2. MECHANIKA. Periodikus mozgások: körmozgás, rezgések, lengések
|
|
- Gréta Barnané
- 6 évvel ezelőtt
- Látták:
Átírás
1 2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szerepl mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk velük. Ezt figyelembe véve ennek a mérési gyakorlatnak ketts célja van. Egyrészt az, hogy ezeket a mozgásokat kísérletileg tanulmányozva még több közvetlen tapasztalatot szerezzünk róluk. Másrészt viszont ez a mérés arra is lehetséget teremt, hogy átismételjük a mechanika néhány fogalmát és módszerét, pl. azt, hogy miként nyerhet és mit is jelent MOZGÁSEGYENLET. 1. Elméleti bevezet Hossz- és idmérés. Változás és változási sebesség A hosszúságmérésnél a mérszalagot (amelyen egyenletes beosztás van) a kérdéses a tárgy mellé fektetve állapítjuk meg annak a hosszát. Az idméréshez valamilyen periodikus jelenségre van szükségünk (pl. ingamozgás, kvarckristály vagy ammónia molekula rezgése), amelynél feltételezhet, hogy mindegyik periódus egyforma módon zajlik le. Egy jelenség kezdete és vége között eltelt id alatt tulajdonképpen azt értjük, hogy az óraként használt periodikus jelenség hányszor zajlott le a kiindulási és a végállapot között. A másodperc a földi átlagnap (a Föld forgása is periodikus jelenség, tehát óraként használható) ad részeként lett kezdetben meghatározva, de most már vannak ennél sokkal pontosabb etalonjaink is (jelenleg ez a cézium 133-as izotópjával mköd atomóra). Tekintsünk valamilyen M mennyiséget, amelyet mérni tudunk, és amely az idben változik. (M lehet pl. a hmérséklet, egy kémiai komponens koncentrációja, egy növekv élesztsejt tömege, avagy egy mozgó pont távolsága az origótól, szóval bármi). Vizsgálataink kezdetén a mért mennyiség értékét jelöljük M 1 -el, a vizsgálat egy késbbi idpontjában M 2 -vel. Ekkor az M megváltozása alatt az alábbi különbséget értjük: M = M 2 M 1. Sokszor azt is számításba akarjuk venni, hogy a változás milyen gyors, azaz hogy adott megváltozás mennyi id alatt jött létre. Ilyenkor a megváltozást elosztjuk a hozzá szükséges idvel, így kapjuk az átlagos változási sebességet: V ÁTLAG = M / t, ahol t a megváltozás létrejöttéhez szükséges id. (Látható, hogy ebben a hányadosban az id ugyanolyan fontos szerepet játszik, mint a megváltozás. Hiába nagy a megváltozás, ha ez hosszú idbe telik, akkor a változási sebesség kicsi lesz, jelezve, hogy lassú folyamatról van szó.) Gyakran van szükség a pillanatnyi változási sebességre is. Ezt az átlagsebességbl kiindulva úgy közelíthetjük, hogy a t idt egyre kisebbre választjuk, határértékben nullának: V PILLANATNYI = M dm lim =. t 0 t dt A kinematikában gyakran használt fogalom a (pillanatnyi) sebesség. Ez. egy dimenzióban pl. az x tengely mentén mozgó pont esetén nem más, mint az x koordináta pillanatnyi változási sebessége, azaz deriváltja: v = dx/dt. A sebesség is változhat, ennek a változási sebességét nevezzük gyorsulásnak: a = dv/dt = d 2 x/dt 2. Ha tehát meg van adva az x = x(t) függvény, akkor ebbl deriválással nyerhet a v = v(t) függvény, amibl pedig újabb deriválással az a = a(t) függvény. Általános esetben, ha ismert a helyvektor az id függvényében, azaz az r = r(t) függvény, annak deriválásával kapható a sebességvektor és a gyorsulásvektor idfüggése: v = dr/dt, a = dv/dt = d 2 r/dt Körmozgás Itt most csak az egyenletes körmozgással foglalkozunk. Kinematikai leírással élve egy anyagi pontnak olyan síkmozgásáról van szó, amely egy R sugarú körön történik, mégpedig úgy, hogy eközben sem ennek a körnek a sugara, sem pedig a mozgás szögsebessége nem változik. Ha a mozgást pl. az x-y síkban tárgyaljuk, és az α szög alatt a helyvektornak az x tengellyel bezárt (idben változó) szögét értjük, akkor az ω szögsebesség (az α szög változási sebessége) értelemszeren: ω = dα/dt. 2. MECHANIKA / 1
2 Korábbi tanulmányainkból azt is tudjuk, hogy az egyenletes körmozgás is gyorsuló mozgás, mert bár a sebesség abszolút értéke nem, annak iránya állandóan változik. A gyorsulás a kör középpontja felé mutat (centripetális gyorsulás), nagysága pedig a cp = R ω 2. Dinamikai szempontból ebbl az következik, hogy amennyiben egy m tömeg pont kering ezen a körpályán, akkor ez csak úgy valósulhat meg, ha a tömegpontra egy F cp centripetális (állandóan a kör középpontja felé irányuló ) er hat, aholis F cp = m a cp. Amennyiben egy bolygó körpályán kering a Nap körül (a Föld pályája közel ilyen), akkor a centripetális er a Nap által kifejtett tömegvonzás. [Megjegyezzük, hogy a centripetális er kifejezést kifejezetten körmozgással kapcsolatban szokás használni. A bolygók mozgása természetesen mindig olyan er hatására jön létre, amelyik a Nap mint vonzó centrum felé irányul. Ilyen centrális er hatására azonban nemcsak körpályán, hanem ellipszis, st parabola, avagy hiperbola pályán is mozoghat egy anyagi pont. A centripetális er tehát az általános értelemben vett centrális ernek az a speciális esete, amikor éppen körmozgás valósul meg.] 1.2. A harmonikus rezgmozgás A harmonikus rezgmozgás mint a körmozgás vetülete Középiskolából tudjuk, hogy a harmonikus rezgmozgás az egyenletes körmozgás vetületének fogható fel. Ez kinematikai szempontból teljesen kielégít magyarázat, hiszen tulajdonképpen csak annyit mond, hogy a vetület mozgását ezentúl harmonikus rezgmozgásnak fogjuk nevezni. Azt a kérdést azonban, hogy egy rugóra felfüggesztett tömegpont miért végez éppen ilyen mozgást, nemigen firtattuk. Mieltt azonban erre a kérdésre rátérnénk, ismételjük át röviden a harmonikus rezgmozgás kinematikai leírását. A körmozgás pályája legyen az x y síkban elhelyezked R sugarú kör. A kör középpontja legyen az origó. Ezen a pályán állandó ω szögsebességgel mozogjon egy m tömeg anyagi pont: 2.1. ábra. Egyenletes körmozgás és vetülete (Vegyük észre, hogy az x tengely 90 -kal el van forgatva az ábrán!) Ez azt jelenti, hogy amennyiben a helyvektornak az x tengellyel bezárt szögét α-val jelöljük, akkor ez a szög egyenletes körmozgás esetén az idvel arányosan n: α = ω t +, ahol az α szög értéke a t = 0 idpillanatban. A helyvektor x és y komponense ennek megfelelen: x(t) = R cos(ω t + ) y(t) = R sin(ω t + ) Tekintsük most az x tengelyen vett vetület mozgását, az R sugárra utaló jelölést pedig váltsuk fel az A jelöléssel, ami a harmonikus rezgmozgás amplitúdója lesz. Így tehát x(t) = A cos(ω t + ), ami valóban a harmonikus rezgmozgás jól ismert egyenlete. ω itt a harmonikus rezgmozgás körfrekvenciáját jelöli. 2. MECHANIKA / 2
3 A harmonikus rezgmozgás sebessége és gyorsulása Tudjuk, hogy a mozgás sebessége a helyvektor id szerinti deriváltja. Jelen esetben a v sebességet az x komponens id szerinti deriválásával kaphatjuk meg: v(t) = dx/dt = A ω sin(ω t + ). Továbblépve, az a gyorsulás a v sebesség deriválásával nyerhet, azaz az x második deriváltjaként: a(t) = dv/dt = d 2 x/dt 2 = A ω 2 cos(ω t + ) Összefüggés a harmonikus rezgmozgás a gyorsulása és x kitérése között. Most az a gyorsulást írjuk az alábbi formába: a = d 2 x/dt 2 = ω 2 [A cos(ω t + )]. Jól látható, hogy a szögletes zárójelen belül szerepl mennyiség éppen az x. Vagyis felírható, hogy a = ω 2 x, avagy d 2 x/dt 2 = ω 2 x Dinamika. A harmonikus rezgmozgás mozgásegyenlete Szorozzuk meg az elz egyenlet mindkét oldalát a mozgó pont tömegével: m a = ω 2 m x. Ha ezek után a dinamika második axiómájának felhasználásával az m a szorzat helyébe az F ert írjuk, valamint az egy adott mozgás során állandó ω 2 m helyébe egy másik állandót írunk, amit k-val jelölünk, akkor arra az erre, ami a harmonikus rezgmozgást létrehozza, az alábbi egyenletet kapjuk: F = k x, ami nem más, mint a rugalmas er ertörvénye, amennyiben x a rugó deformációja. A visszahúzó er nagysága ugyanis egy ideális rugónál arányos a deformációjával, és avval ellentétes irányú, éppen úgy, ahogy a fenti formula mutatja. Látható tehát, hogy a rugóer valóban harmonikus rezgmozgást hoz létre. Dinamika. Mozgásegyenlet A mechanikai feladatok szisztematikus megoldásánál azonban általában fordítva merül fel a probléma, tehát nem egy mozgáshoz keresünk ertörvényt, hanem fordítva: adva van egy ertörvény, és a kérdés az, hogy az milyen mozgást hoz létre. Ebben az esetben tehát ismerjük az ertörvényt, ami egy olyan kifejezés, amely megmondja, hogy az er miként függ a helytl, a sebességtl és az idtl. Tehát általánosan az ertörvény az alábbi alakban adható meg: F = F(r, dr/dt, t). Ezután ezt az ertörvényt beírjuk Newton második axiómájába: m d 2 r/dt 2 = F(r, dr/dt, t). A fenti egyenletet nevezzük a mozgás MOZGÁSEGYENLETÉNEK, ami a kezdfeltételeken kívül mindent elmond az adott ertörvénynek engedelmesked mozgásokról A mozgásegyenlet megoldása rugalmas er esetén A mozgásegyenlet megoldása néha bonyolult lehet, mivel az nem algebrai, hanem differenciálegyenlet. Míg egy algebrai egyenlet megoldása az egyenlet gyökének vagy gyökeinek megtalálását jelenti, a differenciálegyenlet megoldása egy függvény. A differenciálegyenletek ugyanis a függvényegyenletek osztályába tartoznak, vagyis nem egy ismeretlen x értéket, hanem egy x = x(t) ismeretlen függvényt keresünk. A fentiekben a harmonikus rezgmozgás egyenletébl, az x(t) függvénybl jutottunk el a mozgásegyenlethez. Járjuk be most a fenti utat fordítva, azaz írjuk fel elször a harmonikus 2. MECHANIKA / 3
4 rezgmozgás mozgásegyenletét, majd keressük meg annak a megoldását! A mozgásegyenlet rugalmas er esetén: m d 2 x/dt 2 = k x. Ha a tömeggel osztunk, és az egy adott rugó és tömeg esetén állandó k/m arányt ω 2 -el jelöljük, akkor a fenti differenciálegyenlet a következ alakba írható: d 2 x/dt 2 = ω 2 x, amelynek a megoldását viszont már jól ismerjük: x(t) = A cos(ω t + ). Tehát adott m tömeg és k rugóállandó esetén mindig olyan harmonikus rezgmozgás fog létrejönni, amelynek körfrekvenciája ω = k / m. Az egyes konkrét mozgások azonban különböznek az A amplitúdó és a kezdfázis szerint. Ezeket az ún. integrációs állandókat a kezdeti feltételek szabják meg: v 0 v ϕ = arc tg, 0 2 A = + x0, ω x0 ω ahol x 0 a kezdeti kitérés és v 0 a kezdsebesség. Szorgalmi feladat: vezessük le a fenti két összefüggést! 2 A differenciálegyenletek szerepe a mechanikában. Megoldásuk módszerei Mint látjuk, a mechanikában központi szerepet játszik a mozgásegyenlet, amely egy másodrend differenciálegyenlet, és amelynek a megoldása a mozgó pont helye mint az id függvénye. Fontos tehát, hogy valamit tudjunk a differenciálegyenletekrl és megoldásukról. A differenciálegyenletek analitikus megoldását gyakran nem kalkulációs algoritmusokkal nyerik, hanem intuitíve megsejtik. Ezután a sejtett megoldást esetünkben ez az x = A cos(ω t+) függvény behelyettesítik a differenciálegyenletbe ami nálunk a d 2 x/dt 2 = ω 2 x egyenlet, és utána megállapítják, hogy a megsejtett függvény valóban kielégíti a differenciálegyenletet. Esetünkben ez az ellenrzés két egymást követ deriválást igényel, semmi többet, és ezt már korábban tárgyaltunk is. A jelen méréshez elég ennyit tudni a differenciálegyenletekrl. Az érdekld olvasóban esetleg felmerülhetnek további kérdések, amelyek közül kettre talán érdemes kitérni. Az egyik: nem lehetséges-e az, hogy az x = A cos(ω t+) függvény mellett találhatók még más függvények is, amelyek ugyan nem ilyen alakúak, de mégis kielégítik a differenciálegyenletet? (Ez az ún. unicitás problémája.) Csak a választ közöljük: nincsenek ilyen függvények. A másik gyakori kérdés, hogy mindig ilyen egyszer-e egy differenciálegyenlet megoldása? A válasz: nem. St egyáltalán nem biztos, hogy a megoldás analitikus függvényként zárt alakban felírható. A numerikus megoldás azonban minden esetben lehetséges Csillapított rezgmozgás A csillapított rezgmozgás esetén az ertörvény: F = F(x, dx/dt, t) = k x c dx/dt, vagyis itt a szokásos rugóer mellett egy a sebességgel arányos, de avval ellentétes irányú súrlódási er is fellép. (Ez olyasmi ernek felel meg, mint amikor viszkózus folyadékban mozog egy test. A valóságban persze másfajta súrlódási erk is felléphetnek, de azok esetében a mozgásegyenlet ún. nemlineáris differenciálegyenlet lenne, melynek a megoldása körülményesebb. Pl. a közegellenállás általában a sebesség négyzetétl függ. E helyett a fenti formulában a sebességtl lineárisan függ a súrlódási er.) A mozgásegyenlet tehát: m d 2 x/dt 2 = k x c dx/dt. Ha ezt végigosztjuk m-el, az alábbi differenciálegyenletet nyerjük: d 2 x/dt 2 = (ω 0 ) 2 x 2β dx/dt, ahol (ω 0 ) 2 = k/m és 2β = c/m. Ezután vegyük el a differenciálegyenletek megoldásának elbb említett módszerét, a megsejtést. Láttuk, hogy a csillapítatlan rezgmozgás a körmozgás vetületének fogható fel. A csillapított rezgmozgás esetén a rezgés amplitúdója fokozatosan csökken. Jelen esetben a 2. MECHANIKA / 4
5 megoldás tehát esetleg felfogható lenne egy olyan egyenletes körmozgás vetületeként, ahol a szögsebesség állandó, de a körmozgás r sugara folyamatosan csökken. Ha gondolatmenetünk helyes, akkor lehet találni olyan monoton csökken r(t) függvényt, amelynek vetülete helyesen leírja a csillapodó rezgmozgást. Kísérletezzünk avval az egyszer esettel, amikor az r sugár csökkenési sebessége a sugár nagyságától lineárisan függ (vagyis minél nagyobb a sugár, annál gyorsabb a csökkenés): dr/dt = β r. (Az, hogy az itt szerepl állandó és a differenciálegyenletben szerepl β ugyanaz, természetesen nem következik az eddigiekbl, de késbb majd belátjuk, hogy ez a helyes választás.) Ennek a differenciálegyenletnek a megoldása r = r 0 e β t, ahogy arról behelyettesítéssel meggyzdhetünk. (r 0 a kezdeti sugár.) Az egyenletes körmozgás és a sugár mentén befelé irányuló mozgás eredjeként létrejöv ún. logaritmikus spirál pályája a következ ábrán látható: 2.2. ábra. Csillapított rezgmozgás mint a logaritmikus spirál vetülete (Vegyük észre, hogy az x tengely 90 -kal el van forgatva az ábrán!) Ha a mozgás vetületét tekintjük, akkor a csillapított rezgmozgás differenciálegyenletének megoldását az alábbi alakban kereshetjük: x(t) = A 0 e β t cos(ω t + ). A 0 és ϕ értékét a kezdeti feltételek határozzák meg. Ha ezt behelyettesítjük a differenciálegyenletbe (gyakorlásként tegyük meg!), akkor látni fogjuk, hogy sejtésünk valóban kielégíti a differenciálegyenletet, feltéve, hogy ω megfelel az alábbi relációnak: (ω 0 ) 2 = ω 2 + β 2. Vagyis csillapítással a rezgmozgás ω körfrekvenciája kisebb, mint a csillapítatlan rezgmozgás ω 0 körfrekvenciája: ω = β ω. Ha a csillapítás igen nagy, azaz β ω 0, akkor a mozgás aperiodikussá válik. Az ilyen aperiodikus mozgásokkal azonban itt nem foglalkozunk, mivel a kísérleteinkben a csillapítás ennél jóval kisebb Matematikai inga A matematikai inga mozgásegyenlete, figyelembe véve, hogy a tangenciális gyorsulás a t = L d 2 α/dt 2, valamint hogy a szöggyorsulás és a szög ellenkez irányú: M L d 2 α/dt 2 = M g sinα. Egyszersítések után az alábbi nemlineáris differenciálegyenletet nyerjük: d 2 α/dt 2 = (g/l) sinα. Ezt a nemlineáris differenciálegyenletet nehéz megoldani. Alkalmazhatjuk azonban az alábbi közelítést: sinα α, ami 5 -nál 0,05 %, 22 -nál 1 %, 90 -nál azonban már 18 % eltérést okoz. Így a csillapítatlan harmonikus rezgmozgás már ismert mozgásegyenletéhez jutunk: 2. MECHANIKA / 5
6 d 2 α/dt 2 = - ω 2 α, aholis ω 2 = g/l, azaz az inga lengésideje T = 2π L / g Torziós inga Merev test rögzített tengely körüli forgó mozgása esetén az impulzusmomentum tétele az alábbi formába írható M = β, ahol M a forgatónyomaték, a tehetetlenségi nyomaték, β pedig a szöggyorsulás: β = d 2 α/dt 2 A rugót torziós szálként is felfoghatjuk, melyre igaz, hogy a forgatónyomaték (amely vissza akarja állítani az elcsavarás eltti állapotot) nagysága arányos a szögelfordulással, és ellentétes irányú avval, azaz M = D α, ahol D egy arányossági tényez (számértékileg az 1 radián szögelforduláshoz tartozó forgatónyomaték), melynek neve direkciós vagy irányító nyomaték. Ha az impulzusmomentumtételbe beírjuk a fenti nyomaték törvényt (ami az ertörvény analogonja), akkor megkapjuk a torziós inga mozgásegyenletét: d 2 α/dt 2 = D α, Ez a differenciálegyenlet a D/ = ω 2 jelöléssel az ismert alakba írható: d 2 α/dt 2 = ω 2 α, amely differenciálegyenletnek a szögre nézve harmonikus rezg (pontosabban mondva forgó) - mozgás az ismert megoldása: α(t) = α 0 cos(ω t + ). 2. Mérések 2.1. Kúpinga 2.3. ábra. Kúpinga Tisztán ezt a mozgást nehéz létrehozni, ezért ezt csak kvalitatíve vizsgáljuk meg. Eszközök: - damilra kötött anyacsavar - stopper - mérszalag Mérési feladatok: 2. MECHANIKA / 6
7 Vizsgáljuk meg kísérletileg, miért okoz problémát, hogy pontosan egy kúpfelületen mozogjon a kötél! A kísérletet két hallgató végezze: az egyik tartsa az ingát, a másik próbálja meg mozgásba hozni A kúpinga keringési ideje 2 2 L R T = 2π, g ahol L az inga hossza, R a kör sugara, melyen a tömegpont kering (a kúp alaplapjának a sugara), g pedig a nehézségi gyorsulás (g = 9,81 m/s 2 ). A formula szerint a nagyobb körön kering kúpinga hamarabb járja be ezt a nagyobb kört, mint a kisebb sugáron kering. Vizsgáljuk meg mérésekkel, hogy igaz-e ez a reláció? Ismét két hallgató végezze a mérést: az egyik pörgesse a kúpingát kicsi ill. nagy sugarú körön, a másik pedig végezze az idmérést! Mindkét esetben a 10 kör megtételéhez szükséges idt mérjük meg. Kiértékelés: Vezessük le a kúpinga keringési idejét leíró formulát! Segítség: számítsuk ki a centripetális gyorsulást. Ez esetben a kötéler és a nehézségi er eredje lesz a centripetális er A 10 kör megtételéhez szükséges idkbl számoljuk ki a periódusidket, majd a formula segítségével a kisebb ill. nagyobb kör sugarát Harmonikus rezgmozgás. Csillapított rezgmozgás. Az elméleti részben a harmonikus és csillapított rezgmozgás tárgyalásánál nem vettük figyelembe a gravitáció hatását, a kísérleti elrendezésnél azonban számolni kell azzal is. Nézzünk egy rugóra felfüggesztett tömegpontot. Jelölje y az m tömegpont helyzetét a felfüggesztési ponttól mérve, és L a rugó hosszát; ekkor az m tömeg mozgásegyenlete az alábbi alakú lesz: m d 2 y/dt 2 = k (y L) + mg c dy/dt. Ez az egyenlet els pillantásra nem a csillapított rezgmozgásnál megszokott mozgásegyenlet, de rögtön be fogjuk mutatni, hogy olyan alakúra transzformálható. A fenti rendszer egyensúlyi pontja az a pont, ahol a rugóer és a nehézségi er kompenzálja egymást, és ezért itt a tömegpontnak nincs gyorsulása (d 2 y/dt 2 = 0), valamint ahol a tömegpont ott is marad, amennyiben nincsen sebessége (dy/dt = 0). Ezeket a feltételeket a mozgásegyenletbe helyettesítve azt kapjuk, hogy a kérdéses egyensúlyi pont y koordinátája y E = L + mg/k. Ezek után vezessünk be egy új x változót, amely azt mutatja meg, hogy a tömegpont milyen távol van ettl az egyensúlyi ponttól: x = y y E = y (L + mg/k). A régi y változó az új x változóval kifejezve: y = x + L + mg/k. Ha ezt behelyettesítjük a mozgásegyenletbe, és figyelembe vesszük, hogy az új és régi változó idderiváltjai megegyeznek (hiszen L és mg/k idtl független állandók), akkor az új mozgásegyenlet a megszokott m d 2 x/dt 2 = k x c dx/dt alakot ölti. Tehát a nehézségi er módosítja ugyan az egyensúlyi helyzetet, de más hatása nincs a harmonikus rezgmozgásra; valamint a rugó L hossza sem játszik közvetlen szerepet. (Közvetett szerepe azonban van, mert az ugyanolyan minség, de 2L hosszúságú rugó rugóállandója fele 2. MECHANIKA / 7
8 akkora lesz, mint az L hosszúságú rugóé. Gondoljuk át, hogy miért? Ha nem találjuk a választ, akkor kérdezzük meg errl a mérés vezetjét!) Eszközök: - állvány, mm-es leolvasásra alkalmas skálával - rugó - anyacsavarok mint ismert tömegek - PVC rúd, amire a tömegeket tesszük - ismeretlen tömeg - stopper - elektronikus mérleg Mérési feladatok: A rugó k rugóállandójának meghatározása: Különböz terhelések mellett olvassuk le a rugó legalsó pontjának a pozícióját. Végezzük el a mérést a PVC rúd nélkül, majd az üres PVC rúddal, végül 1, 2, 4, 6, 8, 10, 12, 14 és 16 anyacsavarral terhelve! Mérjük meg a PVC rúd tömegét a mérlegen Tegyük a PVC rúdra az ismeretlen tömeget (anyacsavarok most ne legyenek a rúdon), és olvassuk le a rugó legalsó pontjának pozícióját! Rakjunk a PVC rúdra 5, 10, majd 15 anyacsavart, hozzuk rezgésbe a rugót, és mérjük meg a periódusidt! (10 rezgés idejét mérjük meg!) Szorgalmi feladat: Végezzük el a mérést az ismeretlen tömeggel is! Szorgalmi feladat: Mérjük meg a 2 csavaros és a 20 csavaros terhelésnél is, hogy kb. mennyi id alatt csökken a felére a rezgés amplitúdója! (Kvalitatív mérés: csak azt figyeljük meg, hogy melyik csillapodik gyorsabban!) Kiértékelés: Ábrázoljuk a rugó legalsó pontjának pozícióját a csavarszám függvényében, és számítsuk ki a rugó k rugóállandóját! Számoljuk ki az ismeretlen tömeget! Szorgalmi feladat: Számítsuk ki a tömegmérés hibáját, abból kiindulva, hogy a leolvasás hibája 1 mm! Számoljuk ki a rezgmozgás periódusidejét 5, 10, ill. 15 csavarnak megfelel tömeggel, és hasonlítsuk össze a mért értékekkel! Szorgalmi feladat: Az ismeretlen tömeggel mért periódusidbl számoljuk ki az ismeretlen tömeget! Szorgalmi feladat: Magyarázzuk meg az eredményt! 2.3. Matematikai inga Eszközök: - állvány - damilra kötött anyacsavar - mérszalag - stopper Mérési feladatok: 2. MECHANIKA / 8
9 Mérjük meg az inga hosszát. Mérjük meg az inga lengésidejét kis kitérések esetén. 10 lengés idejét mérjük! Ismételjük meg a mérést ötször Ellenrizzük, hogy kis kitérések esetén a lengésid független az amplitúdótól, míg igen nagy (közel 90 -os) kitérések esetén a lengésid valóban nagyobb! Kiértékelés: Számoljuk ki a lengésidt, és a lengésid hibáját 95 %-os konfidenciaszinten! A lengésidbl számítsuk ki a g értékét! Számoljuk ki, mekkora hibával tudjuk meghatározni g értékét, ha feltételezzük, hogy a hosszmérés hibája 2 mm! 2.4. Torziós inga (szorgalmi feladat) Eszközök: - állvány - rugó - hengeres manyag doboz - textilbakelit korongok - stopper - mérszalag - elektronikus mérleg Mérési feladatok: Mérjük meg a rugóból és annak a végéhez ersített hengeres manyag dobozból álló torziós inga lengésidejét! Mérjük meg a lengésidt úgy is, hogy a doboz aljához a) egy, b) kett darab textilbakelit korongot ersítünk. Mérjük meg a korongok tömegét elektronikus mérleggel, a sugarát pedig mérszalaggal. Kiértékelés: Számoljuk ki a korongok tehetetlenségi nyomatékát! (Korong tehetetlenségi nyomatéka a = ½ M R 2 formulával számolható.) Számítsuk ki a doboznak a forgástengelyre vonatkoztatott tehetetlenségi nyomatékát! 2. MECHANIKA / 9
10 Kérdések, gyakorló feladatok Igaz-e, hogy* - az egyenletes körmozgást végz tömegpontra ható erk eredje mindig a kör középpontja felé mutat? - egy pontos rugós ermér rugójának a hossza bizonyos határokon belül arányos a rá ható ervel? - egy rugós ermérvel nem csak sztatikai er-, hanem sztatikai tömegmérést is lehet végezni? - egy körmozgás vetülete egy olyan síkra, amely merleges a kör síkjára mindig harmonikus rezgmozgásnak tekinthet? - egy harmonikus rezgmozgás periódusideje független a rezgés amplitúdójától? - a rugóállandót kétszeresére növelve, a rugó végén lév tömegpont tömegét pedig felére csökkentve harmonikus rezgmozgás esetén a periódusid is a felére csökken? - ingamozgásnál a lengésid ersen függ a kitéréstl? - ingamozgásnál a lengésid egyenesen arányos az inga hosszával? - körmozgást végz tömegpontra ható erk eredje mindig a kör középpontja felé mutat? - harmonikus rezgmozgásnál a rezgésid az amplitúdó négyzetgyökével egyenesen arányos? - ha van két egyforma hosszú és egyforma k 1 rugóállandójú rugónk és az egyiket a másik végéhez toldjuk, akkor az így kapott rugó k rugóállandója az egyes rugókénak kétszerese lesz (k = 2 k 1 )? - kúpinga periódusideje csak a kötélnek a függlegessel bezárt szögétl függ, a kötél hosszától nem? *A válaszokhoz indoklást is kérünk! Mit értünk sztatikai er- és tömegmérés alatt? Mit értünk dinamikai er- és tömegmérés alatt? Szabad vagy kényszermozgásról van szó a kúpinga esetében? Indokoljuk a választ! M1) Kúpinga hossza 1 m, a függlegessel bezárt szöge 60. Mekkora a körpályán kering test tömege, ha a fonáler 10 N? (g = 9,81 m/s 2 ) Megoldás: mg / F fonál = cos 60 m = 0,51 kg M2) Egy modellrepült L = 10 m hosszúságú fonálon körpályán reptetnek úgy, hogy a fonál másik vége egy pózna végéhez van ersítve. A gépet tekintsük egy tömegpontnak, amely minden körülmények között egy vízszintes síkban kering, de ennek a síknak a helyzete függeni fog a gép sebességétl. a) Mennyi a repülgép sebessége, ha a fonálnak a függlegessel bezárt szöge α = 45? (A gép szárnyain keletkez felhajtóertl egyelre tekintsünk el.) b) A gép szárnyain a v = v KRIT = 20 m/s sebességnél a repülgép súlyának megfelel (függleges irányú) felhajtóer keletkezik. Adjuk meg a keringési idt ebben az esetben! c) *A gép szárnyain v = 2v KRIT = 40 m/s sebességnél a gép súlyát 4-szeresen felülmúló (függleges irányú) felhajtóer keletkezik. Hány fokkal (β=?) emelkedik a gépet tartó fonal a vízszintes fölé ebben az esetben? 2. MECHANIKA / 10
11 Megoldás: a) F cp = mg tg 45 = ma cp, a cp = v 2 /r, r = L sin 45 v = g L sin 45 8,4 m/s b) mivel a függleges erk kiegyenlítik egymást, a kötél vízszintes, r = L, és ω = 2π/T = v/r T = 2πL/v = π s 3,14 s c) F cp tgβ = 3mg, F cp = mv 2 /R, R = Lcosβ sin 2 β+v 2 /(3gL)sinβ 1=0 sinβ = 0,178, β = 10,3 M3) Kísérleteinkhez egyforma k erállandójú súlytalan rugók és m tömeg csavarok állnak a rendelkezésünkre. Ha egy rugó végére 1 db csavart helyezünk, akkor a mért rezgésid T. a) Hányszorosa ennek a T idnek egy olyan rendszer periódusideje, amelyben N darab csavart teszünk a rugó végére? b) 2 rugót párhuzamosan kötünk egyetlen csavarra (a csavart két rugóval függesztjük fel). Mekkora lesz így a rezgés periódusideje? Indokoljuk a választ! c) N darab rugót összekötünk úgy, hogy az egyik rugó végét a másik rugó elejébe akasztjuk, azaz egy rugó lánc jön így létre. E lánc végére egyetlen csavart teszünk. Mennyivel hosszabb vagy rövidebb ennek a rendszernek a periódusideje, mint az egy rugót és egy csavart tartalmazó rendszeré? Megoldás: a) mivel T = 2π m / k, N db esetén N -szeresére n b) a két párhuzamosan kötött rugót egy kétszer akkora rugóállandójú rugónak tekinthetjük, így a periódusid 2 -ed részére csökken c) az N db egymás után kötött rugót egy olyan rugónak tekinthetjük, melynek rugóállandója N- ed része egy rugóénak, így a periódusid N -szeresére n M4) Egy 81,5 cm hosszú matematikai inga lengésidejét 1,800 másodpercnek mértük 1 ms hibával 95 %-os konfidenciaszint mellett. a) Mekkora nehézségi gyorsulás számítható ebbl? b) Mekkora hibát okoz a nehézségi gyorsulásban az, hogy a lengésidt csak 1 ms pontossággal ismerjük? Vajon megmagyarázza ez a mérés hibáját? (Tudjuk ugyanis, hogy amennyiben a mérés Magyarországon történt, akkor az eredménynek 9,81 m/s 2 körüli értéknek kellene lennie.) Ha nagyobb az eltérés, mint ami az idmérés hibájából várható, akkor vajon mi okozta azt? Megoldás: a) T = 2π / g 9,93 m/s 2 ( ) b) az idmérés pontatlanságából ered hiba g = = 8π L / T T = 0,011m / s 2 4π L / T T ez egy nagyságrenddel kisebb a mért és a valódi érték eltérésénél (9,93-9,81= 0,12 m/s 2 ); a nagy hibát a hosszmérés pontatlansága okozhatta MECHANIKA / 11
12 M5) Egy rugós ermérre csavarokat helyezve azt tapasztaljuk, hogy az els két csavar hatására még nem következik be megnyúlás, és csak 4 csavaros terhelés után tekinthet lineárisnak a terhel tömeg megnyúlás diagram. Innentl az ermér rugóállandója 5 N/m. 4 csavaros terhelésnél a rugó végének pozíciója 4,4 cm. Most ráfüggesztünk a mérlegünkre egy Túró Rudit és azt tapasztaljuk, hogy a rugó végének pozíciója 10,3 cm-re változott. a) Mennyi a Túró Rudi tömege? b) A 4 csavar és a rugó végén lev tartószerkezet tömege együttesen 60 g. Mennyi a rezgésideje ennek a rendszernek, és mennyire n meg ez a Túró Rudi hatására? Megoldás: a) m TúróRudi g = k m TúróRudi = k / g = = 5 (10,3-4,4)10-2 / 9,81 = 0,03 kg = 3 dkg b) m x = -kx ω = k / m = 2π / T T= 2π m / k m 4 csavar + tartó = 0,06 kg T 1 = 0,688 s m +TúróRudi = 0,09 kg T 2 = 0,843 s M6) Mechanika mérésen matematikai inga lengésidejébl számolják ki a hallgatók a nehézségi gyorsulás értékét. Az inga hossza L = 36 cm, a mért lengésidk 1,24 s 1,24 s 1,25 s 1,22 s 1,24 s 1,25 s a) Adjuk meg a lengésidt és hibáját 90 %-os konfidenciaszinten! b) Adjuk meg az így számított nehézségi gyorsulás értékét és hibáját 90 %-os konfidenciaszinten, ha a hosszmérés hibája 4 mm! M7) Egy 0 = 22 cm hosszú, k = 4,2 N/m rugóállandójú rugóra m tömeg testet akasztunk, meghúzzuk lefelé = 12 cm-t, elengedjük, és megmérjük 10 rezgés idejét: t 10 = 8 s. a) Mekkora a rugó végére akasztott test tömege? b9 Mennyi lenne 10 rezgés ideje, ha kétszer akkora tömeget akasztanánk a rugó végére? (A rugót kezdetben ugyanannyival húzzuk ki.) M8) Neil Armstrong a Hold felszínén egy = 26,0 cm hosszú matematikai inga lengésidejét 2,50 s- nak mérte. a) Mekkora nehézségi gyorsulás számítható ebbl? b) Mekkora hibával határozható meg így a holdi nehézségi gyorsulás értéke, ha a lengésid mérésének pontossága 0,01 s, az inga fonalának hosszát pedig 0,5 cm pontossággal ismerjük? 2. MECHANIKA / 12
1. MECHANIKA. Periodikus mozgások: körmozgás, rezgések, lengések
1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk velük.
1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk
2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések
2. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglalkoztunk velük.
2. MECHANIKA 2. MECHANIKA / 1. ω +x
2. MECHANIKA A mérés célja Periodikus mozgásokkal a mindennapi életben gyakran találkozunk, és korábbi tanulmányainkban is foglalkoztunk velük. Ennek a gyakorlatnak célja egyrészt az, hogy ezeket a mozgásokat
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések
Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
ÁLTALÁNOS JÁRMŰGÉPTAN
ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató
Oktatási Hivatal A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló FIZIKA II. kategória Javítási-értékelési útmutató 1. feladat. Az m tömeg, L hosszúságú, egyenletes keresztmetszet,
PÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
2. REZGÉSEK Harmonikus rezgések: 2.2. Csillapított rezgések
. REZGÉSEK.1. Harmonikus rezgések: Harmonikus erő: F = D x D m ẍ= D x (ezt a mechanikai rendszert lineáris harmonikus oszcillátornak nevezik) (Oszcillátor körfrekvenciája) ẍ x= Másodrendű konstansegyütthatós
1. Feladatok merev testek fizikájának tárgyköréből
1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló
Kifejtendő kérdések december 11. Gyakorló feladatok
Kifejtendő kérdések 2016. december 11. Gyakorló feladatok 1. Adja meg és a pályagörbe felrajzolásával értelmezze egy tömegpont általános síkbeli mozgását jellemző kinematikai mennyiségeket (1p)! Vezesse
Rezgőmozgás, lengőmozgás
Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást
Fizika alapok. Az előadás témája
Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális
3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:
1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
1. Mechanika. K1A laborzh gyakorló anyag
1. Mechanika Igaz-e, hogy - az egyenletes körmozgást végz tömegpontra ható erk eredje mindig a kör középpontja felé mutat? - egy pontos rugós ermér rugójának a hossza bizonyos határokon belül arányos a
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Gyakorló feladatok Feladatok, merev test dinamikája
Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
A mechanika alapjai. A pontszerű testek kinematikája. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
A mechanika alapjai A pontszerű testek kinematikája Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. 2 / 35 Több alapfogalom ismerős lehet a középiskolából. Miért tanulunk erről mégis? 3 /
Irányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása
Lineáris erőtörvény vizsgálata és rugóállandó meghatározása A mérés célja Szeretnénk igazolni az F=-Dx skaláris Hooke-törvényt, azaz a rugót nyújtó erő és a rugó megnyúlása közt fennálló lineáris kapcsolatot,
Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Az inga mozgásának matematikai modellezése
Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Az elméleti mechanika alapjai
Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.
Newton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:
9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y
Rezgőmozgások. Horváth András SZE, Fizika és Kémia Tsz szeptember 29.
Rezgőmozgások Horváth András SZE, Fizika és Kémia Tsz. 2006. szeptember 29. , Egyirányú 2 / 66 Rezgőmozgásnak nevezünk egy mozgást, ha van a térnek egy olyan pontja, amihez a mozgást végző test többször
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa
1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)
A bolygók mozgására vonatkozó Kepler-törvények igazolása
A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
Rugalmas állandók mérése (2-es számú mérés) mérési jegyzõkönyv
(-es számú mérés) mérési jegyzõkönyv Készítette:,... Beadás ideje:.. 9. /9 A mérés leírása: A mérés során különbözõ alakú és anyagú rudak Young-moduluszát, valamint egy torziós szál torziómoduluszát akarjuk
Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó
Rugalmas állandók mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 2. MÉRÉS Rugalmas állandók mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 16. Szerda délelőtti csoport 1. A mérés rövid leírása Mérésem
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N
IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két
A mechanikai alaptörvények ismerete
A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!
Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Fizika feladatok - 2. gyakorlat
Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában
Mérést végezte: Varga Bonbien. Állvány melyen plexi lapok vannak rögzítve. digitális Stopper
Mérést végezte: Varga Bonbien Mérőtárs neve: Megyeri Balázs Mérés időpontja: 2008.04.22 Jegyzőkönyv Leadásának időpontja: 2008.04.29 A Mérés célja: Hooke Törvény Vizsgálata Hooke törvényének igazolása,
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Q 1 D Q 2 (D x) 2 (1.1)
. Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
2009/2010. tanév Országos Középiskolai Tanulmányi Verseny döntő forduló. FIZIKA I. kategória FELADATLAP. Valós rugalmas ütközés vizsgálata.
A versenyző kódszáma: 009/00. tanév Országos Középiskolai Tanulmányi Verseny FIZIKA I. kategória FELADATLAP Valós rugalmas ütközés vizsgálata. Feladat: a mérőhelyen található inga, valamint az inga és
2.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések
58. FEJEZET. EGY SZABADSÁGI FOKÚ LENGŐRENDSZEREK.4. Coulomb-súrlódással (száraz súrlódással) csillapított szabad rezgések.4.1. Súrlódási modell A Coulomb-féle súrlódási modellben a súrlódási erő a felületeket
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten
Differenciálegyenletek december 13.
Differenciálegyenletek 2018. december 13. Elsőrendű DE Definíció. Az elsőrendű differenciálegyenlet általános alakja y = f (x, y), ahol f (x, y) adott kétváltozós függvény. Minden y = y(x) függvény, amire
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Nem igaz; a helyvektor deriváltja egyenl a gyorsulás integráljával (megfelel kezdeti feltételekkel)
K1A vizsgazh gyakorló anyag 007.11.7. Fizika K1A zh1 005. nov. 14. 1. Az alábbi állítások közül melyek azok, - amelyek általános esetben érvényesek; - amelyek soha nem igazak; - amelyek csak egyes speciális
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1
Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása
Mérések állítható hajlásszögű lejtőn
A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?
Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Tömegmérés stopperrel és mérőszalaggal
Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2
Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3
Speciális mozgásfajták
DINAMIKA Klasszikus mechanika: a mozgások leírása I. Kinematika: hogyan mozog egy test út-idő függvény sebesség-idő függvény s f (t) v f (t) s Példa: a 2 2 t v a t gyorsulások a f (t) a állandó Speciális
Mechanikai rezgések = 1 (1)
1. Jellemző fizikai mennyiségek Mechanikai rezgések Mivel a harmonikus rezgőmozgást végző test leírható egy egyenletes körmozgást végző test vetületével, a rezgőmozgást jellemző mennyiségek megegyeznek
Fizika 1X, pótzh (2010/11 őszi félév) Teszt
Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást
Speciális relativitás
Fizika 1 előadás 2016. április 6. Speciális relativitás Relativisztikus kinematika Utolsó módosítás: 2016. április 4.. 1 Egy érdekesség: Fizeau-kísérlet A v sebességgel áramló n törésmutatójú folyadékban
A II. kategória Fizika OKTV mérési feladatainak megoldása
Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
5. Körmozgás. Alapfeladatok
5. Körmozgás Alapfeladatok Kinematika, elemi dinamika 1. Egy 810 km/h sebességu repülogép 10 km sugarú körön halad. a) Mennyi a repülogép gyorsulása? b) Mennyi ido alatt tesz meg egy félkört? 2. Egy centrifugában
Mechanika - Versenyfeladatok
Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje.
ELMÉLET Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. Fogalmak, definíciók:
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata