Bevezetés. 1. előadás, február 11. Módszerek. Tematika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika"

Átírás

1 Bevezetés 1. előadás, február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra gyakorlat Előadás: főleg modellek, elemzési módszerek Gyakorlat: R programmal, alkalmazások Számonkérés: 50%: gyakorlat alapján (beadandó feladat, házi feladatok + órai munka) 50%: ZH az utolsó gyakorlaton az előadás anyagából Információk: zempleni/aring15.html Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 1 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 2 / 22 Tematika Módszerek Stabilis eloszlások, vonzási tartományok Extrém-érték modellek egy-és többdimenzióban Kopulák Véletlen mátrixok ARCH-GARCH modellek Pénzügyi kérdések: portfólióoptimalizálás, szabályozók stb. Cikk/könyvfeldolgozás Minden előadás végén irodalomjegyzék Matematikai modellek, de az alkalmazásokra koncentrálva Példák illusztrációként (részletesen a gyakorlaton) Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 3 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 4 / 22

2 Stabilis eloszlások Alkalmazásuk Definíció. X stabilis eloszlású, ha tetszőleges a, b-re megadható c és d, hogy ax + by eloszlása (X, Y független, azonos eloszlású) éppen cz + d eloszlása (Z is X eloszlású) Definíció. Vonzási tartomány. F a G vonzási tartományába tartozik, ha X 1, X 2,..., X n,... független, F eloszlásúakra megadható a n, b n normáló sorozat, hogy X X n a n b n G Fizikai törvényszerűségek (pl. a Lévy eloszlás a Brown mozgás adott szint eléréséhez szükséges idő eloszlása) Általános határeloszlás-tétel (Pontosan a stabilis eloszlásoknak van nemüres vonzási tartománya) Vastag szélű (heavy tailed) eloszlások, pl. pénzügyekben eloszlásban (gyengén). Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 5 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 6 / 22 Szimmetrikus stabilis eloszlások Általános stabilis eloszlások Karakterisztikus függvényük exp t α ahol 0 < α < 2 paraméter (α = 2: normális eloszlás, α = 1: Cauchy, α = 0, 5: Lévy) Minden stabilis eloszlás abszolút folytonos, sűrűségfüggvényük végtelen sokszor deriválható, de általában nem adhatók meg zárt alakban Mindegyik unimodális, de a módusz általában nem adható meg zárt alakban Az α < 2 paraméterű stabilis eloszlás r-edik momentuma pontosan r < α esetén véges Paraméterek: α index β ferdeség γ skála δ hely α < 1 és β = 1 esetén félegyenesre koncentrált Egyébként az egész számegyenesre Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 7 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 8 / 22

3 Példák A ferdeségi paraméter szerepe Nevezetes stabilis eloszlások Normális(0,sqrt(2)): st(2,0) Cauchy: st(1,0) Levy: st(0.5,1) E(X) = δ βγ tan πα (α > 1). 2 Spec: δ = 0, β = 0 esetén E(X) = 0 De β 0 esetén E(X), ha α 1 pedig a módusz 0 α = 2 esetén E(X) = δ (β-nak nincs szerepe) ábra. A legismertebb stabilis eloszlások Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 9 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 10 / 22 A többi paraméter szerepe Példák 2 Stabilis eloszlások A jól ismert kvantilistranszformáció működik: ha q a γ = 0, δ = 0 (standard) eloszlás kvantilise, akkor qγ + δ a γ, δ paraméterű eloszlás azonos kvantilise. A szórásnégyzet additivitásának szerepét a γ α = γ1 α + γα 2 veszi át st(1.5,0.5) st(1,0.5) st(0.5,0.5) ábra. A ferdeség és az α kapcsolata Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 11 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 12 / 22

4 Cauchy-eloszlás Lévy-eloszlás f (x) = γ π((x δ) 2 + γ 2 ) X/Y eloszlása standard Cauchy (γ = 1, δ = 0), ha X, Y független standard normális. Ebből adódóan megegyezik az 1 szabadságfokú t-eloszlással is. Szimmetrikus, tehát β = 0. Világítótorony-probléma: γ magasságú, δ távolságban levő világítótorony véletlenszerű irányba világít. Az x tengelyen a vetület eloszlása Cauchy (0, γ, δ) f (x) = c 1 c exp{ } (x > 0) 2π x 3/2 2x 1/Y 2 eloszlása standard Lévy (c = 1), ha Y standard normális. Stabilis, (0.5, 1, c, 0) paraméterekkel Brown mozgásnál egy p 0 pont elérési ideje Lévy eloszlású, c = p 2 paraméterrel Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 13 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 14 / 22 Példák 3 Határeloszlás-tétel Suruségfüggvény Eloszlásfüggvény st(0.2,0) st(0.2,0.5) st(0.2,1) Tétel. Legyenek X, X 1, X 2,..., X n,... független, azonos eloszlású valószínűségi változók. Tegyük fel, hogy P( X > x) x α L(x), ahol L lassú változású fv. a végtelenben (L(cx)/L(x) 1, ha x, c > 0). Ekkor megadható a n, b n hogy a n (X 1 + X X n ) b n Z ahol Z éppen α rendű stabilis eloszlás. (Azaz X a Z vonzási tartományában van) ábra. Igen szélsőséges példák Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 15 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 16 / 22

5 Gyakorlati kérdések Michael-féle szórásstabilizált P-P plot Paraméterbecslés: maximum likelihood a leghatásosabb (konfidencia intervallum is konstruálható) Illeszkedésvizsgálat Sűrűségfv. becslésből: paraméteres vs. nemparaméteres ("középen" jó) PP plot QQ plot (általában előnyösebb, mert az eloszlás széleit is mutatja, de ezek itt eltúlzottak lehetnek) A PP plotnál a szélső pontok szórása kicsi (a QQ plotnál általában a középsőké) S = 2 arcsin(u 1/2 )/π : sűrűségfüggvénye sin(πx)- szel arányos, a rendezett minta elemeinek szórása aszimptotikusan azonos. Az ábrázolandó pontok: r i = (2/π) arcsin[(i 0.5)/n 1/2 ] s i = (2/π) arcsin[f 1/2 (y i m)/s] Tesztstatisztika is számolható: max r i s i Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 17 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 18 / 22 Szimuláció (Chambers, 1976) Illusztráció: részvény-idősorok Legyen U egyenletes [0,1], W pedig exponenciális eloszlású λ = 1 paraméterrel és függetlenek. Ekkor Z = sin(αu) cos U 1/α { cos((α 1)U) (α,0) paraméterű szimmetrikus stabilis eloszlású. Legyen U 0 = arctan(β tan(πα/2))/α és Z = sin(α(u 0 + U)) (cos(αu 0 ) cos U) 1/α W } (1 α)/α { cos(αu0 + α 1)U) pedig (α,β) paraméterű stabilis eloszlású (ha α 1). W } (1 α)/α norm.elo (sd=0.018) Nasdaq, napi hozamok Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 19 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 20 / 22

6 Havi aggregálás Hivatkozások Nasdaq, havi hozamok norm.elo (sd=0.076) Chambers, J.M., Mallows, C. and Stuck, B.W.: A method for simulating stable random variable (1976) Michael, P.: The stabilized probability plot (1983) Nolan, J. P.: Modeling financial data with stable distributions (2005) Nolan, J. P.: Stable distributions (2009) Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 21 / 22 Zempléni András (ELTE) 1. előadás, február 11. Áringadozások előadás 22 / 22

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása

Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása 10.14750/ME.2015.007 MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása Doktori (PhD) értekezés Készítette:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja

Folytonos rendszeregyenletek megoldása. 1. Folytonos idejű (FI) rendszeregyenlet általános alakja Folytonos rendszeregyenletek megoldása 1. Folytonos idejű (FI) rendszeregyenlet általános alakja A folytonos rendszeregyenletek megoldásakor olyan rendszerekkel foglalkozunk, amelyeknek egyetlen u = u(t)

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Tómács Tibor. Matematikai statisztika gyakorlatok

Tómács Tibor. Matematikai statisztika gyakorlatok Tómács Tibor Matematikai statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika gyakorlatok Eger, 2012 Szerző: Dr. Tómács Tibor főiskolai

Részletesebben

Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása

Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Szimmetrikus stabil eloszlások paramétereinek egy robusztus becslési eljárása és alkalmazása doktori (PhD) értekezés tézisei Készítette: Csendes Csilla

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA

MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA Czenky Márta MOODLE TESZTEK EREDMÉNYEINEK ELOSZLÁS VIZSGÁLATA ABSZTRAKT Saját oktatói gyakorlatunkban a Moodle rendszer használata az évek során kiszorította az elméleti ismeretek számonkérésében a papír

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS

ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS A tanulmányban bemutatjuk az extrémérték-elemzés módszereit, így különösen a blokkmaximumok

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

EuroOffice Modeller felhasználói útmutató

EuroOffice Modeller felhasználói útmutató EuroOffice Modeller felhasználói útmutató 1 Bevezetés...5 EuroOffice Modeller: ANOVA felhasználói útmutató...5 Előkészítés...5 Egyutas ANOVA...5 Kétutas ANOVA...8 EuroOffice Modeller: Egymintás Z-próba

Részletesebben

Függvények határértéke és folytonossága

Függvények határértéke és folytonossága Függvények határértéke és folytonossága 7. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Függvények határértéke p. / Függvény határértéke az x 0 helyen Definíció. Legyen D R, f

Részletesebben

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok VALÓSZÍNŰSÉGSZÁMÍTÁS MSc Órai Feladatok 1. Feladat (Diszkrét eloszlás) Ketten kosárlabdáznak. Az A játékos 0,4 a B játékos 0,3 valószínűséggel dob kosarat. A dobást A kezdi és felváltva dobnak egymás után.

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Biometria: Statisztikai módszerek alkalmazása a biológiában

Biometria: Statisztikai módszerek alkalmazása a biológiában Biometria: Statisztikai módszerek alkalmazása a biológiában Statisztika alkalmazási területei: Adatok ellenőrzése, értelmezése, ábrázolása, Jellemző paraméterek származtatása Valószínűség hozzárendelése

Részletesebben

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n

n = 1,2,..., a belőlük készített részletösszegek sorozata. Tekintsük az S n A n Határeloszlástételek és korlátlanul osztható eloszlások. I. rész Az alapvető problémák megfogalmazása. A valószínűségszámítás egyik alapvető feladata a következő kérdés vizsgálata: Legyen ξ 1,ξ 2,... független

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VÁZLAT Veszélyes és extrém jelenségek A veszélyes definíciója Az extrém és ritka

Részletesebben

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában

A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában A mérési bizonytalanság becslése a vizsgálólaboratóriumok gyakorlatában Készítette: Szegény Zsigmond Mezőgazdasági Szakigazgatási Hivatal Élelmiszer- és Takarmánybiztonsági Igazgatóság Műszaki-technológiai

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Informatikai rendszerek modellezése Dr. Sztrik, János

Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Informatikai rendszerek modellezése Dr. Sztrik, János Debreceni Egyetem Kelet-Magyarországi Informatika Tananyag Tárház Nemzeti Fejlesztési Ügynökség

Részletesebben

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79

2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 2002. ELSÕ ÉVFOLYAM 4. SZÁM 79 80 HITELINTÉZETI SZEMLE SOCZÓ CSABA A KOCKÁZTATOTT ÉRTÉKNÉL NAGYOBB VESZTESÉGEK VIZSGÁLATA A tíz gazdaságilag legfejlettebb ország (G-10) 1998-ban [3], míg Magyarország 2000-ben

Részletesebben

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok.

Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Wiener-folyamatok legfontosabb tulajdonságai. Poisson-folyamatok. Láttuk, hogy a Wiener-folyamat teljesíti az úgynevezett funkcionális centrális határeloszlástételt. Ez az eredmény durván szólva azt fejezi

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

A BELSÕ MODELL ÉS AZ EXTRÉM ÉRTÉKEK

A BELSÕ MODELL ÉS AZ EXTRÉM ÉRTÉKEK 2002. ELSÕ ÉVFOLYAM 2. SZÁM 83 SOCZÓ CSABA A BELSÕ MODELL ÉS AZ EXTRÉM ÉRTÉKEK Számos jelentõs nyugati vállalat (Barings, Metallgesellshaft, Daiwa Bank) [6], [14] keserû tapasztalata mutatja, hogy a pénzügyi

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk.

2. Zárthelyi megoldásokkal 1998 tavasz I. évf. 13.-18.tk. . Zárthelyi megoldásokkal 998 tavasz I. év..-8.tk.. Döntse el, hogy létezik e, és ha igen, számítsa ki az ) e üggvény századik deriváltját az helyen! MO. Egyrészt e ) n origó körüli Taylor-sora alapján

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

Funkcionális Nyelvek 2 (MSc)

Funkcionális Nyelvek 2 (MSc) Funkcionális Nyelvek 2 (MSc) Páli Gábor János pgj@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Programozási Nyelvek és Fordítóprogramok Tanszék Tematika A (tervezett) tematika rövid összefoglalása

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

13. előadás, 2015. május 13.

13. előadás, 2015. május 13. 13. előadás, 2015. május 13. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem A pénzügyi válság okai Átláthatatlan, ellenőrizhetetlen árazású

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) szerint

Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) szerint Beton nyomószilárdságának MEGFELELŐSÉGE ÉS elfogadása (nem csak) az MSZ EN 206-1 1 és MSZ 4798-1 1 szabványok szerint A beton igénybevételként jelentkező nyomófeszültségének (elvárt legkisebb szilárdságának)

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Mérnökgazdasági számítások. Dr. Mályusz Levente Építéskivitelezési Tanszék

Mérnökgazdasági számítások. Dr. Mályusz Levente Építéskivitelezési Tanszék Mérnökgazdasági számítások Dr. Mályusz Levente Építéskivitelezési Tanszék Tartalom Beruházási döntések Pénzfolyamok meghatározása Tõke alternatíva költsége Mérnökgazdasági számítások Pénzügyi mutatók Finanszírozási

Részletesebben

A BSc-képzés szakdolgozati témái

A BSc-képzés szakdolgozati témái A BSc-képzés szakdolgozati témái ELTE TTK, Matematikai Intézet 2010/2011 Valószín ségelméleti és Statisztika Tanszék 1. Szabadon választható téma. Témavezet : A tanszék bármelyik oktatója, vagy (a tanszékvezet

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Nagy Sándor 1 Eötvös Loránd Tudományegyetem, Magkémiai Tanszék, Budapest

Nagy Sándor 1 Eötvös Loránd Tudományegyetem, Magkémiai Tanszék, Budapest Bolyongások a valószínűség mezején: A határozatlanság bizonytalansága Nagy Sándor 1 Eötvös Loránd Tudományegyetem, Magkémiai Tanszék, Budapest Expozíció A Magkémia, ill. a Nukleáris tudomány alapjai c.

Részletesebben

A pénzügyi kockázat mérése és kezelése

A pénzügyi kockázat mérése és kezelése A pénzügyi kockázat mérése és kezelése Varga-Haszonits István Gazdasági Fizika Téli Iskola, 2009. január 31. Áttekintés 1 Bevezetés 2 A portfólióválasztási probléma 3 Kockázati mértékek 4 A hatékony portfóliók

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

LAKÓÉPÜLETEK KIEGYENLÍTETT SZELLŐZÉSÉNEK ENERGETIKAI ELEMZÉSE, HATÁSA A B TÍPUSÚ GÁZKÉSZÜLÉKEK ÜZEMÉRE

LAKÓÉPÜLETEK KIEGYENLÍTETT SZELLŐZÉSÉNEK ENERGETIKAI ELEMZÉSE, HATÁSA A B TÍPUSÚ GÁZKÉSZÜLÉKEK ÜZEMÉRE LAKÓÉPÜLETEK KIEGYENLÍTETT SZELLŐZÉSÉNEK ENERGETIKAI ELEMZÉSE, HATÁSA A B TÍPUSÚ GÁZKÉSZÜLÉKEK ÜZEMÉRE Dr. Kajtár László Ph.D egyetemi docens Épületgépészeti tanszék, BME H-1111. Budapest, Műegyetem rkp.

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

P R Ó B A É R E T T S É G I 2 0 0 4. m á j u s KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ P R Ó B A É R E T T S É G I 0 0 4. m á j u s MATEMATIKA KÖZÉPSZINT JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az 1 6. LECKE: REGRESSZIÓ -- Elıadás 6.1. A regresszió feladata és módszerei [C4] A módszer lényege, hogy arányskálán mért magyarázó változók (x 1,,x k ) segítségével közelítjük a számunkra érdekes, ugyancsak

Részletesebben

Magyarországon a pedagógia csak

Magyarországon a pedagógia csak Nem-paraméteres statisztikai módszerek alkalmazási lehetõségei a pedagógiai kutatásban A társadalomtudományok, így a pedagógia is, igen széles körben használnak matematikai statisztikai módszereket. A

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat)

Barczy Mátyás és Pap Gyula. Sztochasztikus folyamatok. (Gauss-folyamatok, Poisson-folyamat) Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok Példatár és elméleti kiegészítések I. Rész (Gauss-folyamatok, Poisson-folyamat mobidiák könyvtár Barczy Mátyás és Pap Gyula Sztochasztikus folyamatok

Részletesebben

Atomi er mikroszkópia jegyz könyv

Atomi er mikroszkópia jegyz könyv Atomi er mikroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc III. Mérés vezet je: Szabó Bálint Mérés dátuma: 2010. október 7. Leadás dátuma: 2010. október 20. 1. Mérés leírása A laboratóriumi mérés

Részletesebben

az EXTRÉM ÁRMOZGÁSOK STATISZTIKAI JELLEMZÕI A MAGYAR ÁRAMTÕZSDÉN

az EXTRÉM ÁRMOZGÁSOK STATISZTIKAI JELLEMZÕI A MAGYAR ÁRAMTÕZSDÉN MarOSSY Zita az EXTRÉM ÁRMOZGÁSOK STATISZTIKAI JELLEMZÕI A MAGYAR ÁRAMTÕZSDÉN 2010. július 20-án megkezdte működését a magyar áramtőzsde, a HUPX. 2010. augusztus 16-án az első napokban tapasztalt 45-60

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK Részletek FELADATOK Két zárthelyi dolgozat Önállóan kidolgozandó feladat (adatbázis alapú mintaalkalmazás készítése) A KÖTELEZŐ FELADAT A félév során kötelező programot

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Kárszámeloszlások modellezése

Kárszámeloszlások modellezése Kárszámeloszlások modellezése DIPLOMAMUNKA Írta: Talabér Dóra Edit Biztosítási és pénzügyi matematika MSc Aktuárius szakirány Témavezető: Prokaj Vilmos egyetemi docens ELTE TTK Valószínűségelméleti és

Részletesebben

Gazdasági matematika 2. tantárgyi kalauz

Gazdasági matematika 2. tantárgyi kalauz Hanich József Gazdasági matematika 2. tantárgyi kalauz Szolnoki Főiskola Szolnok 2005. Gazdasági matematika 2. tantárgyi kalauz A kalauz a következő 3 kiadványhoz készült: Dr. Csernyák László: Matematika

Részletesebben

Kontrol kártyák használata a laboratóriumi gyakorlatban

Kontrol kártyák használata a laboratóriumi gyakorlatban Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések)

Emlékeztető: LR(0) elemzés. LR elemzések (SLR(1) és LR(1) elemzések) Emlékeztető Emlékeztető: LR(0) elemzés A lexikális által előállított szimbólumsorozatot balról jobbra olvassuk, a szimbólumokat az vermébe tesszük. LR elemzések (SLR() és LR() elemzések) Fordítóprogramok

Részletesebben