Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 31. maj 2004 / 120 minut brez odmora

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 31. maj 2004 / 120 minut brez odmora"

Átírás

1 [ i f r k n d i d t : A jelölt kódszám: Dr`vni izpitni center *P04C0M* SPOMLADANSKI ROK TAVASZI IDŐSZAK MATEMATIKA Izpitn pol / Feldtlp Ponedeljek, 3. mj 004 / 0 minut brez odmor 004. május 3., hétfő / 0 perc, szünet nélkül. Dovoljeno dodtno grdivo in pripomo~ki: kndidt prinese s seboj nlivno pero li kemi~ni svin~nik, svin~nik, rdirko, `epno r~unlo brez grfi~neg zslon in brez mo`nosti simbolneg r~unnj, {estilo, trikotnik (geotrikotnik), rvnilo in kotomer. Izpitni poli st prilo`en konceptn list in ocenjevlni obrzec. Engedélyezett segédeszközök: jelölt töltőtollt vgy golyóstollt, ceruzát, rdírt, csk műveleteket végző zsebszámológépet, körzőt, háromszögvonlzót (geo-háromszögvonlzót), vonlzót és szögmérőt hoz mgávl. A feldtlphoz egy értékelőlp és két vázltlp vn mellékelve. POKLICNA MATURA SZAKMAI ÉRETTSÉGI VIZSGA Nvodil kndidtu so n nslednji strni. A jelöltnek szóló útmuttó következő oldlon olvshtó. Izpitn pol im 4 strni, od teg 3 przne. A feldtlp terjedelme 4 oldl, ebből 3 üres. RIC 004

2 P04-C0--M NAVODILA KANDIDATU Pzljivo preberite t nvodil. Ne obr~jte strni in ne z~enjjte re{evti nlog, dokler Vm ndzorni u~itelj teg ne dovoli. Prilepite ozirom vpi{ite svojo {ifro n ozn~eno mesto zgorj n nslovni strni in n ocenjevlni obrzec ter n konceptn list. Izpitn pol im dv del. [tevilo to~k, ki jih lhko dobite z posmezne nloge, je nvedeno v izpitni poli. V prvem delu re{ite vseh 9 nlog. V drugem delu izmed treh nlog izberite in re{ite dve. Pi{ite z nlivnim peresom li kemi~nim svin~nikom. ^e se zmotite, np~en zpis pre~rtjte in g npi{ite n novo. Nloge z nejsnimi in ne~itljivimi re{itvmi bodo ovrednotene z ni~ (0) to~kmi. ^e ste nlogo re{ili n ve~ n~inov, nedvoumno ozn~ite, ktero re{itev nj ocenjevlec to~kuje. Grfe funkcij, geometrijske skice in risbe nri{ite s svin~nikom. Izdelek nj bo pregleden in ~itljiv. Pot re{evnj mor biti od z~etk do rezultt jsno in korektno predstvljen, z vsemi vmesnimi sklepi in r~uni. N 3. in 4. strni so formule. Mord si boste s ktero pomgli pri re{evnju nlog. V rzpredelnici ozn~ite z, kteri dve nlogi ste izbrli v. delu.. nlog. nlog 3. nlog Ocenjevlci ne bodo pregledovli konceptnih listov. Vsko nlogo skrbno preberite. Re{ujte premi{ljeno. Zupjte vse in v svoje Vm veliko uspeh. ÚTMUTATÓ A JELÖLTNEK Figyelmesen olvss el ezt z útmuttót! Ne lpozzon, és ne kezdjen feldtok megoldásáb, míg ezt felügyelő tnár nem engedélyezi! Kódszámát rgssz vgy írj be megjelölt keretbe borítón, z értékelőlpon és vázltlpokon! A feldtlp két részből áll. Az egyes feldtoknál elérhető pontszámot feldtlpon feltüntettük. Az első részben mind 9 feldtot oldj meg! A második rész három feldt közül válsszon ki és oldjon meg kettőt! Töltőtolll vgy golyóstolll írjon! H tévedett, leírtt húzz át, mjd írj le helyeset! A zvros és olvshttln megoldásokt null (0) ponttl értékeljük. H feldtot többféleképpen oldott meg, egyértelműen jelölje meg, melyik megoldást értékelje z értékelő! A függvények grfikonjit, mértni ábrákt és rjzokt ceruzávl készítse el! Munkáj legyen áttekinthető és olvshtó! A megoldási eljárás kezdetétől z eredményig világos és korrekt legyen, trtlmzz z összes közbenső következtetést és számítást! Az 5. és 6. oldlon vnnk képletek. Ezek segítségére lehetnek feldtok megoldásábn. A tábláztbn -szel jelölje, melyik két feldtot válsztott. részben!. feldt. feldt 3. feldt Az értékelők nem tekintik át vázltlpokt. Minden feldtot figyelmesen olvsson el! Megfontolv oldj meg feldtokt! Bízzon önmgábn és képességeiben! Munkájához sok sikert kívánunk!

3 P04-C0--M 3 FORMULE. Prvokotni koordintni sistem v rvnini Ploščin ( S ) trikotnik z oglišči, A y, B, y, C, y : Г Г Г Г Г S y3 y 3 y y Kot med premicm: tg k Г k K k k 3 3. Rvninsk geometrij (ploščine likov so oznčene z S ) Trikotnik: S c v c b sin 0 S s sг sгb sг c, s b c Polmer trikotniku včrtneg r in očrtneg R krog: S b c r, s bc ž R s žÿ ; 4S Enostrnični trikotnik: S, v, r, 4 6 e f c Deltoid, romb: S, trpez: S v, 3* r Dolžin krožneg lok: l, 80, 3 r * Krožni izsek: S, 360 b c Sinusni izrek: R Kosinusni izrek: sin * sin + sin 0 Г b c bc cos* 3 R 3 3. Površine in prostornine geometrijskih teles (S je ploščin osnovne ploskve) Prizm in vlj: P S S, pl V S v Pirmid: P S S pl, V S v Pokončni stožec: P 3r r s, V 3r v 3 Krogl: P 43r, V 43r 3 3

4 4 P04-C0--M 4. Kotne funkcije * * sin cos sin sin cos cos sin * + * + * + tg * * * sin cos * tg o o o * cos * cos * Г sin * sin * sin * cos * cos cos cos sin sin cos * + * + * + * 5. Kvdrtn funkcij, kvdrtn enčb Teme:, f b c 0 Ničli: b c T p q,, b p Г, b b c Г o Г4 D q Г, 4 Г D b 4c 6. Logritmi n log log log y y log y log log y Г log log log y y log b n log log b 7. Zporedj Aritmetično zporedje: n d Geometrijsko zporedje: n n Г, s nг d n n Г q, s n n n q q Г Г 8. Sttistik Srednj vrednost(ritmetičn sredin):, k f f f k k f f fk Vrinc: 6 ( Г ) ( Г ) ( Г k ) ± k Stndrdni odklon: 6 6 k

5 P04-C0--M 5 KÉPLETEK. Derékszögű koordinát-rendszer síkbn A, y, B, y, C, y, csúcsú háromszög területe á Az 3 3 Г Г Г Г Г S y y y y 3 3 S : Két egyenes hjlásszöge: tg K k Г k k k. Síkbeli mértn ( síkidomok területe S-sel vn jelölve) Háromszög: c S v c b sin 0 b c á Г á Г á Г, S s s s b s c s A háromszögbe írhtó kör sugr ár és háromszög köré írhtó kör sugr ár : S ž b c bc s s r, ; žs R žÿ Egyenlő oldlú háromszög: S, v, r, R e f c Deltoid, rombusz: S, trpéz: S v, 3r A körív hossz: l, 80, 3r Körcikk: S, 360 b c Sinustétel: R sin * sin + sin 0 Consinustétel: Г b c bc cos * A mértni testek felszíne és térfogt (z S z lplp területe) Hsáb és henger: P S S, V S v Gúl: P S S, V S v pl Egyenes kúp: P 3r árs, V 3r v r Gömb: P 43r, V 3 3 pl

6 6 P04-C0--M 4. Szögfüggvények * * sin cos sin sin cos cos sin * + * + * + tg * * * sin cos * tg o o o * cos * cos * Г sin * sin * sin * cos * cos cos cos sin sin cos * + * + * + * 5. Másodfokú függvény, másodfokú egyenlet Tengelypont: á f b c 0 Zérushelyek: b c b D p Г q Г, 4 T p, q,,, b b c Г o Г4 Г D b 4c 6. Logritmusok n log log log y y log y log log y Г log log log y y log b n log log b 7. Soroztok Számtni sorozt: án d Mértni sorozt: n n Г, s n ánг d, s n n Г n q n q q Г Г 8. Sttisztik Középérték (számtni közép): k f f f f f f k k k Vrinci (szórásnégyzet): 6 Г Г Г k ± Stndrd eltérés (szórás): k ( ) ( ) ( ) k 6 6

7 P04-C0--M 7. del /. rész Rešite vse nloge. / Minden feldtot oldjon meg!. Izrčunjte ntnčno vrednost izrz: 6 5 : žÿ Pontosn számíts ki žÿ 6 5 : kifejezés értékét! (4 točke/pont)

8 8 P04-C0--M 3 Г 54 in Г 7.. Dn st izrz: A B Izrz rzstvite v množici relnih števil. Г Г 3 Adott két kifejezés:. A 54 és B 7 A kifejezéseket bonts fel vlós számok hlmzábn! (4 točke/pont)

9 P04-C0--M 9 3. Iz podtkov n skici izrčunjte kot in strnico y. Az ábrán levő dtokokból számíts ki z szöget és z y oldlt! (4 točke/pont)

10 0 P04-C0--M o 4. Notrnji koti štirikotnik so zporedni členi ritmetičneg zporedj z rzliko 0. Izrčunjte vse notrnje kote. A négyszög belső szögei zon számtni sorozt egymást követő négy tgját lkotják, melyben o tgok különbsége 0. Számíts ki z összes belső szöget! (4 točke/pont)

11 P04-C0--M 5. Isto rzdljo je izmerilo 5 dijkov. Njihove meritve so: 3,5m,3,77m,3,68m,3,66m in 3,6 m. Izrčunjte srednjo vrednost meritev in stndrdni odklon. 5 diák mérte meg ugynzt távolságot. Az eredmények: 3,5m,3,77 m,3,68m, 3,66m és 3,6 m. Számíts ki mérések középértékét és szórását! (4 točke/pont)

12 P04-C0--M 6. N dve decimlni mesti ntnčno rešite enčbi: Két decimális hely ponossággl oldj meg z egyenleteket! ) 5 7 b) log 3 (5 točk/pont)

13 P04-C0--M 3 7. Zpišite enčbo kvdrtne funkcije, ktere grf je n sliki. Írj fel z ábrán levő másodfokú függvény grfikonjánk egyenletét! (5 točk/pont)

14 4 P04-C0--M 8. Jnez je kupil 7 vreč cement in 5 vreč pn ter plčl 6940 tolrjev. Jože je kupil v isti trgovini vreč cement in 5 vreč pn ter plčl 5990 tolrjev. Izrčunjte ceno vreče cement in ceno vreče pn. Jnez 7 zsák cementet és 5 zsák meszet vett, miért 6940 tollárt fizetett. Jože ebben boltbn zsák cementet és 5 zsák meszet vett, ezért 5990 tollárt fizetett. Számíts ki, mennyibe kerül egy zsák cement és egy zsák mész! (5 točk/pont)

15 P04-C0--M 5 9. Lonec vljste oblike je do 8 9 višine npolnjen z vodo. Koliko litrov vode je v loncu, če je visok 3 cm, njegov premer p je 30 cm? Egy henger lkú fzék 8 9 mgsságig vízzel vn megtöltve. Hány liter víz vn fzékbn, h mgsság 3 cm, z átmérője pedig 30 cm? (5 točk/pont)

16 6 P04-C0--M. del /. rész Izberite dve nlogi, obkrožite njuni zporedni številki in ju rešite. Válsszon ki két feldtot, krikázz be sorszámukt, és oldj meg őket!. Dni st premici: y 0 in ГyГ 5 0. Adott két egyenes: y 0 és Г Г y 5 0. ) Premici nrišite v isti koordintni sistem, oznčite njuno presečišče in izrčunjte njegovi koordinti. Az egyeneseket ábrázolj ugynbbn koordinát-rendszerben, jelölje meg metszéspontjukt, és számíts ki nnk koordinátáit! b) Izrčunjte kot med premicm. Számíts ki z egyenesek áltl bezárt szöget! c) Premici in ordintn os določjo trikotnik. Izrčunjte dolžino njkrjše strnice in ploščino teg trikotnik. (6 točk/pont) (4 točke/pont) Az egyenesek és z ordináttengely egy háromszöget htároznk meg. Számíts ki legrövidebb él hosszát és háromszög területét! (5 točk/pont)

17 P04-C0--M 7

18 8 P04-C0--M. Dn je (rcionln) funkcij f( ) Г 4 Г. Adott (rcionális) f( ) Г Г 4 függvény. ) Določite ničli, ob pol, vodorvno simptoto in presečišče grf funkcije z ordintno osjo. Htározz meg mindkét zérushelyét, vízszintes szimptotát, vlmint függvénygrfikon és z ordináttengely metszésponját! (5 točk/pont) b) Nrišite grf funkcije f ( ). Rjzolj meg z f ( ) függvény grfikonját! c) Rešite neenčbo Oldj meg z Г Г 4 Г < 0. (6 točk/pont) 4 Г < 0 egyenlőtlenséget! (4 točke/pont)

19 P04-C0--M 9

20 0 P04-C0--M 3. Pred vpisom v šolo so izmerili telesno višino 3 deklic. Dobili so vrednosti (v centimetrih, urejene po velikosti): 03, 04, 05, 06, 06, 07, 09, 0,,,,, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 0, 0,,,. Iskolkezdés előtt megmérték 3 kislány mgsságát. A következő értékeket kpták (centiméterekben, növekvő sorrendben): 03, 04, 05, 06, 06, 07, 09, 0,,,,, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 8, 8, 8, 0, 0,,,. ) Podtke uredite v 5 frekvenčnih rzredov širine 4 cm. Az dtokt rendezzék el 5, 4 cm szélességű reltív gykorisági osztályokb! b) Iz grupirnih podtkov izrčunjte povprečno višino deklic. A csoporosított dtokból számíts ki kislányok átlgos mgsságát! c) Podtke prikžite s frekvenčnim poligonom, li histogrmom, li kolčem. (5 točk/pont) (5 točk/pont) Az dtokt mutss be reltív gykoriság poligonjávl vgy hisztogrmml vgy kördigrmml! (5 točk/pont)

21 P04-C0--M

22 P04-C0--M PRAZNA STRAN ÜRES OLDAL

23 P04-C0--M 3 PRAZNA STRAN ÜRES OLDAL

24 4 P04-C0--M PRAZNA STRAN ÜRES OLDAL

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap ^etrtek, 3. februar 2005 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap ^etrtek, 3. februar 2005 / 120 minut brez odmora [ i f r k n d i d t : A jelölt kódszám: Dr`vni izpitni center *P04C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpitn pol / Feldtlp ^etrtek,. februr 005 / 0 minut brez odmor 005. február., csütörtök /

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ifr kndidt: Dr`vni izpitni center *P05C0M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitn pol / Feldtlp Ponedeljek, 9. vgust 005 / 0 minut brez odmor 005. ugusztus 9., hétfő / 0 perc, szünet nélkül. Dovoljeno

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ i f r n d i d t : A jelölt ódszám: Dr`vni izpitni center *P04C0M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitn pol / Feldtlp Sobot, 8. vgust 004 / 0 minut brez odmor 004. ugusztus 8., szombt / 0 perc,

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P07C0M* SPOMLADANSKI ROK TAVASZI IDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sobota,. junij 007 / 0 minut brez odmora 007. június., szombat

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P063C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sobota, 7. februar 007 / 0 minut brez odmora 007. február 7., szombat

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P07C0M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Torek, 8. avgust 007 / 0 minut brez odmora 007. augusztus 8., kedd /

Részletesebben

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 6. junij 2005 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 6. junij 2005 / 120 minut brez odmora [ i f r k d i d t : A jelölt kódszám: Dr`vi izpiti ceter *P05C0M* SPOMLADANSKI ROK TAVASZI IDŐSZAK MATEMATIKA Izpit pol / Feldtlp Poedeljek, 6. juij 005 / 0 miut brez odmor 005. júius 6., hétfő / 0 perc,

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *P073C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Sreda, 3. februar 008 / 0 minut brez odmora 008. február 3., szerda

Részletesebben

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap ^etrtek, 1. junij 2006 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap ^etrtek, 1. junij 2006 / 120 minut brez odmora [ifr kdidt: A jelölt kódszám: Dr`vi izpiti ceter *P06C0M* SPOMLADANSKI ROK TAVASZI IDŐSZAK MATEMATIKA Izpit pol / Feldtlp ^etrtek,. juij 006 / 0 miut brez odmor 006. júius., csütörtök / 0 perc, szüet élkül.

Részletesebben

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 13. februar 2006 / 120 minut brez odmora

Dr`avni izpitni center MATEMATIKA. Izpitna pola / Feladatlap Ponedeljek, 13. februar 2006 / 120 minut brez odmora [ ifr kdidt: A jelölt kódszám: Dr`vi izpiti ceter *P05C0M* ZIMSKI ROK TÉLI VIZSGAIDŐSZAK MATEMATIKA Izpit pol / Feldtlp Poedeljek,. februr 006 / 0 miut brez odmor 006. február., hétfő / 0 perc, szüet élkül.

Részletesebben

Dr`avni izpitni center. MATEMATIKA Izpitna pola 2 2. feladatlap Vi{ja raven Emelt szint

Dr`avni izpitni center. MATEMATIKA Izpitna pola 2 2. feladatlap Vi{ja raven Emelt szint [ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M0640M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpitna pola. feladatlap Vi{ja raven Emelt szint Ponedeljek, 8. avgust 006 / 90 minut 006. augusztus

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA [ifr didt: A jelölt ódszám: Dr`vi izpiti ceter *P06C0M* JESENSKI ROK ŐSZI IDŐSZAK MATEMATIKA Izpit pol / Feldtlp Poedelje 8. vgust 006 / 0 miut brez odmor 006. ugusztus 8. hétfő / 0 perc szüet élül Dovoljeo

Részletesebben

Dr`avni izpitni center. MATEMATIKA Izpitna pola 1 1. feladatlap Vi{ja raven Emelt szint

Dr`avni izpitni center. MATEMATIKA Izpitna pola 1 1. feladatlap Vi{ja raven Emelt szint [ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M0640M* JESENSI RO ŐSZI IDŐSZA MATEMATIA Izpitna pola. feladatlap Vi{ja raven Emelt szint Ponedeljek, 8. avgust 006 / 90 minut 006. augusztus

Részletesebben

*M M* Višja raven Emelt szint MATEMATIKA

*M M* Višja raven Emelt szint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M071401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota,. junij 007 / 90 minut 007. június., szombat

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sreda, 11. februar 2009 / 120 minut február 11., szerda / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sreda, 11. februar 2009 / 120 minut február 11., szerda / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P083C0M* MATEMATIKA Izpitna pola / Feladatlap ZIMSKI IZPITNI ROK TÉLI VIZSGAIDŐSZAK Sreda,. februar 009 / 0 minut 009.

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 5. junij 2010 / 120 minut június 5., szombat / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 5. junij 2010 / 120 minut június 5., szombat / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P0C0M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 5. junij 00 / 0

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0740111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Torek, 8. avgust 007 / 10 minut 007. augusztus

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 26. avgust 2008 / 120 minut augusztus 26.

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 26. avgust 2008 / 120 minut augusztus 26. Š i f r a k a n d i d a t a : A jelölt kódszáma: Državni izpitni center *P08C0M* JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK MATEMATIKA Izpitna pola / Feladatlap Torek, 6. avgust 008 / 0 minut 008. augusztus

Részletesebben

*M M* Višja raven Emelt szint MATEMATIKA

*M M* Višja raven Emelt szint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0714011M* Višja raven Emelt szint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota,. junij 007 / 90 minut 007. június.,

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 4. junij 2011 / 120 minut június 4., szombat / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 4. junij 2011 / 120 minut június 4., szombat / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P111C10111M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 4. junij 011

Részletesebben

*M M* Višja raven Emelt szint MATEMATIKA

*M M* Višja raven Emelt szint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M101401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota, 5. junij 010 / 90 minut 010. június 5.,

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 6. junij 2009 / 120 minut június 6., szombat / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Sobota, 6. junij 2009 / 120 minut június 6., szombat / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P09C0M* MATEMATIKA Izpitna pola / Feladatlap SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Sobota, 6. junij 009 /

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 25. avgust 2009 / 120 minut augusztus 25.

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 25. avgust 2009 / 120 minut augusztus 25. Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P09C10111M* MATEMATIKA Izpitna pola / Feladatlap JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Torek, 5. avgust 009 / 10

Részletesebben

Dr`avni izpitni center. Osnovna raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 30 minut. Dele` pri oceni: 20 %

Dr`avni izpitni center. Osnovna raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 30 minut. Dele` pri oceni: 20 % [ifra kandidata: Dr`avni izpitni center *001J3111* 001 Osnovna raven MADŽAR[^INA Izpitna pola 1 Bralno razumevanje / 30 minut Dele` pri oceni: 20 % Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese

Részletesebben

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2 [ifra kandidata: *M06123112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Torek, 13. junij 2006 / 70 minut (40 + 30) SPOMLADANSKI ROK MAD@AR[^INA KOT DRUGI

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 7. februar 2012 / 120 minut február 7., kedd/ 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Torek, 7. februar 2012 / 120 minut február 7., kedd/ 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *PC0M* MATEMATIKA Izpitna pola / Feladatlap ZIMSKI IZPITNI ROK TÉLI VIZSGAIDŐSZAK Torek, 7. februar 0 / 0 minut 0. február

Részletesebben

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 13. junij 2015 / Do 20 minut

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 13. junij 2015 / Do 20 minut Š i f r a k a n d i d a t a : Državni izpitni center *M15123112* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 13. junij 2015 / Do 20 minut Dovoljeno gradivo

Részletesebben

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Š i f r a k a n d i d a t a : Državni izpitni center *M10123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek

Részletesebben

Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 15. junij 2013 / Do 20 minut

Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 15. junij 2013 / Do 20 minut Š i f r a k a n d i d a t a : Državni izpitni center *M13123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 15. junij 2013 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat

Részletesebben

Dr`avni izpitni center. SOCIOLOGIJA SZOCIOLÓGIA Izpitna pola 1 1. feladatlap. Sobota, 5. junij 2004 / 120 minut június 5., szombat / 120 perc

Dr`avni izpitni center. SOCIOLOGIJA SZOCIOLÓGIA Izpitna pola 1 1. feladatlap. Sobota, 5. junij 2004 / 120 minut június 5., szombat / 120 perc [ifra kandidata: A jelölt kódszáma: Dr`avni izpitni center *M04152111M* SOCIOLOGIJA SZOCIOLÓGIA Izpitna pola 1 1. feladatlap SPOMLADANSKI ROK TAVASZI IDŐSZAK Sobota, 5. junij 2004 / 120 minut 2004. június

Részletesebben

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 10. junij 2017 / Do 20 minut

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK. Izpitna pola 2. Slušno razumevanje. Sobota, 10. junij 2017 / Do 20 minut Š i f r a k a n d i d a t a : Državni izpitni center *M17123212* SPOMLADANSKI IZPITNI ROK MADŽARŠČINA KOT DRUGI JEZIK Izpitna pola 2 Slušno razumevanje Sobota, 10. junij 2017 / Do 20 minut Dovoljeno gradivo

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Petek, 26. avgust 2011 / 120 minut augusztus 26., péntek / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Petek, 26. avgust 2011 / 120 minut augusztus 26., péntek / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P11C10111M* MATEMATIKA Izpitna pola / Feladatlap JESENSKI IZPITNI ROK ŐSZI VIZSGAIDŐSZAK Petek, 6. avgust 011 / 10

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logritmusos feldtok A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0840M* Osnovna raven Alapszint MATEMATIKA Izpitna pola. feladatlap Torek, 6. avgust 008 / 0 minut 008. augusztus 6.,

Részletesebben

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1 [ifra kandidata: *M05223111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Petek, 9. september 2005 / 60 minut (20 + 40) JESENSKI ROK MAD@AR[^INA KOT DRUGI JEZIK NA

Részletesebben

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB

Részletesebben

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2

1. feladat Oldja meg a valós számok halmazán a következő egyenletet: 3. x log3 2 A 004/005 tnévi Országos Középiskoli Tnulmányi Verseny második fordulójánk feldtmegoldási MATEMATIKÁBÓL ( I ktegóri ) feldt Oldj meg vlós számok hlmzán következő egyenletet: log log log + log Megoldás:

Részletesebben

Gyakorló feladatsor 11. osztály

Gyakorló feladatsor 11. osztály Htvány, gyök, logritmus Gykorló feldtsor 11. osztály 1. Számológép hsznált nélkül dd meg z lábbi kifejezések pontos értékét! ) b) 1 e) c) d) 1 0, 9 = f) g) 7 9 =. Számológép hsznált nélkül döntsd el, hogy

Részletesebben

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2 [ifra kandidata: *M05223112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Petek, 9. september 2005 / 70 minut (40 + 30) JESENSKI ROK MAD@AR[^INA KOT DRUGI

Részletesebben

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1 [ifra kandidata: *M04023111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Marec 2004 / 60 minut (20 + 40) PREDPREIZKUS MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM

Részletesebben

*M M* Višja raven Emelt szint MATEMATIKA

*M M* Višja raven Emelt szint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M081401M* Višja raven Emelt szint MATEMATIKA Izpitna pola. feladatlap Sobota, 7. junij 008 / 90 minut 008. június 7.,

Részletesebben

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2 [ifra kandidata: *M06223112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Petek, 8. september 2006 / 70 minut (40 + 30) JESENSKI ROK MAD@AR[^INA KOT DRUGI

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M10140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 5. junij 010 / 10 minut 010. június

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1040111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Četrtek, 6. avgust 010 / 10 minut 010. augusztus

Részletesebben

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2 [ifra kandidata: *M04023112* Dr`avni izpitni center Izpitna pola 2 A) Poznavanje in raba jezika B) Kraj{i vodeni sestavek Marec 2004 / 70 minut (40 + 30) PREDPREIZKUS MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M11140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Sobota, 4. junij 011 / 10 minut 011. június

Részletesebben

Minta feladatsor I. rész

Minta feladatsor I. rész Mint feldtsor I. rész. Írj fel z A számot htványként! A / pont/. Mekkor hosszúságú dróttl lehet egy m m-es tégllp lkú testet z átlój mentén felosztni két derékszögű háromszögre? Adj meg hosszúságot mértékegységgel!

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M0940M* Osnovna raven Alapszint MATEMATIKA Izpitna pola. feladatlap Sobota, 6. junij 009 / 0 minut 009. június 6.,

Részletesebben

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN

IX. A TRIGONOMETRIA ALKALMAZÁSA A GEOMETRIÁBAN 4 trigonometri lklmzás geometrián IX TRIGONOMETRI LKLMZÁS GEOMETRIÁN IX szinusz tétel Feldt Számítsd ki z háromszög köré írhtó kör sugrát háromszög egy oldl és szemen fekvő szög függvényéen Megoldás z

Részletesebben

Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 16. junij 2012 / Do 20 minut

Državni izpitni center. Izpitna pola 2. Slušno razumevanje. Sobota, 16. junij 2012 / Do 20 minut Š i f r a k a n d i d a t a : Državni izpitni center *M12123112* SPOMLADANSKI IZPITNI ROK Izpitna pola 2 Slušno razumevanje Sobota, 16. junij 2012 / Do 20 minut Dovoljeno gradivo in pripomočki: Kandidat

Részletesebben

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1 [ifra kandidata: *M04123111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Sobota, 5. junij 2004 / 60 minut (20 + 40) SPOMLADASKI ROK MAD@AR[^IA KOT DRUGI JEZIK A ARODO

Részletesebben

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2

Dr`avni izpitni center KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 2 [ifra kandidata: *M05123112* r`avni izpitni center Izpitna pola 2 ) Poznavanje in raba jezika ) Kraj{i vodeni sestavek Torek, 14. junij 2005 / 70 minut (40 + 30) SPOMLNSKI ROK M@R[^IN KOT RUGI JEZIK N

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP. Torek, 8. maja 2007 / 60 minut 2007. május 8.

Državni izpitni center MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP. Torek, 8. maja 2007 / 60 minut 2007. május 8. Š i f r a u ~ e n c a: A tanuló kódszáma: Državni izpitni center *N0710121M* REDNI ROK RENDES MÉRÉS MATEMATIKA PREIZKUS ZNANJA ÍRÁSBELI FELMÉRŐLAP Torek, 8. maja 2007 / 60 minut 2007. május 8., kedd /

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

f (ξ i ) (x i x i 1 )

f (ξ i ) (x i x i 1 ) Villmosmérnök Szk, Távokttás Mtemtik segédnyg 4. Integrálszámítás 4.. A htározott integrál Definíció Az [, b] intervllum vlmely n részes felosztásán (n N) z F n ={,,..., n } hlmzt értjük, melyre = <

Részletesebben

Državni izpitni center. Izpitna pola 2 2. feladatlap Esejske naloge / Esszé típusú faladatok. Torek, 5. junij 2012 / 120 minut

Državni izpitni center. Izpitna pola 2 2. feladatlap Esejske naloge / Esszé típusú faladatok. Torek, 5. junij 2012 / 120 minut Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M12152112M* SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola 2 2. feladatlap Esejske naloge / Esszé típusú

Részletesebben

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása)

Heves Megyei Középiskolák Palotás József és Kertész Andor Matematikai Emlékversenye évfolyam (a feladatok megoldása) Okttási Hivtl E g r i P e d g ó g i i O k t t á s i K ö z p o n t Cím: 00 Eger, Szvorényi u. 7. Postcím: 00 Eger, Szvorényi u. 7. elefon: /50-90 Honlp: www.oktts.hu E-mil: POKEger@oh.gov.hu Heves Megyei

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen próálkozást, mellékszámítást

Részletesebben

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU. Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Š i f r a k a n d i d a t a : Državni izpitni center *M11123111* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 1 A) Slušno razumevanje B) Bralno razumevanje Torek, 14.

Részletesebben

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1

Dr`avni izpitni center MAD@AR[^INA KOT DRUGI JEZIK NA NARODNO ME[ANEM OBMO^JU V PREKMURJU. Izpitna pola 1 [ifra kandidata: *M06223111* Dr`avni izpitni center Izpitna pola 1 A) Slu{no razumevanje B) Bralno razumevanje Petek, 8. september 2006 / 60 minut (20 + 40) JESENSKI ROK MAD@AR[^INA KOT DRUGI JEZIK NA

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Dr`avni izpitni center. Vi{ja raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 40 minut. Dele` pri oceni: 20 %

Dr`avni izpitni center. Vi{ja raven MADŽAR[^INA. Izpitna pola 1. Bralno razumevanje / 40 minut. Dele` pri oceni: 20 % [ifra kandidata: Dr`avni izpitni center *001J3211* 001 Vi{ja raven MADŽAR[^INA Izpitna pola 1 Bralno razumevanje / 40 minut Dele` pri oceni: 20 % Dovoljeno dodatno gradivo in pripomo~ki: kandidat prinese

Részletesebben

Bevezetés. Alapműveletek szakaszokkal geometriai úton

Bevezetés. Alapműveletek szakaszokkal geometriai úton 011.05.19. Másodfokú egyenletek megoldás geometrii úton evezetés A középiskoli mtemtik legszerteágzóbb része másodfokú egyenletek megoldás. A legismertebb módj természetesen megoldóképlet hsznált. A képlet

Részletesebben

Dr`avni izpitni center MATEMATIKA

Dr`avni izpitni center MATEMATIKA Dr`avni izpitni center *P05C10113M* ŐSZI IDŐSZAK MATEMATIKA ÉRTÉKELÉSI ÚTMUTATÓ 005. augusztus 9., hétfő SZAKMAI ÉRETTSÉGI VIZSGA RIC 005 P05-C101-1-3M ÚTMUTATÓ a szakmai írásbeli érettségi vizsga feladatainak

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI A NULLADIK MATEMATIKA ZÁRTHELYI 20-09-2 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! Csak és kizárólag tollal tölthető ki a feladatlap, a ceruzával

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

*M M* Osnovna raven Alapszint MATEMATIKA

*M M* Osnovna raven Alapszint MATEMATIKA Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M1140111M* Osnovna raven Alapszint MATEMATIKA Izpitna pola 1 1. feladatlap Petek, 6. avgust 011 / 10 minut 011. augusztus

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

NULLADIK MATEMATIKA szeptember 13.

NULLADIK MATEMATIKA szeptember 13. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

*M M03* 3/20 ( ) Formule. Cx y : = 2. Evklidov in višinski izrek v pravokotnem trikotniku: a 2

*M M03* 3/20 ( ) Formule. Cx y : = 2. Evklidov in višinski izrek v pravokotnem trikotniku: a 2 *M17401M* /0 *M17401M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

V sivo polje ne pišite. / A szürke mezőbe ne írjon!

V sivo polje ne pišite. / A szürke mezőbe ne írjon! *M72402M* 2/20 *M72402M02* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym TMt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti

Részletesebben

NULLADIK MATEMATIKA ZÁRTHELYI

NULLADIK MATEMATIKA ZÁRTHELYI NULLADIK MATEMATIKA ZÁRTHELYI 08-09-07 Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható! A feladatlap kizárólag kék vagy fekete tollal tölthető ki.

Részletesebben

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek? Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym AMt1 feldtlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2011. jnuár 21. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

V sivo polje ne pišite. / A szürke mezőbe ne írjon!

V sivo polje ne pišite. / A szürke mezőbe ne írjon! *M1840111M* /0 *M1840111M0* NAVODILA KANDIDATU Pazljivo preberite ta navodila. Ne odpirajte izpitne pole in ne začenjajte reševati nalog, dokler vam nadzorni učitelj tega ne dovoli. Prilepite kodo oziroma

Részletesebben

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Četrtek, 11. februar 2010 / 120 minut 2010. február 11., csütörtök / 120 perc

Državni izpitni center MATEMATIKA. Izpitna pola / Feladatlap. Četrtek, 11. februar 2010 / 120 minut 2010. február 11., csütörtök / 120 perc Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *P093C10111M* MATEMATIKA Izpitna pola / Feladatlap ZIMSKI IZPITNI ROK TÉLI VIZSGAIDŐSZAK Četrtek, 11. februar 010 /

Részletesebben

Državni izpitni center. Višja raven. Izpitna pola 1 1. feladatlap. Sobota, 9. junij 2012 / 90 minut

Državni izpitni center. Višja raven. Izpitna pola 1 1. feladatlap. Sobota, 9. junij 2012 / 90 minut Š i f r a k a n d i d a t a : A j e l ö l t k ó d s z á m a : Državni izpitni center *M40M* Višja raven SPOMLADANSKI IZPITNI ROK TAVASZI VIZSGAIDŐSZAK Izpitna pola. feladatlap Sobota, 9. junij 0 / 90 minut

Részletesebben

Dr`avni izpitni center MAGYAR NYELV ÉS IRODALOM. 1. feladatlap. Nem művészi szöveg elemzése. Szombat, május 29. / 60 perc

Dr`avni izpitni center MAGYAR NYELV ÉS IRODALOM. 1. feladatlap. Nem művészi szöveg elemzése. Szombat, május 29. / 60 perc A jelölt kódszáma: Dr`avni izpitni center *P041A10311* TAVASZI IDŐSZAK MAGYAR NYELV ÉS IRODALOM 1. feladatlap Nem művészi szöveg elemzése Szombat, 2004. május 29. / 60 perc Engedélyezett segédeszközök:

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások ) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Bizonyítások A szürkített hátterű feldtrészek nem trtoznk z érintett témkörhöz, zonbn szolgálhtnk fontos információvl z érintett feldtrészek megoldásához!

Részletesebben

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU

Državni izpitni center MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Š i f r a k a n d i d a t a : Državni izpitni center *M09123112* MADŽARŠČINA KOT DRUGI JEZIK NA NARODNO MEŠANEM OBMOČJU V PREKMURJU Izpitna pola 2 A) Poznavanje in raba jezika B) Krajši vodeni sestavek

Részletesebben

NULLADIK MATEMATIKA szeptember 7.

NULLADIK MATEMATIKA szeptember 7. A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók a szürke

Részletesebben