1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát. 3 Adott b blokkméretre készítsünk N =mb (N N)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1 Y t = X tmod(n) azaz periodikusan kiterjesztjük a mintát. 3 Adott b blokkméretre készítsünk N =mb (N N)"

Átírás

1 Alkalmazása az összefüggő esetre 7. előadás, áprls 5. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettdomány Kar Eötös Loránd Tdományegyetem Árngadozások előadás Crclar blokk bootstrap (CBB) 1 Y t = X tmod(n) azaz perodksan kterjesztjük a mntát 2 Legyen 1, 2,... m mnta az {1,..., N} halmazon egyenletes eloszlásból 3 Adott b blokkméretre készítsünk N =mb (N N) pszedo-megfgyelést: Y (k 1)b+j = Y m+j 1 ahol j = 1,..., b; k = 1,..., m 4 A mnket érdeklő statsztka kszámítása a pszedo-megfgyelésekből: Y N = (N ) 1 (Y Y N ) Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 1 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 2 / 26 Blokkméret kálasztása (Polts & Whte) Blokkméret kálasztása (Polts & Whte) Jel. F 0 = σ{x n : n 0}, F k = σ{x n : n k} Def.: {X t : t Z } erősen keerő, ha α X (k) 0 (k ), ahol α X (k) = sp{ P(A B) P(A)P(B) : A F 0, B F k } Tétel : Tegyük fel, hogy X t staconárs és E X t 6+δ <, k 2 (α X (k)) δ 6+δ < alamely δ>0-ra. A célnk Var( NX) becslése. k=1 Legyen b = o(n 1/2 ), N esetén b. Ekkor MSE(σ 2 ) = G2 + D b b,x b 2 n + o(b 2 ) + o( b n ) ahol D= 4 3 g2 (0) és G = k R(k) k= g( ): spektráls sűrűségfüggény R( ): atokoaranca függény Optmáls blokkméret: b opt = ( 2G2 D )1/3 n 1/3 Kérdés: hogyan becsüljük G-t és D-t ˆD = 4 3ĝ2 (0) Ĝ = M k= M λ( k ) k ˆR(k) M ahol ˆR(k) N k = N 1 (X X N )(X + k X N ) k=1 1 ha t [0, 1/2] λ(t) = 2(1 t ) ha t [1/2, 1] 0 különben M = 2 ˆm, ahol ˆm: ahonnan a korrelogram "lényegében" 0 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 3 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 4 / 26

2 Paraméteres bootstrap Egyszerű példa a paraméteres bootstrapra Eddg semmlyen modellt nem használtnk Ha an jó modellünk, akkor azt érdemes a bootstrapnél s alkalmazn A legegyszerűbb esetben egyszerűen a becsült modellből esszük a mntát Regresszós modelleknél mnta a rezdálsokból, majd ezt adjk hozzá az llesztett értékhez Választás a zsgálat célja alapján: Modell kálasztás: nemparaméteres bootstrap Modell megbízhatóság: paraméteres bootstrap Kérdés: lehet-e 1 az alakparametere az llesztett gamma eloszlásnak? Bootstrap mntákat eszünk az exponencáls eloszlásbó (ez a Γ(1, λ) eloszlás). Statsztka: ezekre a mntákra az alakparaméter ML becslése Bootstrap p-érték: azon esetek aránya, ahol táolabb agynk 1-től, mnt a megfgyelt eset becslése Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 5 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 6 / 26 AR-see bootstrap Feltétel: a folyamat staconárs és jól becsülhető AR(p) modellel: p X t µ X = φ j (X t j µ X ) + ε t, t Z j=1 ahol µ X = EX t (ε t ) t Z..d., E(ε t )=0 és ε t független { X s ; s < t }-től Paraméterek és hbák becslése: ˆp=? AIC ˆµ X = n 1 n t=1 X t ˆφ 1,..., ˆφˆp =? Yle-Walker módszer R t = X t ˆp ˆφ j=1 j X t j, ahol t = ˆp + 1,..., n ebből pedg ˆε t = R t R t, ahol t = ˆp + 1,..., n Bootstrap mnta konstrálásának lépése: ε t : életlen elem { ˆεˆp+1,..., ˆε n } halmazból Nagy -ra (X,..., X +ˆp 1 ) = (ˆµ X,..., ˆµ X ) (a folyamat ndítása) p Xt = µ X + φ j (Xt j µ X ) + ε t t Z j=1 Ebből a bootstrap mnta: { X 1,..., X n } Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 7 / 26 Súlyozott (ad) bootstrap Itt már nem bootstrap mntát eszünk, hanem súlyoznk (példál a lkelhood függényt) Formálsan: Z (k) súlyok, E(Z (k) ) = 0 és D 2 (Z (k) ) = 1 ahol = 1,..., n, k = 1,..., N (N a boostrap smétlések száma). A klasszks esetben Z polnomáls eloszlású Az első alkalmazás a regresszónál: ŷ = ŷ + Z ε Heteroszkedasztks esetben érdemes használn Toább alkalmazás lehetőség: koplák lleszkedészsgálata Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 8 / 26

3 Bootstrap az extrém-érték modellekben Hall és Wessman módszere A nemparaméteres bootstrap ks mntákra tpksan túl szűk konfdencanterallmokat ad Aszmptotksan s érdemes m << n elemű bootstrap mntákat enn és ezzel párhzamosan a feladatot keésbé extrém kantlsek becslésére sszaezetn Fnomhangoln paraméterek (s, t) segítségéel lehet } A cél: D 1 (t, n, x) := E {(Fˆθ(t) (x) F(x))2 mn t Ha az 1 p-kantlst becsüljük, akkor átírható: } D 2 (t, n, x) := D 1 (t, n, F 1 (p)) = E {(Fˆθ(t) (F 1 (p)) p) 2 mn t { ( A bootstrap becslések ˆD ) } 2 1 (t, m, y) = E Fˆθ (t)(y) ˆF(y) és { ( ) ) } ˆD 2 (t, m, q) = E 1 2 Fˆθ (t) (ˆF (q) q. Arra kell ügyeln, hogy a transzformácónál a log(x)/ log(n) hányados legalábbs aszmptotksan ne áltozon, mkor áttérünk (n, x) helyett az (m, y) párra. Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 9 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 10 / 26 Koplák Az összefüggőség strktúra nerzáls megjelenítő Többdmenzós eloszlás egyenletes margnálsokkal, (Hoeffdng, 1940) - az 1990-es éekben újra felfedezték és azóta széles körben alkalmazzák s. Tetszőleges d-dmenzós, folytonos F eloszlásfüggényhez egyértelműen megadható olyan C F kopla, melyre F(x 1,..., x d ) = C F (F 1 (x 1 ),..., F d (x d )). Ha F folytonos, akkor egyértelmű a megoldás: C F ( 1,..., d ) = F(F 1 1 ( 1),..., F 1 d ( d)). Példák Független eset: C(x, y) = xy. Teljes összefüggőség (Frechet) C(x, y) = mn(x, y), C(x, y) = max{(x + y 1), 0} Gass-kopla ) C R () = Φ R,d (Φ 1 ( 1 ),..., Φ 1 ( d ) ahol Φ R,d az R korrelácós mátrxú, d-dmenzós normáls eloszlás eloszlásfüggénye. Rgalmasabb modell: t-kopla C R,ν () = t R,ν,d ( tν 1 ) ( 1 ),..., tν 1 ( d ) ahol t R,ν,d az R korrelácós mátrxú, ν szabadságfokú d-dmenzós t-eloszlás eloszlásfüggénye. Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 11 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 12 / 26

4 Sűrűségfüggények Ellptks eloszlások, koplák Hasznos gyakorlat eszközök a kopla tlajdonságanak zalzácójánál A Gass koplára: c R () = ϕ ( R,d Φ 1 ( 1 ),..., Φ 1 ( d ) ) d =1 ϕ ( Φ 1 ( ) ) Hasonlóan számolható a t-koplára s Sűrűségfüggényük kontúrja ellpszsek Példa: Gass, t Azonos típsú ellptks eloszlások konolúcója smét gyanolyan típsú ellptks eloszlás Az ellptks koplákra teljesül a radáls szmmetra: C(, ) = C(1, 1 ) Éppen ez az, am tpksan nem áll fenn a portfólók hozamára (a kgró eszteségek tpksan nagyobbak a kgró nyereségeknél) Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 13 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 14 / 26 Ellptksság tesztelése Arkhmédesz koplák Standardzálás tán gömbszmmetrks kell, hogy legyen az eredmény R = Y és S = Y / Y függetlenek, S egyenletes eloszlású Példál χ 2 próba alkalmazható A kopla generátor függénnyel adhatók meg: ϕ() : [0, 1] [0, ], folytonos, konex (2D-ben, általánosan: teljesen monoton) és szgorúan monoton csökkenő, ϕ(1) = 0. Ebből a d-dmenzós Arkhmédesz kopla ( d ) C ϕ () = ϕ 1 ϕ( ). =1 Egyszerű a konstrkcójk, de an hátrányk s: csak egy (agy néhány) paraméterük an. Az összes s < d dmenzós peremeloszlásk azonos Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 15 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 16 / 26

5 Példák Tlajdonságok A Gmbel kopla (logsztks modell) generátora: ϕ θ () = [ ln()] θ, ahol θ [1, + ). Tehát a d-dmenzós Gmbel-kopla C Gmbel () = e ( d =1 log( ) θ ) 1θ. Egy C kopla extrém-érték kopla, ha C( t 1,..., t d ) = Ct ( 1,..., d ) mnden t > 0. Ez megfelel a többdmenzós extrém-érték eloszlásoknak. Ezek közül a Gmbel kopla az egyetlen Arkhmédesz kopla. A Clayton kopla generátora ϕ θ () = θ 1, ahol θ > 0. Tehát a d-dmenzós Clayton kopla: ( d ) 1 C Clayton () = θ θ d + 1. =1 Az azonosításhoz nagy mntaelemszám szükséges (különösen 2-nél magasabb dmenzóban) Nagyon gyenge és nagyon erős összefüggőségnél nem lényeges a kopla típsa Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 17 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 18 / 26 Koplák összehasonlítása Extremáls összefüggőség Gmbel copla Gassan copla Clayton copla (Flpped) Stdent t copla Koplákra: C t (, ) = P(U < F 1 t (), V < F 1 t () U < t, V < t) ahol F t () := P(U < U < t, V < t) a feltételes eloszlásfüggény A határeloszlás dfferencálható generátorú Arkhmédesz koplákra:, ϕ R 0 lm C t (, ) = C t 0 Clayton,α (, ), ϕ R α mn(, ) ϕ R Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 19 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 20 / 26

6 Koplák összefüggőség ndexe Koplák összefüggőség ndexe/2 χ = lm 1 P{X 2 > F 1 2 () X 1 > F 1 1 ()}, Kantlsfüggő áltozat: ( log P{X1 > F 1 1 χ() = 2 (), X 2 > F 1 2 ()} ) log P{X 1 > F 1 1 ()}, 0 1. E(X EX)(Y EY ) Lneárs korrelácó: R(X, Y ) = D(X)D(Y ) hátránya: érzékeny a kgró értékekre áltozk, ha transzformáljk a margnálsokat Alternatíák: Kendall-τ: τ(x, Y ) = P [(X X)(Y ] Ỹ ) > 0 P [(X X)(Y ] Ỹ ) < 0. Spearman-ρ: ( [ ] [ ]) ρ(x, Y ) = 3 P (X X)(Y Y ) > 0 P (X X)(Y Y ) < 0. ahol (X, Y ), ( X, Ỹ ), (X, Y ) független, azonos eloszlásúak. Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 21 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 22 / 26 Tlajdonságok Toább tlajdonságok Ezek úgyneezett rangkorrelácók (csak az értékek sorrendje érdekes) Nem érzékenyek a kgró értékekre Kszámításk a kopláal τ(x, Y ) = 4 ρ(x, Y ) = C(, )dc(, ) 1 [C(, ) ] dd. Mndkettő naráns a monoton transzformácókra. Legyen κ = ρ agy κ = τ. Ekkor 1 κ 1; κ X,X = 1, κ X, X = 1. Ha X és Y független, akkor κ X,Y = 0. κ X, Y = κ X,Y = κ X,Y. Az egyes koplákra adódó összefüggőség mérőszámok függnek a paramétertől, így becslésükből egyúttal a kopla becslése s megkapható. Példál a Gmbel koplára τ = 1 1/β. Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 23 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 24 / 26

7 Alkalmazások Hatkozások A Gass koplára a páronként korrelácókra R j = sn ( πτ(x, X j )/2 ) ) Lényeges a álasztás a különböző kopla-típsok között (pl. a farok-összefüggőség segítségéel, llete elmélet meggondolások alapján). Tapasztalat tény, hogy pl. a pénzügy portfólóknál gyakran mnden egyes elem extrém értékű (tőzsdekrach) - azaz tt árhatóan fellép a farok-összefüggőség. A különböző modellekből nagyon nagy különbségek adódhatnak a alószínűségbecslésre. Efron, B. and Tbshran, R.J.: An Introdcton to the Bootstrap (1993) Lahr, S.N.: Resamplng methods for dependent data (Sprnger, 2003) Bckel, P.J. and Sako, A.: On the Choce of m n the m Ot of n Bootstrap and ts Applcaton to Confdence Bonds for Extrema (2008) Polts, D. N. and Whte, H.: Atomatc Block-Length Selecton for the Dependent Bootstrap (2004) Nelsen, R.B. (2006) An Introdcton to Coplas. 2nd ed. John Wley & Sons. Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 25 / 26 Zemplén András (ELTE) 7. előadás, áprls 5. Árngadozások előadás 26 / 26

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák

Max-stabilis folyamatok. 6. előadás, március 29. Smith (1990) konstrukciója. Példák Max-stabls folyamatok 6. előadás, 2017. márcus 29. Zemplén András Valószínűségelmélet és Statsztka Tanszék Természettudomány Kar Eötvös Loránd Tudományegyetem Árngadozások előadás Legyen T R d egy Borel-halmaz.

Részletesebben

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája

Pontfolyamatok definíciója. 5. előadás, március 10. Példák pontfolyamatokra. Pontfolyamatok gyenge konvergenciája Pontfolyamatok definíciója 5. előadás, 2016. március 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Hasznos eszköz,

Részletesebben

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.

Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás. Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan

Részletesebben

Kopulák. Kopulák és alkalmazásuk. Példák. Extrém-érték kopulák. Kopulák összefüggıségi indexe. Arkhimédeszi kopulák.

Kopulák. Kopulák és alkalmazásuk. Példák. Extrém-érték kopulák. Kopulák összefüggıségi indexe. Arkhimédeszi kopulák. Koplák és alkalmazásk Zemplé Arás Valószíőségelmélet és Statsztka Taszék zemple@les.elte.h 009.09.07 Koplák Az összefüggıség strktúra erzáls megjeleítı (többmezós eloszlás egyeletes margálsokkal, Hoeffg,

Részletesebben

Regresszió. Fő cél: jóslás Történhet:

Regresszió. Fő cél: jóslás Történhet: Fő cél: jóslás Történhet: Regresszó 1 változó több változó segítségével Lépések: Létezk-e valamlyen kapcsolat a 2 változó között? Kapcsolat természetének leírása (mat. egy.) A regresszós egyenlet alapján

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. Megjegyzések. A normálhatóság feltétele. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Val.modellek 2018. febrár 21. Extrém-érték elemzés Klasszks módszerek: év maxmmon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Etrém-érték modellezés Zemplén András Alkalmazott modl 016. febrár -9. Etrém-érték elemzés Klasszks módszerek: év mammon alaplnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízből használ

Részletesebben

1. Példa. A gamma függvény és a Fubini-tétel.

1. Példa. A gamma függvény és a Fubini-tétel. . Példa. A gamma függvény és a Fubini-tétel.. Az x exp x + t )) függvény az x, t tartományon folytonos, és nem negatív, ezért alkalmazható rá a Fubini-tétel. I x exp x + t )) dxdt + t dt π 4. [ exp x +

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematka statsztka 8. elıadás http://www.math.elte.hu/~arato/matstat0.htm Kétmtás eset: függetle mták + + + = + ) ( ) ( ) ( Y Y X X Y X m m m t m Ha smert a szórás: (X elemő, σ szórású, Y m elemő, σ szórású),

Részletesebben

Statisztika elméleti összefoglaló

Statisztika elméleti összefoglaló 1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11

Részletesebben

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer?

Hipotézis vizsgálatok. Egy példa. Hipotézisek. A megfigyelt változó eloszlása Kérdés: Hatásos a lázcsillapító gyógyszer? 01.09.18. Hpotézs vzsgálatok Egy példa Kérdések (példa) Hogyan adhatunk választ? Kérdés: Hatásos a lázcsllapító gyógyszer? Hatásos-e a gyógyszer?? rodalomból kísérletekből Hpotézsek A megfgyelt változó

Részletesebben

Minősítéses mérőrendszerek képességvizsgálata

Minősítéses mérőrendszerek képességvizsgálata Mnősítéses mérőrendszerek képességvzsgálata Vágó Emese, Dr. Kemény Sándor Budapest Műszak és Gazdaságtudomány Egyetem Kéma és Környezet Folyamatmérnök Tanszék Az előadás vázlata 1. Mnősítéses mérőrendszerek

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés

Extrém-érték elemzés. Extrém-érték eloszlások. A normálhatóság feltétele. Megjegyzések. Extrém-érték modellezés Extrém-érték modellezés Zemplén András Alkalmazott modul 03. február. Extrém-érték elemzés Klasszkus módszerek: év maxmumon alapulnak Küszöb felett értékek elemzése: adott szntet meghaladó mnden árvízbıl

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés

s n s x A m és az átlag Standard hiba A m becslése Információ tartalom Átlag Konfidencia intervallum Pont becslés Intervallum becslés A m és az átlag Standard hba Mnta átlag 1 170 Az átlagok szntén ngadoznak a m körül. s x s n Az átlagok átlagos eltérése a m- től! 168 A m konfdenca ntervalluma. 3 166 4 173 x s x ~ 68% ~68% annak a valószínűsége,

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pályázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomány Tanszékén az ELTE Közgazdaságtudomány Tanszék, az MTA Közgazdaságtudomány

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Lineáris regresszió. Statisztika I., 4. alkalom

Lineáris regresszió. Statisztika I., 4. alkalom Lneárs regresszó Statsztka I., 4. alkalom Lneárs regresszó Ha két folytonos változó lneárs kapcsolatban van egymással, akkor az egyk segítségével elıre jelezhetjük a másk értékét. Szükségünk van a függı

Részletesebben

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!

20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,

Részletesebben

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist.

Táblázatok 4/5. C: t-próbát alkalmazunk és mivel a t-statisztika értéke 3, ezért mind a 10%-os, mind. elutasítjuk a nullhipotézist. 1. Az X valószínőség változó 1 várható értékő és 9 szórásnégyzető. Y tıle független várható értékkel és 1 szórásnégyzettel. a) Menny X + Y várható értéke? 13 1 b) Menny X -Y szórásnégyzete? 13 1 összesen

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Regresszió-számítás. 2. előadás. Kvantitatív statisztikai módszerek. Dr. Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Regresszó-számítás. előadás Kvanttatív statsztka módszerek Dr. Varga Beatr Gazdaságtudomán Kar Gazdaságelmélet és Módszertan Intézet Korrelácós

Részletesebben

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés

Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA Készült a TÁMOP-4..-08//A/KMR-009-004pálázat projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék az MTA Közgazdaságtudomán Intézet

Részletesebben

IDA ELŐADÁS I. Bolgár Bence október 17.

IDA ELŐADÁS I. Bolgár Bence október 17. IDA ELŐADÁS I. Bolgár Bence 2014. október 17. I. Generatív és dszkrmnatív modellek Korábban megsmerkedtünk a felügyelt tanulással (supervsed learnng). Legyen adott a D = {, y } P =1 tanító halmaz, ahol

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETIA Készült a TÁMOP-4.1.-08//A/KM-009-0041pályázat projet eretébe Tartalomfejlesztés az ELTE TáTK Közgazdaságtudomáy Taszéé az ELTE Közgazdaságtudomáy Taszé az MTA Közgazdaságtudomáy Itézet és a

Részletesebben

Várható érték:... p Módusz:...

Várható érték:... p Módusz:... NEVEZETES ELOSZLÁSOK. Bernoull-eloszlás: B(, p p ha x = Súlyfüggvény:... P( X = x; p =...ahol: q=-p q ha x = 0 ha p q Várható érték:... p Módusz:... 0 ha p q Varanca:... pq Relatív szórás:... q p. ÁBRA.

Részletesebben

Statisztika feladatok

Statisztika feladatok Statsztka ok Informatka Tudományok Doktor Iskola Bzonyítandó, hogy: azaz 1 Tekntsük az alább statsztkákat: Igazoljuk, hogy torzítatlan statsztkák! Melyk a leghatásosabb közöttük? (Ez az együttes eloszlásfüggvényük.)

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull

14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull 14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:

Részletesebben

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe

9-10. elıadás április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe 9-10. elıadás 2013. április 26. Problémák magas dimenzióban Az idıbeni összefüggıség és a nemstacionaritás szerepe Ismétlés Tanultunk Többdimenziós stabilis eloszlásokról Többdimenziós extrém-érték eloszlásokról

Részletesebben

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés

Az extremális index. 11. előadás, május 10. Blokkmódszer. Becslés Az extremális index 11. előadás, 2017. május 10. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Ha az eredeti X 1,

Részletesebben

2. Alapfogalmak, műveletek

2. Alapfogalmak, műveletek 2. Alapfogalmak, műveletek Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGIMIEM Tartalomjegyzék I Mit tudunk eddig? 2 Fuzzy halmazokkal kapcsolatos alapvető fogalmak Fuzzy halmaz tartója Fuzzy halmaz

Részletesebben

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58

Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58 u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ

Részletesebben

Diagnosztika és előrejelzés

Diagnosztika és előrejelzés 2018. november 28. A diagnosztika feladata A modelldiagnosztika alapfeladatai: A modellillesztés jóságának vizsgálata (idősoros adatok esetén, a regressziónál már tanultuk), a reziduumok fehérzaj voltának

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév

Valószínűségelmélet. Pap Gyula. Szegedi Tudományegyetem. Szeged, 2016/2017 tanév, I. félév Valószínűségelmélet Pap Gyula Szegedi Tudományegyetem Szeged, 2016/2017 tanév, I. félév Pap Gyula (SZTE) Valószínűségelmélet 2016/2017 tanév, I. félév 1 / 125 Ajánlott irodalom: CSÖRGŐ SÁNDOR Fejezetek

Részletesebben

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ

TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer

Részletesebben

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve

LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai)

Részletesebben

Modern szimulációs módszerek

Modern szimulációs módszerek Modern szimulációs módszerek Zempléni András Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Eötvös Loránd Tudományegyetem Természettudományi Kar Zempléni András (Val.elm. és Stat.Tsz.)

Részletesebben

4 2 lapultsági együttható =

4 2 lapultsági együttható = Leíró statsztka Egy kísérlet végeztével általában tetemes mennységű adat szokott összegyűln. Állandó probléma, hogy mt s kezdjünk - lletve mt tudunk kezden az adatokkal. A statsztka ebben segít mnket.

Részletesebben

NEMPARAMÉTERES PRÓBÁK

NEMPARAMÉTERES PRÓBÁK NEMPARAMÉTERES PRÓBÁK A nemparaméteres próbák nem tételezk föl a normáls eloszlást. A leggyakrabban használt próbák (pl. a t-próbák, ANOVA) feltételezk a normáls eloszlást. Sokszor ez nem teljesül. Következmény:

Részletesebben

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr.

Gazdaságtudományi Kar. Gazdaságelméleti és Módszertani Intézet. Korreláció-számítás. 1. előadás. Döntéselőkészítés módszertana. Dr. Korrelácó-számítás 1. előadás Döntéselőkészítés módszertana Dr. Varga Beatr Két változó között kapcsolat Függetlenség: Az X smérv szernt hovatartozás smerete nem ad semmlen többletnformácót az Y szernt

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.-08//A/KMR-009-0041pálázat projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudomán Tanszékén az ELTE Közgazdaságtudomán Tanszék, az MTA Közgazdaságtudomán

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra

További sajátértékek. 10. előadás, május 3. Megjegyzések. A szűrés hatása a portfólió optimalizálásra További sajátértékek 10. előadás, 2017. május 3. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Keressük azt az alacsonyabb

Részletesebben

Eötvös Loránd Tudományegyetem Természettudományi Kar. Házastársak élettartamának vizsgálata. Szakdolgozat. Töttösi Nikolett

Eötvös Loránd Tudományegyetem Természettudományi Kar. Házastársak élettartamának vizsgálata. Szakdolgozat. Töttösi Nikolett Eötvös Loránd Tudományegyetem Természettudományi Kar Házastársak élettartamának vizsgálata Szakdolgozat Töttösi Nikolett Matematika BSc Alkalmazott matematikus szakirány Témavezet : Csiszár Vill adjunktus

Részletesebben

Diszkrét Matematika MSc hallgatók számára. 4. Előadás

Diszkrét Matematika MSc hallgatók számára. 4. Előadás Diszkrét Matematika MSc hallgatók számára 4. Előadás Előadó: Hajnal Péter Jegyzetelő: Szarvák Gábor 2012. február 28. Emlékeztető. A primál feladat optimális értékét p -gal, a feladat optimális értékét

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

10. Alakzatok és minták detektálása

10. Alakzatok és minták detektálása 0. Alakzatok és mnták detektálása Kató Zoltán Képfeldolgozás és Számítógépes Grafka tanszék SZTE http://www.nf.u-szeged.hu/~kato/teachng/ 2 Hough transzformácó Éldetektálás során csak élpontok halmazát

Részletesebben

Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére

Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Volatilitási tőkepuffer a szolvencia IIes tőkekövetelmények megsértésének kivédésére Zubor Zoltán MNB - Biztosításfelügyeleti főosztály MAT Tavaszi Szimpózium 2016. május 7. 1 Háttér Bit. 99. : folyamatos

Részletesebben

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak.

Tanult nem paraméteres próbák, és hogy milyen probléma megoldására szolgálnak. 8. GYAKORLAT STATISZTIKAI PRÓBÁK ISMÉTLÉS: Tanult nem paraméteres próbák, és hogy mlyen probléma megoldására szolgálnak. Név Illeszkedésvzsgálat Χ próbával Illeszkedésvzsgálat grafkus úton Gauss papírral

Részletesebben

Statisztika Elıadások letölthetık a címrıl

Statisztika Elıadások letölthetık a címrıl Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel

Részletesebben

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928)

Határeloszlástétel a maximumokra. 3. előadás, március 1. A bizonyítás vázlata. Típusok. Tétel (Fisher és Tippet, 1928) Határeloszlástétel a maximumokra 3. előadás, 2017. március 1. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Tétel

Részletesebben

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek

1.7. Elsőrendű lineáris differenciálegyenlet-rendszerek 7 Elsőrendű lineáris differenciálegyenlet-rendszerek Legyen n N, I R intervallum és A: I M n n (R), B: I R n folytonos függvények, és tekintsük az { y (x) = A(x)y(x) + B(x) y(ξ) = η kezdeti érték problémát,

Részletesebben

Gyakorló feladatok a Valószín ségelmélet kurzushoz

Gyakorló feladatok a Valószín ségelmélet kurzushoz Gyakorló feladatok a Valószín ségelmélet kurzushoz 1 Mértékelméleti ismétlés 2 2 Generált σ-algebrák, függetlenség 3 3 A Kolmogorov 01 törvény és a BorelCantelli-lemmák 5 4 Folytonos eloszlások konvolúciója

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41

4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41 4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások

Részletesebben

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot

Gyakorlati kérdések. 2. előadás, február 22. Szimuláció (Chambers, 1976) Michael-féle szórásstabilizált P-P plot Gyakorlati kérdések 2. előadás, 2017. február 22. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Paraméterbecslés:

Részletesebben

Idő-ütemterv hálók - I. t 5 4

Idő-ütemterv hálók - I. t 5 4 Építésikivitelezés-Vállalkozás / : Hálós ütemtervek - I lőadás:folia.doc Idő-ütemterv hálók - I. t s v u PRT time/cost : ( Program valuation & Review Technique ) ( Program Értékelő és Áttekintő Technika

Részletesebben

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK

STATISZTIKAI KÉPLETGYŰJTEMÉNY ÉS TÁBLÁZATOK MKOLC EGYETEM Gzáguoá K Üzl oácógzáloá é Móz éz Üzl z é Előlzé éz Tzé VZONYZÁMOK, KÖZÉPÉRTÉKEK-ZÓRÓDÁ Vzozáo. V, V, V. l, b 3. l l... l l b Π 4. - b b 5. V : V : TTZTK KÉPLETGYŰJTEMÉNY É TÁLÁZTOK Nöélboá

Részletesebben

Feladatok és megoldások a 13. hétre

Feladatok és megoldások a 13. hétre Feladatok és megoldások a. hétre Építőkari Matematika A. Az alábbi függvények melyike lehet eloszlásfüggvény? + e x, ha x >, (a F(x =, ha x, (b F(x = x + e x, ha x, (c F(x =, ha x, x (d F(x = (4 x, ha

Részletesebben

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.

Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás

földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek tesztelése I.

Többváltozós lineáris regressziós modell feltételeinek tesztelése I. Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy

1/1. Házi feladat. 1. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy /. Házi feladat. Legyen p és q igaz vagy hamis matematikai kifejezés. Mutassuk meg, hogy mindig igaz. (p (( p) q)) (( p) ( q)). Igazoljuk, hogy minden A, B és C halmazra A \ (B C) = (A \ B) (A \ C) teljesül.

Részletesebben

Nemparaméteres próbák

Nemparaméteres próbák Nemparaméteres próbák Budapesti Mőszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Mőegyetem rkp. 3. D ép. 334. Tel: 463-16-80 Fax: 463-30-91 http://www.vizgep.bme.hu

Részletesebben

Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24.

Kopulák. 2 dimenziós példák különbözı összefüggıséggel. Példák. Elliptikus kopulák. Sőrőségfüggvények. ( u) 7. elıadás március 24. Kopulák 7. elıaás 204. március 24. Kopulák Az összefüggıségi struktúra uiverzális megjeleítıi (többimeziós eloszlás egyeletes margiálisokkal, Hoeffig, 940 az 990-es évekbe újra felfeezték és azóta széles

Részletesebben

Matematika alapjai; Feladatok

Matematika alapjai; Feladatok Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \

Részletesebben

Véletlenszám generátorok. 6. előadás

Véletlenszám generátorok. 6. előadás Véletlenszám generátorok 6. előadás Véletlenszerű változók, valószínűség véletlen, véletlen változók valószínűség fogalma egy adott esemény bekövetkezésének esélye értékét 0 és között adjuk meg az összes

Részletesebben

Regresszió számítás az SPSSben

Regresszió számítás az SPSSben Regresszió számítás az SPSSben Kvantitatív statisztikai módszerek Petrovics Petra Lineáris regressziós modell X és Y közötti kapcsolatot ábrázoló egyenes. Az Y függ: x 1, x 2,, x p p db magyarázó változótól

Részletesebben

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak

1. Generátorrendszer. Házi feladat (fizikából tudjuk) Ha v és w nem párhuzamos síkvektorok, akkor generátorrendszert alkotnak a sík vektorainak 1. Generátorrendszer Generátorrendszer. Tétel (Freud, 4.3.4. Tétel) Legyen V vektortér a T test fölött és v 1,v 2,...,v m V. Ekkor a λ 1 v 1 + λ 2 v 2 +... + λ m v m alakú vektorok, ahol λ 1,λ 2,...,λ

Részletesebben

4 Approximációs algoritmusok szorzatalakú hálózatok esetén

4 Approximációs algoritmusok szorzatalakú hálózatok esetén 4 Approxmácós algortmusok szorzatalakú hálózatok esetén Az MVA-n alapuló approxmácó (Bard-Schwetzer-módszer): Beérkezés tétel: T () = 1 µ [1+ ( 1) ], =1,...,N Iterácó a következő approxmácó használatával:

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

5. Feladat. Mennyi a valószínűsége annak, hogy 52 lapos franciakártya-pakliból 5 lapot húzva a következő kombinációkat kapjuk?

5. Feladat. Mennyi a valószínűsége annak, hogy 52 lapos franciakártya-pakliból 5 lapot húzva a következő kombinációkat kapjuk? Valószínűségszámítás feladatsor 1. hét 1. Feladat. Bizonyítsuk be a következőket tetszőleges A és B eseményekre: P(A B) P(A)+P(B) Ha P(A B) = 0, akkor P(A) = P(B) P(A C) P(A B)+P(B C) P(A B) P(A)P(B) 1

Részletesebben

Matematika A2 vizsga mgeoldása június 4.

Matematika A2 vizsga mgeoldása június 4. Matematika A vizsga mgeoldása 03. június.. (a (3 pont Definiálja az f(x, y függvény határértékét az (x 0, y 0 helyen! Megoldás: Legyen D R, f : D R. Legyen az f(x, y függvény értelmezve az (x 0, y 0 pont

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Panel adatok elemzése

Panel adatok elemzése Pnel dtok elemzése Mkroökonometr, 4. hét Bíró Ankó A tnnyg Gzdság Versenyhvtl Versenykltúr Központj és dás-ökonóm Alpítvány támogtásávl készült z ELE ák Közgzdságtdomány nszékének közreműködésével Pnel

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK

RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK RANGSOROLÁSON ALAPULÓ NEM-PARAMÉTERES PRÓBÁK Sorrendbe állítjuk a vzgált értékeket (a mntaelemeket) é az aktuál érték helyett a rangzámokat haználjuk a próbatatztkák értékenek kzámítáára. Egye próbáknál

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometra modellezés alazatreonstró nyomtatás 9. Szabadformáú felülete smtása http://g.t.bme.h/portal/node/3 https://www..bme.h/epzes/targya/viiiav54 Dr. Várady Tamás Dr. Sal éter BME Vllamosmérnö

Részletesebben

ANALÍZIS III. ELMÉLETI KÉRDÉSEK

ANALÍZIS III. ELMÉLETI KÉRDÉSEK ANALÍZIS III. ELMÉLETI KÉRDÉSEK Szerkesztette: Balogh Tamás 2014. május 15. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

3. előadás Stabilitás

3. előadás Stabilitás Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Typotex Kiadó. Jelölések

Typotex Kiadó. Jelölések Jelölések a = dolgozók fogyasztása (12. fejezet és A. függelék) a i = egyéni tőkeállomány i éves korban A = társadalmi (aggregált) tőkeállomány b j = egyéni nyugdíj j éves korban b k = k-adik nyugdíjosztály

Részletesebben

Loss Distribution Approach

Loss Distribution Approach Modeling operational risk using the Loss Distribution Approach Tartalom»Szabályozói környezet»modellezési struktúra»eseményszám eloszlás»káreloszlás»aggregált veszteségek»további problémák 2 Szabályozói

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

X Physique MP 2013 Énoncé 2/7

X Physique MP 2013 Énoncé 2/7 X Physique MP 2013 Énoncé 1/7 P P P P P ré r s t s t s tr s st s t r sé r tt é r s t t r r q r s t 1 rés t ts s t s ér q s q s s ts t r t t r t rô rt t s r 1 s2stè s 2s q s t q s t s q s s s s 3 é tr s

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok 2019-09-10 MGFEA Wettl Ferenc ALGEBRA

Részletesebben

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0

Molnár Bence. 1.Tétel: Intervallumon értelmezett folytonos függvény értékkészlete intervallum. 0,ami ellentmondás uis. f (x n ) f (y n ) ε > 0 Anlízis. Írásbeli tételek-bizonyítások Molnár Bence 1.Tétel: Intervllumon értelmezett folytonos függvény értékkészlete intervllum Legyen I R tetszőleges intervllum és f I R folytonos függvény R f intervllum

Részletesebben

Matematikai statisztika szorgalmi feladatok

Matematikai statisztika szorgalmi feladatok Matematikai statisztika szorgalmi feladatok 1. Feltételes várható érték és konvolúció 1. Legyen X és Y független és azonos eloszlású valószín ségi változó véges második momentummal. Mutassuk meg, hogy

Részletesebben

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14. Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint

Részletesebben