következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "következô alakúra: ax () = 4 2 P 1 . L $ $ + $ $ 1 1 2$ elsô két tagra a számtani és mértani közép közötti egyenlôtlenséget, kapjuk hogy + cos x"

Átírás

1 Tigonoetius egenlôtlensége II ész 7 90 a) a in = ezt ao veszi fel ha = Hozzun özös nevezôe alaítsu át a övetezô alaúa: a () = sin cos sin cos + = sin + sin bin = ezt ao veszi fel ha = Mivel b ()> 0 a egadott intevalluon ezét J N pontosan ott van a iniua ahol a négzeténe b () K = f = cos sin O J N = + 8 sin cos sin cos K sin sin O c) cin = + ezt ao veszi fel ha = Alalazzu a szátani és étani özép özötti egenlôtlenséget a pozitív és -e! Kapju hog + sin cos sin cos Itt egenlôség ao és csa ao van ha = Mutassu eg sin cos sin cos hog ez = -nél teljesül! Tehát c () + = f sin cos sin cos sin + + d) din = + ezt = -nél veszi fel Hasonlóan jáhatun el sin int az elôzô feladat egoldásánál e) A ifejezés iniua + és ezt = -nél veszi fel A ifejezést hozzu a övetezô alaúa: + + Alalazzu az cos sin sin cos elsô ét taga a szátani és étani özép özötti egenlôtlenséget apju hog + cos sin sin cos cos sin sin cos sin sin n 9 K a = és ezt = = f = n= a + b -nél veszi fel Alalazzu az a b # sin + cos iset és önnen igazolható egenlôtlenséget! sin cos # sin cos # sin + cos sin n- + cos n sin n+ cos # sin n- cos n# sin n cos # Adju össze ezen egenlôtlenségeet apju hog: K # a`sin + cos j+ `sin + cos j+ f + `sin n+ cos nj = n = ( + + f + ) =

2 7 Tigonoetius egenletendszee 9 a) aa = 8 és ezt = J -nál veszi fel a () cos cos N = - cos K O Alalazzu e háo ténezôe a szátani és étani özép özötti egenlôtlenséget! J N cos + cos + - cos cos cos - cos # K O Ebbôl övetezi hog a ()# 8 8 Egenlôség ao és csa ao van ha cos cos ba = ezt ao veszi fel 7 a függvén aio = ac cos 0 8 b () = cos cos ( - cos ) ezután hasonlóan 8 jájun el int az elôzô feladatnál c) ca = és ezt ao veszi fel ha 7 ac sin = Hasonlóan oldhatju eg int az elôzô ét feladatot A övetezôben is l n p q u v tetszôleges egész száoat jelentene Tigonoetius egenletendszee 9 = ( - l) = ( + l) 9 a) Adju össze az egenletendszet! l n =- + p =- + u = l = n = q = v Adju össze az egenletendszet! = = p u 95 a) l n q v l n 9 a) Fejezzü i a ásodi egenletbôl -t és helettesítsü be az elsô egenletbe ajd alalazzu a egfelelô összegzési tételt! Használju fel a onstans eltün-

3 Tigonoetius egenletendszee 7 tetésée az = sin + cos azonosságot ajd osszu el az egenletet cos -szel aio ez ne nulla! Kapun tg -e eg ásodfoú egenletet (Mutassu eg hog cos ne lehet nulla!) = l l Hasonlóan jáhatun el int az elôzô feladatban a végén is eltééssel Uganis a végén endezzü nulláa az egenletet és alaítsu szozattá! 97 a) Hasonlóan ezdhetjü el int az elôzô ét feladatot A továbbiaban az összegzési tétel alalazása után cos -nal osszu el az egenletet (ha -et fejeztü =- + i oábban)! 5 0 c) d) = 0 + l 98 a) l 0 =- + Fejezzü i -et az elsô egenletbôl és helettesítsü be a ásodi egenletbe! Alalazzu a egfelelô összegzési tételt szoozzun a nevezôvel endezzü nulláa az egenletet ajd alaítsu szozattá! 7 5 l 5 =- + l =- + 0 Hasonlóan ezdhetjü el int az elôzôeet itt tg -a ásodfoú egenletet apun c) Az egenletendszene nincs egoldása a valós szápáo halazán Hasonló ódszeel oldhatju eg int az elôzôt d) Az egenletendszene nincs egoldása a valós szápáo halazán = 99 * = l ^ sin h + cos = sin + cos = Másészt a n sin cos + = azonosság négzete eelése után aphatju hog sin + cos = sin cos Íg - sin cos = Foltassu!

4 7 Tigonoetius egenletendszee 00 5 l n =- + p sin + cos = sin + cos = ^sin h + ^ cos h = f= _ sin + cos i = Íg sin = sin cos Használju fel hog sin cos és cos ezeet beíva az elôbbi egenletendsze elsô egenletébe ajd endezve az egenletet azt apju hog cos = Vegü figelebe hog az elsô egenlet a n l = J N övetezô alaa hozható: sin( + ) = sin -( -) K O l 0 a) 5 l 0 Fejezzü i az elsô egenletbôl -et ajd ezt helettesítsü be a ásodi egenletbe! Alalazzu a egfelelô összegzési tételt ajd szoozzun a nevezôvel és tg -a apun eg ásodfoú egenletet =- + =- + l 7 9 l l 9 0 l = = = = Az elsô egenletbôl aphatju hog = A ásodi egenletet endezzü át úg hog az agánosan álljon a jobb oldalon! Majd alalazzu a bal oldala a egfelelô összegzési tételt! Vegü ajd figelebe a egoldásnál hog > 0 és > 0 ezét az összegü is pozitív

5 Tigonoetius egenletendszee 75 = p 5 l n q =- + u 5 A ásodi egenletbôl hatáozzu eg -et és ezt helettesítsü be az =- + v elsô egenletbe! =- 0 =- Fejezzü i az elsô egenletbôl -t és helettesítsü be a ásodi z egenletbe! Szoozzun a nevezôvel és apun -e eg ásodfoú egenletet Enne ao és csa ao van valós egoldása ha a disziinánsa nenegatív 07 Használju fel hog cos sin és =- + l =- + cos= cos - Ezeet behelettesítve apju hog sin - cos = ezt alaítsu szozattá ajd használju fel a ási egenletet és apju hog: sin + cos = Oldju sin - cos = eg a egenletendszet! sin + cos = l = 08 ) = Az elsô egenletbôl apju hog = ezt he- l lettesítsü be a ásodi egenletbe és oldju eg az egenletet! 09 a) A ásodi egenletet alaítsu át a övetezô ódon: sin cos = l Fejezzü i az elsô egenletbôl -t és helettesít- =- - l

6 7 Tigonoetius egenletendszee sü be a ásodi egenletbe alalazzun eg egfelelô összegzési tételt ajd endezés után osszu el az egenletet + -al! 5 l 0 a) =- + 7 Hasonló ódon is egoldhatju =- + l int az elôzô feladatot c) d) ( + l) a) Adju össze a ét egenletet ajd alalazzu a egfelelô ( -l) ( + l) összegzési tételt! =- + ( + l) Használju fel a tangens ( l-) ( l) =- + - definícióját! Majd az elsô egenletet használju fel a ásodi egenlet átalaításában és apju hog: cos cos = Ezt adju össze elôszö az elsô egenlettel ajd ásodszo pedig vonju i belôle az elsô egenletet apju a övetezô egenletendszet: cos cos + sin sin = Alalazzu a egfelelô összegzési tételeet ajd oldju cos cos - sin sin =- 5 ( + l) 7 eg az egenletendszet! c) ( + l) 5 5 Elôszö ad- ( -l) ( l) = ju össze a ét egenletet ajd ásodszo vonju i egásból a ét egenletet! Eo eg újabb egenletendszet apun Alalazzu a egfelelô összegzési tételeet és eo isét 5 ( + l) újabb egenletendszet apun aelet á önnen egoldhatun d) ( l-) =- + ( + l) ( + l) 5 ( + l) 5 5 Hasonlóan =- + ( - l) ( l) - ( l) =- + - oldhatju eg int az elôzô feladatot

7 Tigonoetius egenletendszee 77 =- + n l =- + l =- + n Az elsô egenletet alaítsu át a övetezô alaúa a egfelelô azonos- =- + ság segítségével: ( cos + cos ) = Fejezzü i innen például cos étéét és helettesítsü be a ásodi egenletbe! a) =- + 5=- + p =- + p 7 p =- + n n 5 =- + n 7 8 p 5 Alalazzu a övetezô azonosságoat: cos sin 8=- + n cos= cos - Ezeet felhasználva az elsô egenletbôl a övetezôt apju: sin + cos = Oldju eg a ásodi egenletbôl és az új egenletbôl apott egenletendszet! 5 =- + ( -) ( ) ( + ) =- + ( + ) 7 ( p+ ) - ( p ) =- + - ( p+ ) 7 A ásodi egenletet a övetezô alaa hozhatju a szinuszo ( p-) + - összegéne szozattá alaításáa való azonosság segítségével: sin cos = ebbôl az elsô egenlet felhasználásával apju hog: cos( - ) = 5 ( + n) =- + ( n+ ) a) 5 ( n-) ( n ) =- + -

8 78 Tigonoetius egenletendszee 7 ( + n) ( + n) 7 Mindét egenletet alaítsu =- + ( n- ) ( n ) = át a egfelelô azonosságo segítségével a övetezô alaúa: cos sin = = cos cos = Osszu el egással a ét új egenletet - ( n+ ) és apju hog: tg = - ( + n) ( -n) ( n) - ( + p) ( + p) ( -p) ( p) - ( + n) 5 ( + n) 5 5 a) 0 ( + n) 5 7 ( -n) ( n) - ( n) 0-7 ( + n) 5 Használju fel a tangens és a otangens definícióját! egen a = és ( -n) J N b K O Eo az elsô egenletet a övetezô alaa hozhatju: sin ( + ) = a cos cos Míg a ásodi egenletet a övetezô alaa hozhatju: sin ( + ) = b sin sin Ezeet alaítsu át ég a övetezô ódon: () sin ( + ) = a cos ( - ) + a cos ( + ) és () sin ( + ) = b cos ( - ) - b cos ( + ) Az () egenletet szoozzu b-vel a () egenletet szoozzu a-val ajd a apott elsô egenletbôl vonju i a apott ásodi egenletet apju hog: (b - a) sin ( + ) = a b cos ( + ) ebbôl (*)tg ( + ) = b - Ha a a b ost összeadju a b-vel illetve a-val való szozás után apott egenleteet ao azt apju hog (**) (a + sin ( + ) = a b cos ( - ) A (*) és (**) egenletebôl álló egenletendszet á önnebben egoldhatju fôleg ha visszahelettesítjü a illetve b étéeit ( n+ ) 5 ( + n) =- + ( + n) ( n) =- + -

9 ( ) ( ) n n ( ) ( ) n n + - a) A ásodi egenletet alaítsu át a övetezô alaúa: ( ) ( ) cos cos _ b i l =- - Alaítsu át a ásodi egenletet a övetezô alaúvá: ( ) ( ) cos cos = - _ i 7 a) =- - 8 a) = l l =- 9 = 0 a) a) 5 =- - =- + ( ) ( ) + - ( ) ( ) =- + + =- + - Alalazzu a tangens definícióját eo apju a ásodi egenletbôl hog cos cos = ha felhasználju özben az elsô egenletet is Adju össze az új egenletet az elsô egenlettel apju hog cos cos sin sin + = Ezután a oábban apott egenletbôl ost vonju le az elsô egenletet apju hog: cos cos sin sin - =- Tigonoetius egenletendszee 79

10 80 Néhán nehezebb tigonoetiai feladat Majd alalazzu a egfelelô összegzési tételeet és a apott új egenletendszet á önnen egoldhatju = ( - n+ ) = ( n+ -) Adju össze az elsô ét egenletet ajd ebbôl vonju le a z= ( + n--) haadi egenletet! Kapju hog sin + sin - sin z+ sin( + + z) = 0 ( sin + sin ) + _ sin( + + z) - sin zi = 0 Alaítsu szozattá a záójeles ifejezéseet: z+ z + + z- z sin cos + cos sin = 0 + J z N sin cos + cos = 0 K O Alaítsu szozattá a záójeles ifejezést! Kis + + z + z átalaítás után apju hog sin cos cos = 0 Ebbôl elôbb-utóbb: + = = + z + z n Oldju eg a apott egszeû egenletendszet! Néhán nehezebb tigonoetiai feladat = 0 ( = l Gondolju eg hog + - # Alalazzu a negatív itevôjû hatván definícióját szoozzun a nevezôvel endezzü nulláa és oldju eg a -e ásodfoú egenlôtlenséget! Vegü észe hog teljes négzetet alaíthatun i: ( - ) # 0 ebbôl övetezi hog = azaz = 0 5 A háoszög oldalai 5 egségnie a szögei egen az n - hosszúságú oldallal szeözti szög az n + hosszúságú oldallal szeözti szög eo az n hosszúságú oldallal szeözti szög 80 - A szinusztételt alalazva n + sin n + = ebbôl elôbb-utóbb cos = Alalazzu a oszinusztételt! n - sin n - _ n - i n + = n + _ n+ i - n_ n+ i cos Ebbôl cos = Ha összevetjü a ( n + ) cos -e apott ét egenletet ao azt aphatju a apott egenlet egoldása után hog n = 5 egen K az AlBl szaasz felezôpontja OK = OK J N = sin - a OA K O = Ezebôl a = 5-0 ( = 5 ) = tg5 - tg0 = tga és íg t = = tga= = + tg5 tg0 = f = b- l

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola

Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.

MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010. MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált

Részletesebben

EXPONENCIÁLIS EGYENLETEK

EXPONENCIÁLIS EGYENLETEK Sokszínű matematika /. oldal. feladat a) = Mivel mindegik hatván alapja hatván, ezért átírjuk a -et és a -ot: = ( ) Alkalmazzuk a hatván hatvána azonosságot! ( ) = A bal oldalon az azonos alapú hatvánok

Részletesebben

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát!

1) Adja meg a következő függvények legbővebb értelmezési tartományát! 2) Határozzuk meg a következő függvény értelmezési tartományát! Függvének Feladatok Értelmezési tartomán ) Adja meg a következő függvének legbővebb értelmezési tartománát! a) 5 b) + + c) d) lg tg e) ln + ln ( ) Megoldás: a) 5 b) + + = R c) és sosem teljesül. d) tg

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12

XL. Felvidéki Magyar Matematikaverseny Oláh György Emlékverseny Galánta 2016 Megoldások 1. évfolyam. + x = x x 12 XL. Felvidéi Magyar Matematiaverseny Oláh György Emléverseny Galánta 016 Megoldáso 1. évfolyam 1. Oldju meg az egész számo halmazán az egyenletet. x 005 11 + x 004 1 = x 11 005 + x 1 004 Az egyenlet mindét

Részletesebben

Matematika szintfelmérő szeptember

Matematika szintfelmérő szeptember Matematika szintfelmérő 015. szeptember matematika BSC MO 1. A faglaltok éjszakáján eg közvéleménkutatásban vizsgált csoport %-ának ízlett az eperfaglalt, 94%-ának pedig a citromfaglalt. A két gümölcsfaglalt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek

9. Exponenciális és logaritmusos egyenletek, egyenlőtlenségek . Eponenciális és ritmusos egenletek, egenlőtlenségek Elméleti összefoglló H >, b>, és vlós számok, kkor + ( ) b ( b) H >, kkor z z ( ) ( ) f függvén szigorún monoton növekvő, míg h <

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Szögfüggvények értékei megoldás

Szögfüggvények értékei megoldás Szögfüggvények értékei megoldás 1. Számítsd ki az alábbi szögfüggvények értékeit! (a) cos 585 (f) cos ( 00 ) (k) sin ( 50 ) (p) sin (u) cos 11 (b) cos 00 (g) cos 90 (l) sin 510 (q) sin 8 (v) cos 9 (c)

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

Á ü ü Á Á Á ü Á ű ű ű Ö ü ü ü ü ü ü ü ű É É É É Ö Á ű ű ű Á ű ű Á ű Ö Í ű ü ü ü ü Í ü Í Ü Ö ü Ü ü ű ű Ö Ö Ü ü ü ű ü Í ü ü ü Ő Ő Ü ü Í ű Ó ü ű Ú ü ü ü ü ü Ö ü Ű Á Á ű É ü ü ü ü ű ü ü ü ű Ö Á Í Ú ü Ö Í Ö

Részletesebben

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája

1. Az ezekhez tartozó. egyenlet megoldásai: k 360. forgásszögek a. Két különböz egységvektor van, amelyek els koordinátája 8. modu: EGYSERBB TRIGONOMETRIKUS EGYENLETEK, EGYENLTLENSÉGEK 5 III. Trigonometrius egyenete Azoat az egyeneteet és egyentenségeet, ameyeben az ismereten vaamiyen szögfüggvénye szerepe, trigonometrius

Részletesebben

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze!

5. Végezd el a kijelölt műveleteket, és ahol lehet, vonj össze! 1 1. Rendezd a következő polinomokat a bennük lévő változó növekedő hatvánkitevői szerint! a) 2 + + 2 b) 2 + + 2 + 6 2. Melek egnemű algebrai kifejezések? a) a 2 b; 2ab; a 2 b; 2a b; 1,a 2 b b) 2 ; 2 ;

Részletesebben

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet!

9. osztály 1.) Oldjuk meg a valós számhármasok halmazán a következő egyenletet! HANCSÓK KÁLMÁN MEGYEI MAEMAIKAVERSENY MEZŐKÖVESD Sóeli feldto és megoldáso ostál ) Oldju meg vlós sámhármso hlmán öveteő egenletet! ( pont) A egenlet l oldlát átlíthtju öveteőéppen: A l oldl egi tgj sem

Részletesebben

Speciális függvénysorok: Taylor-sorok

Speciális függvénysorok: Taylor-sorok Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény

Részletesebben

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány

Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor

Részletesebben

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x.

1 1 y2 =lnec x. 1 y 2 = A x2, ahol A R tetsz. y =± 1 A x 2 (A R) y = 3 3 2x+1 dx. 1 y dy = ln y = 3 2 ln 2x+1 +C. y =A 2x+1 3/2. 1+y = x. Mat. A3 9. feladatsor 06/7, első félév. Határozzuk meg az alábbi differenciálegenletek típusát (eplicit-e vag implicit, milen rendű, illetve fokú, homogén vag inhomogén)! a) 3 (tg) +ch = 0 b) = e ln c)

Részletesebben

Ö É Á ÚÖ É É É É Ü É Ú Ü Ü ű ű ú ú ő ő ő ű ő ő Á É Ú Á Á Á Á ÓÁ Á É Á Á ő ő ö É Á Á É ú ú ü ö ü É Ó ö ü ö ö ö ő Á É Ó Ó Á Ű Ó É Á ű ö ú ő ú ú ú ő ő ű ú ü ő ő Ú Ó ö ú ű Á ö ő ö ő ü ö ő ő ő ü ö ö ő ú ü ö

Részletesebben

Koordináta-geometria alapozó feladatok

Koordináta-geometria alapozó feladatok Koordináta-geometria alapozó feladatok 1. Határozd meg az AB szakasz felezőpontját! (1,5 ; 3,5) (0,5 ; ) (6,5 ; 8,5) (4,5 ; ) (0,5 ; 1,5) (0 ; 0) (0 ; 8,5) (1 ; 1) ( 1,5 ; ) (3,5 ; 3) (0 ; 3) ( 1 ; 1,5).

Részletesebben

Ó Á Ö Á Ó ü Á Ü Á ü Ú Í Ó Á É Á Á Á Á Á Á Á É Ó ű ö Á Á Á Á Ó Á Á Á Á Á Ó É É Ö Á Ö ü Á Ó Á Í É Ú Ó ü Á Á Á Á Á Á Ó É É Á Á Á Á Á Á ü Á Á ö ö ü ö ü ü ú Ú Á ú Á Ó ü É Á ö ú ü É É ü ö ö ü Ó ü É Ó Á Áö Á

Részletesebben

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja

Bolyai János Matematikai Társulat. Rátz László Vándorgyűlés Baja Bolai János Matematikai Társulat Rátz László Vándorgűlés 06. Baja Záródolgozat dr. Nag Piroska Mária, Dunakeszi Dunakeszi, 06.07.. A Vándorgűlésen Erdős Gábor az általános iskolai szekcióban tartott szemináriumot

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások

Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok

Részletesebben

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény

Elemi függvények. Nevezetes függvények. 1. A hatványfüggvény Elemi függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály)

Kidolgozott feladatok a gyökvonás témakörhöz (10.A osztály) 1. Számítsuk ki a következő szorzatok értékét! (a) 3 3 3 (b) 7 3 7 3 1 9. Számítsuk ki a következő hánadosokat! (a) (b) 1 0 1 0 3. Döntsük el, melik szám a nagobb! (a) ( 3) vag ( ) 3 (b) Mivel tudjuk,

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

ö á á á í á áá í ü í á á öá ü á í á á á ö ü áí á ó í á í ő í ü á ö ú á á á ö ó ó á í á á í á ü á ö ó ö ő í á ü í á ü á ó í ó á ü í ű á á á á á á áá á

ö á á á í á áá í ü í á á öá ü á í á á á ö ü áí á ó í á í ő í ü á ö ú á á á ö ó ó á í á á í á ü á ö ó ö ő í á ü í á ü á ó í ó á ü í ű á á á á á á áá á ö á ó á ö Ö á á ő ü ö á ó ó ó ó üá á á á ö ö á á í á á ö í á Á á ö á ö ü ő ó ö ö ó ü ó á ü ü á á á á ó á ü á á á á á ó á ó óá ü áí á ü á ö ü ő á á í á í á ö ü á á ö ü á ü ö ö ú á ö á á ö ö á ú ö ü ü á

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL

I. A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL A primitív függvény és a határozatlan integrál 5 I A PRIMITÍV FÜGGVÉNY ÉS A HATÁROZATLAN INTEGRÁL Gyaorlato és feladato ( oldal) I Vizsgáld meg, hogy a övetező függvényene milyen halmazon van primitív

Részletesebben

Ú Á Ü É ő ö ó ó ő Ü ö Ó ő ú ó ö ő ú ű ű ö ú ö ó ü ö ő öü ő Ú ö Ü ű ó ü ű ő ö ő óü ó ó ő Á Á ó ó Ü ó ó ü Ü ö Á ő ő ó ö ó ü ő ö ó ö ő ó ú ú ó ő ó ó ú ü Ú Á Á É Ü É Ú ü Á É ő ü ÉÉ É Ü ó Ö ó ó ö ö ő óü ó ü

Részletesebben

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 +

1. Fourier-sorok. a 0 = 1. Ennek a fejezetnek a célja a 2π szerint periodikus. 1. Ha k l pozitív egészek, akkor. (a) cos kx cos lxdx = 1 2 + . Fourier-soro. Bevezet definíció Enne a fejezetne a célja, hogy egy szerint periodius függvényt felírjun mint trigonometrius függvényeből épzett függvénysorént. Nyilván a cos x a sin x függvénye szerint

Részletesebben

Teljes függvényvizsgálat példafeladatok

Teljes függvényvizsgálat példafeladatok Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss

Részletesebben

Függvények. 1. Nevezetes függvények A hatványfüggvény

Függvények. 1. Nevezetes függvények A hatványfüggvény Függvének Tétel: Ha az = ϕ() függvén az = f () függvén inverze, akkor = ϕ() függvén grafikonja az = f () függvén képéből az = egenesre való tükrözéssel nerhető. Tétel: Minden szigorúan monoton függvénnek

Részletesebben

5. A logaritmus fogalma, a logaritmus azonosságai

5. A logaritmus fogalma, a logaritmus azonosságai A ritmus foglm ritmus zonossági I Elméleti összefoglló H > 0 > 0 > 0 vlós számok és n tetszőleges vlós szám kkor 0 n n H > 0 > 0 > 0 vlós számok kkor H > kkor z f( ) kkor z f( ) függvén szigorún monoton

Részletesebben

Készletek - Rendelési tételnagyság számítása -1

Készletek - Rendelési tételnagyság számítása -1 Készlete - Rendelési tételnagyság számítása -1 A endelési tételnagyság meghatáozása talán a legészletesebben tágyalt édésö a észletgazdálodási szaiodalomban. Enne nagyészt az az oa, hogy mind az egyszee

Részletesebben

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport

Analízis I. zárthelyi dolgozat javítókulcs, Informatika I okt. 19. A csoport Analízis I. zártheli dolgozat javítókulcs, Informatika I. 0. okt. 9. Elméleti kérdések A csoport. Hogan számíthatjuk ki két trigonometrikus alakban megadott komple szám szorzatát más alakba való átváltás

Részletesebben

Többváltozós analízis gyakorlat, megoldások

Többváltozós analízis gyakorlat, megoldások Többváltozós analízis gakorlat, megoldások Általános iskolai matematikatanár szak 7/8. őszi félév. Differenciál- és integrálszámítás alkalmazásai. Határozzuk meg az alábbi differenciálegenletek összes,

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Á Á Á Á Á ö ő ü Ü ö ő ú ű ő ü ü ő ű ö ű ő ö ö ő ö ő ő ő ő ő ő ő ő ő ű ő ő ű ö ö ö ő ő Ü ő ő ű ö ő ő Ü ű ö ö ö ö ö ö ö ü ö ö ú ü ő ü ű ö ö ü ű ő ö ő ö ő ű ő ö ő ü ö ű ő ö ö Ü ö ö ő ő ö ő ű ő ő ü ö ő ő ú

Részletesebben

É ö í ö í í ű ö ö ú í í ú í ó Ó ö ú í ö ú í ű ö ü ó ü ó í ó ó ű ü í ű ö ó ó í ö Ü Ó í ó ű ó í ó ö ü ó í í ö ö í ó ö ú í ó ó í ó Ü ó í ü ű ö ü ó ó ö ö ö ö í ö ú Ó í í í ü ó ö ü í ó í Á Ó í ó ó ó ú Á ö í

Részletesebben

ű ü ű ű ű ű ö Á ö ö ú ú ö ö ö ü ö ö ö ű ö ú ú ű ö ö ü ö ö ú ö ü ü ö ü ö ű ö ö ü ö ö ü ö ü ü ü ö ö ö ö ű ö ű ü ö ö ü ű ö ü ö ű ü ű ö ö ú ű ö ú ö ö ü ű ű ö ű ü ö ű ö ö ö ú ö ü ö ö ö ö ú ü ü ö ö ü ö ö ö ö

Részletesebben

É á á á ö á á á á á á á á á ű á á á á á á á ű á á á ö á á á á á á á á á á á á á á á ű á ű á á á ö á á ú á á á á á ö ű á ű á á ü á á á É É ú É ü É ü Ú Á É ú Ú Á É Ü É Ú É Ú ű á ű á á ü Í Ú ü Á á É É ű á

Részletesebben

ó Ü ő É ó ó ő Ó Ó í ő ó ő Ö É ó ő ú Ü í ó Ú ő Ó Ó í ó ő ó É ó É ó ö ö ű Ö ő Ó ő ó ó Éó Ó É Ó Ó Ő ó É ó ó Ó É Ó ó ö í Ó ö í ű Ó í í ö Ü ű ó í ó ö ű Ó Ö Ö ó Ö Ó í ö ü ű ú ü ú ő ó í ó ó Ú ú í í í ó Ö ü ő

Részletesebben

É Á Á Á Ö Á Á Á É É Á Á É É Á Á Á ő ő É É Á Á ő ú ő ö ú Á ú ő ü ő ö ő ö É Á É É Ú ú É Á Á Á Á Ú Ü É É Ü Ú É É Ö ú ü ű Á É É É Á Ú É É É É öú É É Á É Á ÁÉ ú Ú ö ü Á ő ő ő Ú ö É Á Á ő Ü É É Á Á Ó É É Ú ú

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:

Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat: 6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum

Részletesebben

Kétváltozós függvények ábrázolása síkmetszetek képzése által

Kétváltozós függvények ábrázolása síkmetszetek képzése által Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az

Részletesebben

3 1, ( ) sorozat általános tagjának képletét, ha

3 1, ( ) sorozat általános tagjának képletét, ha Gyakolatok és feladatok. Hatáozd eg a kvetkező, ekuzíva ételezett soozatok általáos tagját: a), = = " ³, ; (felvételi feladat,99., Teesvá), b),, =, = " ³ ; (felvételi feladat, 99., Teesvá) c) =, = 4 =

Részletesebben

Ú ű Á ű

Ú ű Á ű Ú ű Á ű ű ű ű ű Ü Ü Ü Ü Ü Ü Ü Ú Ü Ü Ü Ü Ü ű ű Ú ű ű ű ű Ü ű Ö ű ű Ó Ő ű Ö ű Ö Ü Ő ű ű Ü ű ű Á Á Á Á Á ű Á Ú Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á Á ű Á Á Á ű ÁÁ ű Á Á Á ű Á ű Á Á Á Á ű Á Á Á Á Á Á Á Á Á Á ű

Részletesebben

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE

Sokszínû matematika 12. A KITÛZÖTT FELADATOK EREDMÉNYE Sokszínû matematika. A KITÛZÖTT FELADATOK EREDMÉNYE Számsorozatok SOKSZÍNÛ MATEMATIKA A KITÛZÖTT FELADATOK EREDMÉNYE. A számsorozat fogalma, példák sorozatokra. A pozitív páros számok sorozatának n-edik

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként

A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

Ü Á Á ó Ü É É Ó Á É ó ó á ó á É á é é ö é é ó é é á á á úé í ú é ö é ó á á á í é ö í á á Ö é é á é ó é é é é ó é ü í í á á á ö é á é é é é é ó é Ü ő á é í ó ó ö ü í á á í ü á á ó á íí ó á ó ő á é é ö ö

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

6. Bizonyítási módszerek

6. Bizonyítási módszerek 6. Bizonyítási módszere I. Feladato. Egy 00 00 -as táblázat minden mezőjébe beírju az,, 3 számo valamelyiét és iszámítju soronént is, oszloponént is, és a ét átlóban is az ott lévő 00-00 szám öszszegét.

Részletesebben

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL

VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL Surányi János Farey törte mate.fazeas.u Surányi János VALÓS SZÁMOK MEGKÖZELÍTÉSE TÖRTEKKEL FAREY-TÖRTEK. Egy a alós számot racionális számoal, azaz törteel aarun megözelíteni. A törteet az alábbiaban mindig

Részletesebben

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e)

2. Egyenletek I. Feladatok 1. a) b) c) d) 2. a) b) c) d) 3. a) b) c) d) e) . Egenletek I. Feldtok. Oldj meg z lábbi egenleteket egenletrendszereket vlós számok hlmzán. ) b) ( ) ( ) 8 Klmár László Mtemtik Versen döntője 99. 8. osztál c) ( ) ( ) ( ) ( ) OKTV II. ktegóri. forduló

Részletesebben

Á É É Á Á Á ő ő ő ő É Ó Á Á Á ő Á Ú Ú ő É Á ő Á ő Á ő ő Á É ő Á ő Á É Á É Á Á É É ű ő ű É Ú ő Á Ú Ó Á Á Ó ő Á É ő Á Ó É Ó É Ó Ú Á Á Á Ü ű ő É Á É ő Á ő ő É É É É Á Á É Á Á Á É É ű É Á Á ő É É Á Á Á Á ű

Részletesebben

Egy feltételes szélsőérték - feladat

Egy feltételes szélsőérték - feladat Eg feltételes sélsőérté - feladat A most öveteő feladattal már régen találotam; most újra elővesem. Ami lepő, a a, hog a 80 - as éve elején történt találoás óta sehol nem uant fel, pedig jócsán hordo tanulságoat.

Részletesebben

Á Ö Á Á Á Ü ő Ó Ü Ó Á Ü Á Ü Ó Ö ű Á Ü Ű Ó Ö Á Ü Ü Ü Á Ó ű Ü Ü ű ő Ü Á ő Á Á ő Á Á ő ő ő ő Á Á ő ő ő Á Á ű ő ő ő ő Á Á ő Á ő Á Ó ő ő ű Á ő ő Á ő ő ő ő ő Á ő Á ő ő Á Ü Á Á ő ő ő Á Á ő ő ő Á ő ő ű ő ő Ü Á

Részletesebben

14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás

14. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Tarnai Gábor, mérnöktanár) Érdes testek - súrlódás SZÉCHENYI ISTVÁN EYETEM LKLMZOTT MECHNIK TNSZÉK 4. MECHNIK-STTIK YKORLT (kidolgozt: Trni ábor, mérnöktnár) Érdes testek - súrlódás 4.. Péld. dott: z ábrán láthtó letőn elhelezett test méretei és terhelése.

Részletesebben

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC.

ANALITIKUS MÉRTAN I. VEKTORALGEBRA. 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AD + BC = BD + AC. ANALITIKUS MÉRTAN INFORMATIKA CSOPORT I. VEKTORALGEBRA 1. Feladatlap Műveletek vektorokkal 1. Adott egy ABCD tetraéder. Határozzuk meg az alábbi összegeket: a) AB + BD + DC; b) AD + CB + DC; c) AB + BC

Részletesebben

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és

Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és 2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenletet: cos (3x π 3 ) = 1 2! A koszinusz függvény az első és a negyedik negyedben pozitív. Táblázati érték (hegyesszög): 1 2 60 = π 3 Ezek alapján felírhatjuk az

Részletesebben

1. Lineáris transzformáció

1. Lineáris transzformáció Lineáris transzformáció Lineáris transzformáció mátrixának felírása eg adott bázisban: Emlékeztető: Legen B = {u,, u n } eg tetszőleges bázisa az R n -nek, Eg tetszőleges v R n vektor egértelműen felírható

Részletesebben

11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

11. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK.. Példa:. MEHNIK-STTIK GYKORLT (kidolgozta: Triesz Péter, eg. ts.; Tarnai Gábor, mérnöktanár) Összetett szerkezetek statikája (három csuklós ív, Gerber tartó)

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont 1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza

Részletesebben

öáá á á í ó á á á á é á á ó á íí ó á é ó ó á é á ó é é ó ó É Í Í á é á á á á é é í á í ó á ó é á é éé á ó á á í á Ú éá á á é ó ö ü é Í á é é ó ó é ö é

öáá á á í ó á á á á é á á ó á íí ó á é ó ó á é á ó é é ó ó É Í Í á é á á á á é é í á í ó á ó é á é éé á ó á á í á Ú éá á á é ó ö ü é Í á é é ó ó é ö é öáá á á í ó á á á á é á á ó á íí ó á é ó ó á é á ó é é ó ó É Í Í á é á á á á é é í á í ó á ó é á é éé á ó á á í á Ú éá á á é ó ö ü é Í á é é ó ó é ö é á á á ó Ó á ó í éí é á á á áí ó Í ö é ő á á á á á

Részletesebben

Kalkulus II., harmadik házi feladat

Kalkulus II., harmadik házi feladat Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség

Részletesebben

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög

k n k, k n 2 C n k k=[ n+1 2 ] 1.1. ábra. Pascal háromszög Alapfeladato Megoldás A ombináció értelmezése alapján felírhatju, hogy n, n Ha n páros, aor n és n özött veszi fel értéeit Ha n páratlan, aor n, vagyis > n n+, ami azt jelenti, hogy és n özött veszi fel

Részletesebben

ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü

ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ö ü Ő Ö ü ö ü ó ü ü í ü ó ö ö ö ü ö ö ü í ü ü ü ö ó ü ö ü ú ö ö ö Ö ö ó í ó ü ö Ö ó ü ó ü ü ó ü ö Ö ü ü ö ö Ö ü Ü ö Ö ö ó í ö ö Ő ü ö ó í ü ö ó í ö Ö ü ü ö ö Ö ü ö ö ó í ó ö ú ö Ö ú ü ü ö ö ö Ö ü í ü ö

Részletesebben

á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí

á é é é é é é é é á é é é é á ú ó é ő á ő á é ű é á ó é é ő é ú ő á é é őá é é é é é é é á ő ö ő ö é á é ő é éé é é é á ő á é ő é á ó á ú á á é á é őí é é í á é é á é ő é ú ó ő é é í ő á é ő ő é ö á á ó í ú á á á é é á é é í é é é ő á á á é ö é é é á é é í é á á é á é á á í é é á á é á é ö é é é é é ü é á é é ö á á á é é é é ő é é á ú ű é á é ő é é ü

Részletesebben

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6

44. HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, 2015 Szóbeli feladatok megoldásai. Megoldás: 6 9 évfolm HNCSÓK KÁLMÁN MEGYEI MTEMTIKVERSENY MEZŐKÖVESD 5 Szóbeli feldto megoldási ) dju meg zot z egész értéeet mele mellett z 6 6 Z 6 6 6 6 is egész szám! pot 6 6 6 pot mide egész -re pártl íg or lesz

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

Á Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é

Á Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é Á Á Ó É Á Ó É É Á Á ó ó á ú í á á á Á ó ű á ó í ó á á á ú ö űú ö ö ű ö ő á ö ö ú ő á ú ő á ü á á ú ü á ö ú ú á á á ú í á ő ó ő ü á á á á á ó á ó ű á ö ö ü á á á ő ü á ó á á á ö á á ó ö őí á á á áí á á

Részletesebben

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit

Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Kettős és többes integrálok

Kettős és többes integrálok Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

ö ö ö ö ö ö ö ű ű ö ö ö ö ö Ő ö Ó Ú ö Ö ö ö ö ö Ö Ő ö ö Í Ó Ó Ő ö ö ö ö ö Ő Ő Ó Ő É ö Ú ö ö Ő ö ö ö ö ö ö ö Ő ö Ő É ö Ő ö ö Ő ö ö ö Ó ű ö ö ö Ő ö ö ö Í Ő Ó Í ö ö ö ö Ő Ő Ő Ő Í Ó Ő Ő Í Ő ö ö ö ö ö Ő Ő ö

Részletesebben

Ú ű ü ü Ü ű É É Ö Ö Á ü ü ü ű É ú Á Ö Ü ü ü ű É Á É Ű ű Ü Ü ű ü ű ü ű ü Ü ü ü Ű Á Á Á ű ú ű Á Ó Ó É Á Ó Á Ó ű ü ü ű ű ü ú ú ü ü ü ű ü ű Ü ű ü ü ú ü Ö ü ú ú ü ü ü ü ű ú ü Ó ü Ó Ó ü ü Ó ü ü Ó ű ű ú ű ű ü

Részletesebben

ML/GL (164)

ML/GL (164) ML/GL (164) + 375 17 309-9999 + 375 29 603-9999 + 375 33 603-9999 + 375 25 603-9999 A2513203131 2321 1519 35% A164320591380 3976 2771 30% A1643206113 3554 2477 30% A1643202431 889 582 35% A2519801164 352

Részletesebben

ő ő ö ő ő ő ö í ú ó ő ő ö Ö í ö í ú ö ő ö ő ö ó ó ö ó ó ó Ö ö ő ő ő ö ö ö ő Ó ó ö í ö ö ö ö ő Ű ő ó ó Ő í ü ö í ü Ö ö ö ö ő Ö Ü í ú ő ö ő ő ö ö ü Ó Ö

ő ő ö ő ő ő ö í ú ó ő ő ö Ö í ö í ú ö ő ö ő ö ó ó ö ó ó ó Ö ö ő ő ő ö ö ö ő Ó ó ö í ö ö ö ö ő Ű ő ó ó Ő í ü ö í ü Ö ö ö ö ő Ö Ü í ú ő ö ő ő ö ö ü Ó Ö ö ö ő ö ő ö Á ö Á ó ö ő ő Ö ő Ö Ü Á Á ó ó É ú Á Á ö í ö ó ö Ü ő í ó í ó ö ó ő ó ö ö í ő ő ő ő ö ö ő ö ő í ü Ö ő ő Ö ő ő ő ő ö ő ő ő ö í ú ó ő ő ö Ö í ö í ú ö ő ö ő ö ó ó ö ó ó ó Ö ö ő ő ő ö ö ö ő Ó ó ö

Részletesebben

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.

A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz. Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2.

Megoldás A számtani sorozat első három eleme kifejezhető a második elemmel és a differenciával. Összegük így a 2. d =33, azaz 3a 2. a 2. 1. Egy 33-as létszámú zenetagozatos osztályban hegedülni és zongorázni tanulnak a diákok. Minden diák játszik legalább egy hangszeren. Azok száma, akik mindkét hangszeren játszanak, akik csak hegedülnek,

Részletesebben

Zh-k összpontszáma Vizsga Zh+vizsga Jegy

Zh-k összpontszáma Vizsga Zh+vizsga Jegy Zh- összpontszáma 1 4 5 6 7 8 9 Vizsga Zh+vizsga Jeg Matematia A vizsga megoldása Név: 1 június 18, 9-11, Építőmérnöi BSc sza Neptun ód: Az utolsó három feladatból összesen el ell érni %-ot! 1 (a ( pont

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

= és a kínálati függvény pedig p = 60

= és a kínálati függvény pedig p = 60 GYAKORLÓ FELADATOK 1: PIACI MECHANIZMUS 1. Adja meg a keresleti és a kínálati függvének pontos definícióját! Mikor beszélhetünk piaci egensúlról?. Eg piacon a keresletet és a kínálatot a p = 140 0, 1q

Részletesebben

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok

I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK. I.1. Sorozatok Soozato 5 I. FEJEZET SOROZATOK, SZÁMTANI ÉS MÉRTANI HALADVÁNYOK I.. Soozato A legtöbb embe szóicsébe szeepel a soozat szó. Ez azt jeleti, hog edelezi valamile soozatfogalommal. Megéti, ha a miet sújtó

Részletesebben

Y 10. S x. 1. ábra. A rúd keresztmetszete.

Y 10. S x. 1. ábra. A rúd keresztmetszete. zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben