj és k kerülete. Mikor mximális terület? k + b + c. Megoldás: A Héron képlete szerint, h p = = háromszög félkerülete, kkor = p( p )( p b)( p c). Ebből állndó z és p ezért írjuk területet így: = p( p ) ( p b)( p c). Most lklmzzuk xy egyenlőtlenséget z x = p b
5 p b + p c és y = p c válsztássl. Ekkor ( p b)( p c) = = állndó. ehát p( p ) = állndó. Egyenlőség kkor áll fenn, h x=y, vgyis b= c, vgyis háromszög egyenlő szárú.. Megoldás: Rjzoljunk olyn ellipszist, melynek fókuszpontji z dott lppl egyenlő távolságr vnnk egymástól, továbbá ngytengelye háromszög kerületének és lpjánk különbsége. Ezen z ellipszisen helyezkedik el háromszög hrmdik csúcs, és legngyobb mgsság nyílván vlón z ellipszis tető- illetve mélypontjához trtozik, tehát legngyobb területű z háromszög, mely egyenlő szárú. ) Bizonyítsuk be, hogy z egyenlő kerületű szbályos sokszögek közül nnk ngyobb területe, melyiknek több oldl vn! Megoldás: Legyen O szbályos sokszög középpontj, k kerülete, és rjzoljuk meg z egyik oldlához trtozó OAB egyenlő szárú háromszöget, melynek mgsság legyen m, középpontnál levő csúcsszög fele pedig n. Így szbályos sokszög területe k k k k = n n n n m n = = tg. Legyen most két egyenlő tg n n kerületű, de különböző n illetve noldlszámú szbályos sokszög. Ezek területe kkor k = n illetve tg n k = n. Azt kell megmuttnunk, hogy h például n n tg n >, kkor >. Mindenek előtt szögezzük le, hogy n, tehát α = és 0 < α = α. n n α α tgα tgα Nyílván elegendő bizonyítni, hogy > <. Az utóbbi egyenlőtlenség helyes tgα tgα α α voltát beláthtjuk, h megrjzoljuk tgx függvény grfikus képét 0, intervllumon, hol függvény görbe lulról domború (konvex), így z O-t ( α, tgα ) ponttl összekötő húr ltt lesz z O-t ( α, tgα ) ponttl összekötő húrnk, vgyis z első húr egyenesének z iránytngense kisebb tgα tgα mint második egyenes iránytngense, vgyis <.Ezzel igzoltuk z állításunkt. α α Eredményül z is következik, hogy z dott kerületű, különböző oldlszámú szbályos sokszögek között nincsen mximális területű. Ezzel befejezzük z izoperimetrikus típusú szélsőértékek vizsgáltát és megjegyezzük, hogy dolgoztunk következő részében geometrii jellegű problémák szélsőértékeivel fogllkozunk. 5
XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, 2015. április 8-12.
XXIV NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szbdk, 05 április 8- X évfolym A XXIV Nemzetközi Mgyr Mtemtik Verseny tiszteletére Frici rjzolt Szbdk főterére egy 4 oldlú szbályos sokszöget Hány olyn egyenlő
Tudtad? 11. Ezt a kérdést azért tesszük fel, mert lehet, hogy erre még nem gondoltál.
Tudtd? 11. Ezt kérdést zért tesszük fel mert lehet hogy erre még nem gondoltál. Most tekintsük z 1. árát! 1. ár Forrás: http://vmek.oszk.hu/0100/015/html/04/img/-14.jpg Itt különöző tetőlkokt szemlélhetünk.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria IV.
Geometria IV. 1. Szerkessz egy adott körhöz egy adott külső ponton átmenő érintőket! Jelöljük az adott kört k val, a kör középpontját O val, az adott külső pontot pedig P vel. A szerkesztéshez azt használjuk
Geometria. A geometria vagy mértan a geo+metros= földmérés szóból ered, görög tudósok és egyiptomi földmérnökök tapasztalataira épül.
Geometri A geometri vgy mértn geo+metros= földmérés szóól ered, görög tudósok és egyiptomi földmérnökök tpsztltir épül. Az euklideszi geometri lpfoglmkr, lpreláiókr és xiómákr épül. - lpfoglmk: például
( ) Schultz János EGYENLŐTLENSÉGEK A HÁROMSZÖG GEOMETRIÁJÁBAN
Shultz János EGYENLŐLENSÉGEK A HÁOMSZÖG GEOMEIÁJÁBAN Igzoljuk hogy egy szályos háromszög első pontját súsokkl összekötő három szkszól mindig szerkeszthető háromszög Egy tégllp elsejéen vegyünk fel egy
A döntő feladatai. valós számok!
OKTV 006/007. A döntő feladatai. Legyenek az x ( a + d ) x + ad bc 0 egyenlet gyökei az x és x valós számok! Bizonyítsa be, hogy ekkor az y ( a + d + abc + bcd ) y + ( ad bc) 0 egyenlet gyökei az y x és
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria
005-05 MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk.
Síkidomok Ha a síkot egyenes vagy görbe vonalakkal feldaraboljuk, akkor síkidomokat kapunk. A határoló vonalak által bezárt síkrész a síkidom területe. A síkidomok határoló vonalak szerint lehetnek szabályos
II. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
Koordináta - geometria I.
Koordináta - geometria I. DEFINÍCIÓ: (Helyvektor) A derékszögű koordináta - rendszerben a pont helyvektora az origóból a pontba mutató vektor. TÉTEL: Ha i az (1; 0) és j a (0; 1) pont helyvektora, akkor
Országos Középiskolai Tanulmányi Verseny 2011/2012 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő. x 3x 2 <
Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 011/01 Matematika I. kategória (SZKKÖZÉPISKOL) Döntő 1. Határozza meg az összes olyan egész számot, amely eleget tesz az egyenlőtlenségnek! log
BOLYAI MATEMATIKA CSAPATVERSENY FŐVÁROSI DÖNTŐ SZÓBELI (2005. NOVEMBER 26.) 5. osztály
5. osztály Írd be az ábrán látható hat üres körbe a 10, 30, 40, 60, 70 és 90 számokat úgy, hogy a háromszög mindhárom oldala mentén a számok összege 200 legyen! 50 20 80 Egy dobozban háromféle színű: piros,
Exponenciális és logaritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek
Eponenciális és logritmikus egyenletek, Eponenciális és logritmikus egyenletek, egyenletrendszerek, egyenlôtlenségek Eponenciális egyenletek 60 ) = ; b) = ; c) = ; d) = 0; e) = ; f) = ; g) = ; h) =- 7
BOLYAI MATEMATIKA CSAPATVERSENY DÖNTŐ 2004. 5. osztály
5. osztály Ha egy négyzetet az ábrán látható módon feldarabolunk, akkor a tangram nevű ősi kínai játékot kapjuk. Mekkora a nagy négyzet területe, ha a kicsié 8 cm 2? (A kis négyzet egyik csúcsa a nagy
Arany Dániel Matematikai Tanulóverseny 2011/2012-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 011/01-es tanév első (iskolai) forduló haladók I. kategória Megoldások és javítási útmutató 1. Az ábrán látható ABC derékszögű háromszög
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
Végeredmények, emelt szintû feladatok részletes megoldása
Végeredmények, emelt szintû feldtok részletes megoldás I. gyökvonás. gyökfoglom kiterjesztése. négyzetgyök lklmzási. számok n-edik gyöke 5. z n-edik gyökfüggvény, z n-edik gyök lklmzás 6 II. Másodfokú
& t a 1749. 1751. 1751. V = t $ M = (9 $ 13 $ sin 48,6 )(25 $ sin 68,3 ) á 2038, 6 cm
Hsáb 79 75 7 Tekintsük z 7 ábrát Felhsználjuk, hogy prlelogrmm átlóink négyzetösszege egyenlô z oldlink négyzetösszegével Az ACGE prlelogrmmábn: AG + EC (AE + AC ) A BDHF prlelogrmmábn: DF + BH (BF + DB
A skatulya-elv alkalmazásai
1 A skatulya-elv alkalmazásai Számelmélet 1. Az első 4n darab pozitív egész számot beosztjuk n számú halmazba. Igazoljuk, hogy mindig lesz három olyan szám, amelyek ugyanabban a halmazban vannak és valamely
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
Vektoralgebrai feladatok
Vektoralgebrai feladatok 1. Vektorok összeadása és szorzatai, azok alkalmazása 1.1 a) Írja fel a és vektorokat az és átlóvektorok segítségével! b) Milyen hosszú az + ha =1? 1.2 Fejezze ki az alábbi vektorokat
Analízis elo adások. Vajda István. 2012. október 3. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem / 40 Fogalmak A függvények értelmezése Definíció: Az (A, B ; R ) bináris relációt függvénynek nevezzük, ha bármely a A -hoz pontosan egy olyan
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Ábrahám Gábor A háromszög és a terület Feladatok. Feladatok
I. Klasszikus, bevezető feladatok Feladatok 1. Az alábbi feladatokban hányad része a satírozott rész területe az eredeti négyszög területének? a) Egy paralelogramma valamely belső pontját összekötjük a
Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 2005. november. I. rész
Szászné Simon Judit, 005. november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Szászné Simon Judit; dátum: 005. november. feladat I. rész Oldjuk meg a valós számok halmazán a x 5x
3. KÖRGEOMETRIA. 3.1. Körrel kapcsolatos alapismeretek
3. KÖRGEOMETRIA Hajós György: Bevezetés a geometriába, Tankönyvkiadó, Budapest, 89 109. és 121. oldal. Pelle Béla: Geometria, Tankönyvkiadó, Budapest, 86 97. és 117 121. oldal. Kovács Zoltán: Geometria,
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 15 XV DIFFERENCIÁLSZÁmÍTÁS 1 DERIVÁLT, deriválás Az f függvény deriváltján az (1) határértéket értjük (feltéve, hogy az létezik és véges) Az függvény deriváltjának jelölései:,,,,,
6) Határozza meg a következő halmazokat! A= {deltoidok} {téglalapok}; B= {négyzetek} {húrnégyszögek} (2pont)
(8/1) Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz, melyik hamis! a) Van olyan rombusz, amely téglalap is. (1pont) b) Minden paralelogrammának pontosan két szimmetriatengelye
Azonosító jel: Matematika emelt szint
I. 1. Hatjegyű pozitív egész számokat képezünk úgy, hogy a képzett számban szereplő számjegy annyiszor fordul elő, amekkora a számjegy. Hány ilyen hatjegyű szám képezhető? 11 pont írásbeli vizsga 1012
Juhász István Orosz Gyula Paróczay József Szászné Dr. Simon Judit MATEMATIKA 10. Az érthetõ matematika tankönyv feladatainak megoldásai
Juhász István Orosz Gyul Próczy József Szászné Dr Simon Judit MATEMATIKA 0 Az érthetõ mtemtik tnkönyv feldtink megoldási A feldtokt nehézségük szerint szinteztük: K középszint, könnyebb; K középszint,
Javítóvizsga témakörei matematika tantárgyból
9.osztály Halmazok: - ismerje és használja a halmazok megadásának különböző módjait, a halmaz elemének fogalmát - halmazműveletek : ismerje és alkalmazza gyakorlati és matematikai feladatokban a következő
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
2007. jnuár 26. MATEMATIKA FELADATLAP 4. évfolymosok számár 2007. jnuár 26. 15:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8.
MATEMATIKA ÍRÁSBELI VIZSGA 2012. május 8. I. rész Fontos tudnivalók A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik négyjegyű függvénytáblázatot
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (13. fejezet)
Áramlástechnikai gépek soros és párhuzamos üzeme, grafikus és numerikus megoldási módszerek (3. fejezet). Egy H I = 70 m - 50000 s /m 5 Q jelleggörbéjű szivattyú a H c = 0 m + 0000 s /m 5 Q jelleggörbéjű
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév
Osztályozó és Javító vizsga témakörei matematikából 9. osztály 2. félév IV. Háromszögek, négyszögek, sokszögek Pontok, egyenesek, síkok és ezek kölcsönös helyzete Néhány alapvető geometriai fogalom A háromszögekről.
Kombinatorika. 9. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Kombinatorika p. 1/
Kombinatorika 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Kombinatorika p. 1/ Permutáció Definíció. Adott n különböző elem. Az elemek egy meghatározott sorrendjét az adott
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria II.
Geometria II. Síkidomok, testek: A sík feldarabolásával síkidomokat, a tér feldarabolásával testeket kapunk. Törött vonal: A csatlakozó szakaszok törött vonalat alkotnak. DEFNÍCIÓ: (Sokszögvonal) A záródó
A parabola és az egyenes, a parabola és kör kölcsönös helyzete
66 A paraola 00 egyen a keresett kör középpontja Az pont koordinátái: ( y) Ekkor felírhatjuk a következô egyenletet: ( - ) + ( y- ) = mert a kör sugara > 0 Innen rendezéssel: ( y- ) = 6 - A mértani hely
Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség
Vektoralgebra Vektorok összeadása, kivonása, szorzás számmal, koordináták, lineáris függetlenség Feladatok: 1) A koordinátarendszerben úgy helyezzük el az egységkockát, hogy az origó az egyik csúcsba essék,
MATEMATIKA ÍRÁSBELI VIZSGA 2011. május 3.
MATEMATIKA ÍRÁSBELI VIZSGA I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet és bármelyik
GAZDASÁGI MATEMATIKA I.
GAZDASÁGI MATEMATIKA I.. A HALMAZELMÉLET ALAPJAI. Hlmzok A hlmz, hlmz eleme lpfoglom (nem deniáljuk ket). Szokásos jelölések: hlmzok A, B, C (ngy bet k), elemek, b, c (kis bet k), trtlmzás B ( eleme z
A VI. FEKETE MIHÁLY EMLÉKVERSENY
A VI. FEKETE MIHÁLY EMLÉKVERSENY Elődó: Bgi Márk Elődás címe: Csillgászti elődás és kvíz A versenyzők feldtmegoldásokon törik fejüket. 88 VI. FEKETE MIHÁLY EMLÉKVERSENY Zent, 008. december. 9. évfolym.
Az aktiválódásoknak azonban itt még nincs vége, ugyanis az aktiválódások 30 évenként ismétlődnek!
1 Mindannyiunk életében előfordulnak jelentős évek, amikor is egy-egy esemény hatására a sorsunk új irányt vesz. Bár ezen események többségének ott és akkor kevésbé tulajdonítunk jelentőséget, csak idővel,
Térgeometria feladatok. 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504 cm 2. Mekkora a testátlója és a térfogata?
Térgeometria feladatok Téglatest 1. Egy téglatest éleinek aránya 2 : 3 : 5, felszíne 992 cm 2. Mekkora a testátlója és a 2. Egy négyzetes oszlop magassága háromszor akkora, mint az alapéle, felszíne 504
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Térgeometria V.
Térgeometria V. 1. Egy 4, 6 dm átmérőjű, 5 dm magasságú, 7, dm sűrűségű hengerből a lehető legnagyobb szabályos nyolcoldalú oszlopot kell készíteni. Mekkora lesz a tömege? Az oszlop magassága a henger
MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM
MATEMATIKA FELZÁRKÓZTATÓ TANFOLYAM Felhsznált segédletek, példtárk:. Nemzetközi Elıkészítı Int. NEI. Összefoglló feldtgőjtemén ÖF. Szécheni István Fıiskol Távokt. SzIT. Mőszki Fıiskol Példtár MFP Szent
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 20. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
1. Írja fel prímszámok szorzataként a 420-at! 2. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen!
1. Írja fel prímszámok szorzataként a 40-at! 40 =. Bontsa fel a 36 000-et két részre úgy, hogy a részek aránya 5 : 4 legyen! A részek: 3. Egy sejttenyészetben naponta kétszereződik meg a sejtek száma.
Egy látószög - feladat
Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük
Analízis elo adások. Vajda István. 2012. szeptember 24. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)
Vajda István Neumann János Informatika Kar Óbudai Egyetem 1/8 A halmaz alapfogalom, tehát nem definiáljuk. Jelölés: A halmazokat általában nyomtatott nagybetu vel jelöljük Egy H halmazt akkor tekintünk
VB-EC2012 program rövid szakmai ismertetése
VB-EC01 progrm rövid szkmi ismertetése A VB-EC01 progrmcsomg hrdver- és szoftverigénye: o Windows XP vgy újbb Windows operációs rendszer o Min. Gb memóri és 100 Mb üres lemezterület o Leglább 104*768-s
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym AMt2 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2012. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden
Óravázlatok: Matematika 2. Tartományintegrálok
Órvázltok: Mtemtik 2. rtományintegrálok Brth Ferenc zegedi udományegyetem, Elméleti Fiziki nszék készültség: April 23, 23 http://www.jte.u-szeged.hu/ brthf/oktts.htm) ontents 1. A kettős integrál 1 1.1.
G Szabályfelismerés 2.2. 2. feladatcsomag
ÖSSZEFÜÉSEK Szabályfelismerés 2.2 Alapfeladat Szabályfelismerés 2. feladatcsomag összefüggés-felismerő képesség fejlesztése szabályfelismeréssel megkezdett sorozat folytatása a felismert szabály alapján
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
ÚJ FELADATLAP 8. évfolym AMt3 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór ÚJ FELADATLAP NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti
A VARIÁCIÓSZÁMÍTÁS ALAPÖSSZEFÜGGÉSEI, ÉS GYAKORLATI ALKALMAZÁSA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS
Szolnoki Tuományos Közlemények XV. Szolnok, 011. Prof. Dr. Szolcsi Róert 1 A VARIÁCIÓSZÁMÍTÁS ALAPÖSSZEFÜGGÉSEI, ÉS GYAKORLATI ALKALMAZÁSA I. BEVEZETÉS, MOTIVÁCIÓ, PROBLÉMAFELVETÉS A szerző célj emuttni
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2012. NOVEMBER 24.) 3. osztály
3. osztály Két szám összege 33. Mennyi ennek a két számnak a különbsége, ha az egyik kétszerese a másiknak? Hány olyan háromjegyű szám van, amelyben a számjegyek összege legalább 25? 4. osztály A Zimrili
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2007. jnuár 27. MATEMATIKA FELADATLAP 8. évfolymosok számár 2007. jnuár 27. 11:00 ór M 1 feltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
Halmazok és függvények
Halmazok és függvények Óraszám: 2+2 Kreditszám: 6 Meghirdető tanszék: Analízis Debrecen, 2005. A tárgy neve: Halmazok és függvények (előadás) A tárgy oktatója: Dr. Gilányi Attila Óraszám/hét: 2 Kreditszám:
TENGELY szilárdsági ellenőrzése
MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TASZÉK OKTATÁSI SEGÉDLET GÉPELEMEK c. tntárgyhoz TEGELY szilárdsági ellenőrzése Összeállított: Dr. Szente József egyetemi docens Miskolc, 010. A feldt megfoglmzás
A táblázatkezelő felépítése
A táblázatkezelés A táblázatkezelő felépítése A táblázatkezelő felépítése Címsor: A munkafüzet címét mutatja, és a program nevét, amivel megnyitottam. Menüszalag: A menüsor segítségével használhatjuk az
Nevezetes középértékek megjelenése különböző feladatokban Varga József, Kecskemét
Vrg József: Nevezetes középértékek megjeleése külöböző feldtokb Nevezetes középértékek megjeleése külöböző feldtokb Vrg József, Kecskemét Hrmic éves tári pályámo sokszor tpsztltm, hogy tehetséges tulók
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2
A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:
a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a
44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy
Versenyfeladatok. Középiskolai versenyfeladatok megoldása és rendszerezése Szakdolgozat. Készítette: Nováky Csaba. Témavezető: Dr.
Verseyfeldtok Középiskoli verseyfeldtok megoldás és redszerezése Szkdolgozt Készítette: Nováky Csb Témvezető: Dr. Fried Ktli Eötvös Lorád Tudomáyegyetem Természettudomáyi Kr Mtemtik Alpszk Tári Szkiráy
Matematika záróvizsga 2002. Név:... osztály:...
Mtmtik záróvizsg 00. Név:... osztály:... 1. Állíts növkvő sor kövtkző számokt! 1 0 ; ; 153;, ( 0, 5) ; 3,6 ;,8; + 4,4 ( ) 0,5 ;. Mlyik hiás? Ír l hlysn hiás átváltásokt, jókt pig pipál ki!...... 1 30 =
Izöperimetrikus pröblémák
Eö tvö s Lörá nd Tudömá nyegyetem Terme szettudömá nyi Kár Izöperimetrikus pröblémák Szakdolgozat Készítette: Kiss Évá Mágdölná Mátemátiká BSc. Tánári szákirány Témávezető: Dr. habil. Csikós Bálázs Tszv.
Wassily Leontieff Az amerikai gazdaság szerkezete 1919-1939 c. úttörő munkájára támaszkodó modellek több száz egyenletet és ismeretlent tartalmaztak.
Wssily Leontieff Az meriki gzdság szerkezete 99-99 c. úttörő munkájár támszkodó modellek több száz egyenletet és ismeretlent trtlmztk. Szovjetunióbn Leonyid Kntorovics modelljeivel célj z volt, hogy második
Algebra es sz amelm elet 3 el oad as Rel aci ok Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Relációk Waldhauser Tamás 2014 őszi félév Relációk reláció lat. 1. kapcsolat, viszony; összefüggés vmivel 2. viszonylat, vonatkozás reláció lat. 3. mat halmazok elemei
A Hozzárendelési feladat megoldása Magyar-módszerrel
A Hozzárendelési feladat megoldása Magyar-módszerrel Virtuális vállalat 2013-2014/1. félév 3. gyakorlat Dr. Kulcsár Gyula A Hozzárendelési feladat Adott meghatározott számú gép és ugyanannyi független
Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke
Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)
Minta 1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR
1. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI FELADATSOR A feladatok megoldására 240 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II. részben kitűzött
Analízis előadások. Vajda István. 2013. február 10. Neumann János Informatika Kar Óbudai Egyetem
Analízis előadások Vajda István Neumann János Informatika Kar Óbudai Egyetem 013. február 10. Vajda István (Óbudai Egyetem) Analízis előadások 013. február 10. 1 / 3 Az elemi függvények csoportosítása
1. forduló. MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév
MEGOLDÁSOK Pontszerző Matematikaverseny 2015/2016-os tanév 1. forduló 1. feladat: Jancsi és Juliska Matematikai Memory-t játszik. A játék lényege, hogy négyzet alakú kártyákra vagy műveletsorokat írnak
Függvényvizsgálat. Végezzük el az alábbi függvények teljes függvényvizsgálatát:
Végezzük el az alábbi függvények teljes függvényvizsgálatát: Függvényvizsgálat. f HL := 4-4. f HL := - 4 + 8. f HL := 5 + 5 4 4. f HL := 5. f HL := 6. f HL := - 9. f HL := + + 0. f HL := - 7. f HL :=.
Tartalom I. 1. Kohászat. 2. Egyedi Protanium acél. 3. Első osztályú korrózióvédelem. 4. Örökös garancia
A profik válsztás pic egyetlen profi minőségű htszögkulcs Trtlom I. 1. Kohászt II. 2. Egyedi Protnium cél 3. Első osztályú korrózióvédelem 10 23 A szbványoknk vló 100%os megfelelés 26 Nincsenek rossz törések,
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló gimnáziuma) Térgeometria III.
Térgeometria III. 1. Szabályos háromoldalú gúla alapéle 1 cm, oldaléle 1 cm. Milyen magas a gúla? Tekintsük a következő ábrát: Az alaplap szabályos ABC, így a D csúcs merőleges vetülete a háromszög S súlypontja.
EMELT SZINTŰ ÍRÁSBELI VIZSGA
ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika emelt szint írásbeli
DEME FERENC okl. építőmérnök, mérnöktanár RÁCSOS TARTÓK
we-lap : www.hild.gyor.hu DEME FERENC okl. építőmérnök, mérnöktanár e-mail : deme.ferenc1@gmail.com STTIK 47. RÁCSOS TRTÓK rácsos tartók két végükön csuklókkal összekötött merev testekől állnak. z így
MATEMATIKA HETI 3 ÓRA
EURÓPAI ÉRETTSÉGI 010 MATEMATIKA HETI 3 ÓRA IDŐPONT : 010. június 4. A VIZSGA IDŐTARTAMA : 3 óra (180 perc) MEGENGEDETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor
Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
Nyomott - hajlított fagerenda szilárdsági méretezése ~ egy régi - új megoldás
Nyomott - ajlított fagerenda szilárdsági méretezése ~ egy régi - új oldás Már régóta foglalkozom erőtani problémákkal, ám nagy lepetésemre a minap egy olyan érdekes feladat - oldást találtam, amilyet még
Matematikai feladatlap Test z matematiky
Keresztnév: Vezetéknév: Mtemtiki feldtlp Test z mtemtiky eloslovenské testovnie žikov 9. roèník ZŠ T9-01 Kedves tnulók, mtemtiki feldtlpot kptátok kézhez. teszt 0 feldtot trtlmz. Minden helyes válszt 1
Mátrixok és determinánsok
Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.
Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.
Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN
GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten RACIONÁLIS TÖRTFÜGGVÉNYEK INTEGRÁLJA Készítette: Gábor Szakmai felel s: Gábor Vázlat
Épületvillamosság laboratórium. Villámvédelemi felfogó-rendszer hatásosságának vizsgálata
Budapesti Műszaki és Gazdaságtudományi Egyetem Villamos Energetika Tanszék Nagyfeszültségű Technika és Berendezések Csoport Épületvillamosság laboratórium Villámvédelemi felfogó-rendszer hatásosságának
A torokgerendás fedélszerkezet erőjátékáról 1. rész
A torokgerendás fedélszerkezet erőjátékáról. rész Bevezetés Az idő múlik, kívánlmk és lehetőségek változnk. Tegnp még logrléccel számoltunk, m már elektronikus számoló - és számítógéppel. Sok teendőnk
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK. 2,4 cm
HASONLÓSÁGGAL KAPCSOLATOS FELADATOK Egserő, hasonlósággal kapcsolatos feladatok 1. Határod meg a, és sakasok hossát! cm cm 2, cm 2. Határod meg a,,, u és v sakasok hossát! 2 v 2 . Határod meg a,,, u és
Vízgyűjtő-gazdálkodási Terv - 2015 Balaton részvízgyűjtő. 1-2. melléklet: Felszíni víztest típusok referencia jellemzői
Blton részvízgyűjtő 1-2. melléklet: Felszíni víztest típusok referenci jellemzői Blton részvízgyűjtő Vízfolyás típusok hidromorfológii referenci jellemzői MORFOLÓGIA TÍPUS Jellemzés Hidrológi 1 2 3 ngy
Budapesti Műszaki Főiskola Kandó Kálmán Villamosmérnöki Főiskolai Kar Automatika Intézet. Félévi követelmények és útmutató VILLAMOS GÉPEK.
Budpeti Műzki Főikol Kndó Kálmán Villmomérnöki Főikoli Kr Automtik ntézet Félévi követelmények é útmuttó VLLAMOS GÉPEK tárgyból Villmomérnök zk, Villmoenergetik zkirány, Távokttái tgozt 5. félév Özeállított:
Kapitány Benedek AZ IZOPERIMETRIKUS EGYENLŐTLENSÉG. BSc szakdolgozat. Témavezető: Frenkel Péter Algebra és Számelmélet Tanszék
EÖTVÖS LORÁND TUDOMÁNY EGYETEM TERMÉSZETTUDOMÁNYI KAR Kapitány Benedek AZ IZOPERIMETRIKUS EGYENLŐTLENSÉG BSc szakdolgozat Témavezető: Frenkel Péter Algebra és Számelmélet Tanszék Budapest, 2013 Tartalomjegyzék
Útmutató a vízumkérő lap kitöltéséhez
Útmutató a vízumkérő lap kitöltéséhez A vízumkérő lap ( Visa application form of the People s Republic of China, Form V. 2013 ) az egyik legfontosabb dokumentum, amit a kínai vízumra való jelentkezésnél
3. Matematikai logika (megoldások)
(megoldások) 1. Hamis, ugyanis P, Q és R logikai értékét behelyettesítve kapjuk: (P Q) R = (1 0) 0 = 0 0 = 0. (Ebben és a további feladatok megoldásában alkalmazzuk a D 3.1 denícióit. A megoldást célszer
MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB