Elliptikus eloszlások, kopuláik. 7. előadás, március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák"

Átírás

1 Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük kontúrjai ellipszisek Példa: Gass, t Azonos típsú elliptiks eloszlások konolúciója ismét gyanolyan típsú elliptiks eloszlás Az elliptiks koplákra teljesül a radiális szimmetria: C(, ) = C(1, 1 ) Éppen ez az, ami tipiksan nem áll fenn a portfóliók hozamára (a kigró eszteségek tipiksan nagyobbak a kigró nyereségeknél) Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 1 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 2 / 1 Elliptiksság tesztelése Arkhimédeszi koplák Standardizálás tán gömbszimmetriks kell, hogy legyen az eredmény R = Y és S = Y / Y függetlenek, S egyenletes eloszlású Példál χ 2 próba alkalmazható A kopla generátor függénnyel adhatók meg: ϕ() : [, 1] [, ], folytonos és szigorúan monoton csökkenő, φ(1) =. Ebből a d-dimenziós Arkhimédeszi kopla ( d ) C ϕ () = φ 1 ϕ( i ). Egyszerű a konstrkciójk, de an hátrányk is: csak egy (agy néhány) paraméterük an. Az összes s < d dimenziós peremeloszlásk azonos Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 3 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 4 / 1

2 Példák Tlajdonságok A Gmbel kopla (logisztiks modell) generátora: ϕ θ () = [ ln()] θ, ahol θ [1, + ). Tehát a d-dimenziós Gmbel-kopla C Gmbel () = e ( d log( i ) θ ) 1θ. Egy C kopla extrém-érték kopla, ha i C( t 1,..., t d ) = Ct ( 1,..., d ) minden t >. Ez megfelel a többdimenziós extrém-érték eloszlásoknak. Ezek közül a Gmbel kopla az egyetlen Arkhimédeszi kopla. A Clayton kopla generátora ϕ θ () = θ 1, ahol θ >. Tehát a d-dimenziós Clayton kopla: ( d ) 1 C Clayton () = θ θ i d + 1. Az azonosításhoz nagy mintaelemszám szükséges (különösen 2-nél magasabb dimenzióban) Nagyon gyenge és nagyon erős összefüggőségnél nem lényeges a kopla típsa Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 5 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 6 / 1 Koplák összehasonlítása Extremális összefüggőség Gmbel copla Gassian copla Clayton copla (Flipped) Stdent t copla Koplákra: C t (, ) = P(U < F 1 t (), V < F 1 t () U < t, V < t) ahol F t () := P(U < U < t, V < t) a feltételes eloszlásfüggény A határeloszlás differenciálható generátorú Arkhimédeszi koplákra: xy, ϕ R lim C t (, ) = C t Clayton,α (, ), ϕ R α min(x, y) ϕ R Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 7 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 8 / 1

3 Koplák összefüggőségi indexei Koplák összefüggőségi indexei χ = lim 1 P{X 2 > F 1 2 () X 1 > F 1 1 ()}, Kantilisfüggő áltozat: ( log P{X1 > F 1 1 χ() = 2 (), X 2 > F 1 2 ()} ) log P{X 1 > F 1 1 ()}, 1. E(X EX)(Y EY ) Lineáris korreláció: R(X, Y ) = D(X)D(Y ) hátrányai: érzékeny a kigró értékekre áltozik, ha transzformáljk a marginálisokat Alternatíák: Kendall-τ: τ(x, Y ) = P [(X X)(Y ] Ỹ ) > P [(X X)(Y ] Ỹ ) <. Spearman-ρ: ( [ ] [ ]) ρ(x, Y ) = 3 P (X X)(Y Y ) > P (X X)(Y Y ) <. ahol (X, Y ), ( X, Ỹ ), (X, Y ) független, azonos eloszlásúak. Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 9 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 1 / 1 Tlajdonságok Toábbi tlajdonságok Ezek úgyneezett rangkorrelációk (csak az értékek sorrendje érdekes) Nem érzékenyek a kigró értékekre Kiszámításk a kopláal τ(x, Y ) = 4 ρ(x, Y ) = C(, )dc(, ) 1 [C(, ) ] dd. Mindkettő inariáns a monoton transzformációkra. Legyen κ = ρ agy κ = τ. Ekkor 1 κ 1; κ X,X = 1, κ X, X = 1. Ha X és Y független, akkor κ X,Y =. κ X, Y =κ X,Y =-κ X,Y. Az egyes koplákra adódó összefüggőségi mérőszámok függnek a paramétertől, így becslésükből egyúttal a kopla becslése is megkapható. Példál a Gmbel koplára τ = 1 1/β. Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 11 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 12 / 1

4 Alkalmazások Illeszkedésizsgálat A Gass koplára a páronkénti korrelációkra R ij = sin ( πτ(x i, X j )/2 ) ) Lényeges a álasztás a különböző kopla-típsok között (pl. a farok-összefüggőség segítségéel, illete elméleti meggondolások alapján). Tapasztalati tény, hogy pl. a pénzügyi portfólióknál gyakran minden egyes elem extrém értékű (tőzsdekrach) azaz itt árhatóan fellép a farok-összefüggőség. A különböző modellekből nagyon nagy különbségek adódhatnak a alószínűségbecslésre. A számításigény csökkentéséhez a dimenziószámot is csökkenteni kell. A K -függény: K (ϑ, t) = P(F(X < t) = P (C ϑ (F 1 (X 1 ),..., F d (X d )) < t) Arkhimédeszi koplákra a kiszámítása ahol d 1 ( 1) j K (ϑ, t) = t + i! [ ϕ ϑ (t) j] f i (ϑ, t) f (ϑ, t) = d dx ϕ ϑ(x) x=ϕϑ (t). Ha nincs zárt alakja, szimlálni akkor is lehet Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 13 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 14 / 1 A K függényen alapló teszt A teszt Empiriks erzió: K n (t) = 1 n χ(e n < t) t [, 1] n ahol E n = 1 n χ ( ) U j,1 < U i,1,..., U j,d < U i,d n Kendall folyamat κ n (t) = n (K (ϑ n, t) K n (t)). Cramér-on Mises típsú statisztika: Formális tesztet is kaphatnk az S n statisztikából (ha nagy, eltasítjk az illeszkedést). Az aszimptotiks eloszlását csak ismert kopla esetén lehet kiszámítani. Azokban a realisztiks esetekben, ahol C-t becsüljük, szimlációal kaphatjk meg a kritiks értékeket S n = ahol Φ a súlyfüggény 1 (κ n (t)) 2 Φ(t)dt Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 15 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 16 / 1

5 Koplák összehasonlítása Rosenblatt-transzformáció Egy másik módszer: Breyman-teszt (Breymann et al, Berg & Bakken) a Rosenblatt transzformáción alapl R : (, 1) d (, 1) d ahol e 1 = 1 és i 2-re R() = (e 1,..., e d ), e i = i 1 C( 1,..., i, 1, 1,...1) 1... i 1 / i 1 C( 1,..., i 1, 1, 1,...1) 1... i 1. Tlajdonsága: U eloszlása pontosan akkor a C kopla, ha R(U) a független kopla. Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 17 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 18 / 1 Breymann-teszt: függetlenségizsgálat Hiatkozások Y B = d Φ 1 (E i ) 2 éppen chi-négyzet eloszlású, d szabadságfokkal. Ha ezt a saját eloszlásfüggényébe helyettesítjük, egyenletes eloszlást kapnk. Ezt tesztelhetjük példál az Anderson-Darling próbáal. Berg és Bakken toábbfejlesztette a módszert, konzisztenssé tée azt. Berg, D. (29) Copla Goodness-of-fit testing: An oeriew and power comparison. Berg, D. and Bakken, H. (26) Copla Goodness-of-fit Tests: A Comparatie Stdy. Nelsen, R.B. (26) An Introdction to Coplas. 2nd ed. John Wiley & Sons. Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 19 / 1 Zempléni András (ELTE) 7. előadás, 215. márcis 25. Áringadozások előadás 2 / 1

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

13. előadás, 2015. május 13.

13. előadás, 2015. május 13. 13. előadás, 2015. május 13. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem A pénzügyi válság okai Átláthatatlan, ellenőrizhetetlen árazású

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Kárszámeloszlások modellezése

Kárszámeloszlások modellezése Kárszámeloszlások modellezése DIPLOMAMUNKA Írta: Talabér Dóra Edit Biztosítási és pénzügyi matematika MSc Aktuárius szakirány Témavezető: Prokaj Vilmos egyetemi docens ELTE TTK Valószínűségelméleti és

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika közészint ÉRETTSÉGI VIZSGA 0. május 7. FIZIKA KÖZÉPSZITŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMZETI ERŐFORRÁS MIISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0,9375 32 = 0,8125 32 = 0,40625. Mo.: 32 = 0,25 Valószínűségszámítás I. Kombinatorikus valószínűségszámítás. BKSS 4... Egy szabályos dobókockát feldobva mennyi annak a valószínűsége, hogy a -ost dobunk; 0. b legalább 5-öt dobunk; 0, c nem az -est dobjuk;

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus

3. rész. Két változó kapcsolatának vizsgálata. Minden összefügg mindennel!? Komputerstatisztika kurzus Két kapcsolatának vizsgálata Minden összefügg mindennel!? Komputerstatisztika kurzus Barczy Mátyás Informatikai Kar Debreceni Egyetem 1 A témái 1 2 3 4 5 6 2 A kapcsolat természete A statisztikai k (adatbázisok

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

A pénzügyi kockázat mérése és kezelése

A pénzügyi kockázat mérése és kezelése A pénzügyi kockázat mérése és kezelése Varga-Haszonits István Gazdasági Fizika Téli Iskola, 2009. január 31. Áttekintés 1 Bevezetés 2 A portfólióválasztási probléma 3 Kockázati mértékek 4 A hatékony portfóliók

Részletesebben

A Feldspar fordító, illetve Feldspar programok tesztelése

A Feldspar fordító, illetve Feldspar programok tesztelése A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

A prímszámok eloszlása, avagy az első 50 millió

A prímszámok eloszlása, avagy az első 50 millió Bevezetés Pímszámok A prímszámok eloszlása, avagy az első 50 millió prímszám. Klukovits Lajos TTIK Bolyai Intézet 2014. április 8. Néhány definíció. 1 A klasszikus számelméleti. p N prím, ha a p a = ±1,

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:

Részletesebben

Hatékony piacok feltételei

Hatékony piacok feltételei Hatékony piacok feltételei Piacok töredékmentesek tranzakciós hatékonyság Tökéletes verseny van termékpiacon mindenki a minimális átlagköltségen termel, értékpapírpiacon mindenki árelfogadó Piacok informálisan

Részletesebben

Beregszászi István Programozási példatár

Beregszászi István Programozási példatár Beregszászi István Programozási példatár 2 1. fejezet 1. laboratóriumi munka 1.1. Matematikai kifejezések Írja fel algoritmikus nyelven a megadott kifejezést megfelelő típusú változók segítségével! Figyeljen

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA, MATEmATIkA II 3 III NUmERIkUS SOROk 1 Alapvető DEFInÍCIÓ ÉS TÉTELEk Végtelen sor Az (1) kifejezést végtelen sornak nevezzük Az számok a végtelen sor tagjai Az, sorozat az (1) végtelen sor

Részletesebben

Konvex optimalizálás feladatok

Konvex optimalizálás feladatok (1. gyakorlat, 2014. szeptember 16.) 1. Feladat. Mutassuk meg, hogy az f : R R, f(x) := x 2 függvény konvex (a másodrend derivált segítségével, illetve deníció szerint is)! 2. Feladat. Mutassuk meg, hogy

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

ó ó ü ľ ó ü ó ľ ü ń ó ó ó ö ę ź ź ö ö ö ö ę ę ö ó ľ ó ę ź ó ö ó ź Ĺ ź ó ť ú ü ű ö ó ź ó ö ó ö ľ ö ľ ń ó ľ ź ű ö ń ó ź ź ť ľ ó ľ ź ü ť ź ó ü ť ö ó źů ý ťü ľ ú ó ď ľ ľ ľ ľ ó ó ľ ń ľ ľ ö ó ľ ó ľ ö ź ó ľ ľ

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 8. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 8. Valószínűség-számítás II. Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

MODELLEK ÉS ALGORITMUSOK ELŐADÁS

MODELLEK ÉS ALGORITMUSOK ELŐADÁS MODELLEK ÉS ALGORITMUSOK ELŐADÁS Szerkesztette: Balogh Tamás 214. december 7. Ha hibát találsz, kérlek jelezd a info@baloghtamas.hu e-mail címen! Ez a Mű a Creative Commons Nevezd meg! - Ne add el! - Így

Részletesebben

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport

Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport Lineáris algebra zárthelyi dolgozat javítókulcs, Informatika I. 2005.márc.11. A csoport 1. Egy egyenesre esnek-e az A (2, 5, 1), B (5, 17, 7) és C (3, 9, 3) pontok? 5 pont Megoldás: Nem, mert AB (3, 12,

Részletesebben

ő ü ő ľ ü Ü Ü ľ ź ő ľ ľ ő ő ü ľ ő ö ü ľ ő ő ü ú ź ö ö ö Ĺ ő ö ľő ő ú ű ö ö ľ ü Ę ú ő ü ö ľ ź ő ľ ů ö ľ ź ő ľ ő ö ö ľ ľő ľ Í ő ľ ő ľü ľ ő ľ ľ ź ľ ö ü ú ű ź ő ľ ľ ľ ľ ú ú ľ Á ľ Í ő ö ü ő ź ź Í ö ľ ő ľ ő

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15.

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. 1 3.3.3 Minősítési rendszerek és a kockázatok számszerűsítése Minősítések hozzárendelése PD, LGD, CF meghatározása Közös vizsgálati

Részletesebben

OPERÁCIÓKUTATÁS. No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK

OPERÁCIÓKUTATÁS. No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No. 1. Nagy Tamás - Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK Budapest 2002 Nagy Tamás - Klafszky Emil: SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No.1 Szerkeszti: Komáromi Éva Megjelenik

Részletesebben

A hitelfelvételi kapacitás. A hitelfelvételi kapacitás néhány meghatározója. Diverzifikáció. Független részprojektek.

A hitelfelvételi kapacitás. A hitelfelvételi kapacitás néhány meghatározója. Diverzifikáció. Független részprojektek. Vállalati pénzügytan 6. A hitelfelvételi kapacitás növelésének eszközei ELTE TáTK Közgazdaságtudományi Tanszék Készítette: Bárczy Péter A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és

Részletesebben

Mérnökgazdasági számítások. Dr. Mályusz Levente Építéskivitelezési Tanszék

Mérnökgazdasági számítások. Dr. Mályusz Levente Építéskivitelezési Tanszék Mérnökgazdasági számítások Dr. Mályusz Levente Építéskivitelezési Tanszék Tartalom Beruházási döntések Pénzfolyamok meghatározása Tõke alternatíva költsége Mérnökgazdasági számítások Pénzügyi mutatók Finanszírozási

Részletesebben

Zmin. Pmax Zmax. A helyes működéshez még be kell állítanunk a tengelyek érzékenységét is. Ezt mindhárom tengelyre Step/mm dimenzióban kell megadni.

Zmin. Pmax Zmax. A helyes működéshez még be kell állítanunk a tengelyek érzékenységét is. Ezt mindhárom tengelyre Step/mm dimenzióban kell megadni. Működés A lézerteljesítmény vezérlése a Z tengely pozíciója alapján történik. A tengely koordinátát a CNC marógépeken szokásos, negatív irányban növekvően értelmezzük. A kimeneten megjelenő PWM jel kitöltési

Részletesebben

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása

Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék

Részletesebben

Válasz Dr. Abonyi János bírálatára

Válasz Dr. Abonyi János bírálatára Válasz Dr. Abonyi János bírálatára Tisztelt Professzor Úr! Fodor Attila: Model analysis, Parameter Estimation and Control of a Synchronous Generator című doktori értekezéséről Ezúton is szeretném megköszönni,

Részletesebben

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az

A becslés tulajdonságai nagyban függnek a megfigyelésvektortól. A klasszikus esetben, amikor az 1 6. LECKE: REGRESSZIÓ -- Elıadás 6.1. A regresszió feladata és módszerei [C4] A módszer lényege, hogy arányskálán mért magyarázó változók (x 1,,x k ) segítségével közelítjük a számunkra érdekes, ugyancsak

Részletesebben

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor

1. Számsorok, hatványsorok, Taylor-sor, Fourier-sor . Számsorok, hatványsorok, Taylor-sor, Fourier-sor Vizsgálja meg a következ végtelen sorokat konvergencia szempontjából. Tétel. (Cauchy-féle bels konvergenciakritérium) A a n végtelen sor akkor és csakis

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Hogyan lesz adatbányából aranybánya?

Hogyan lesz adatbányából aranybánya? Hogyan lesz adatbányából aranybánya? Szolgáltatások kapacitástervezése a Budapest Banknál Németh Balázs Budapest Bank Fehér Péter - Corvinno Visontai Balázs - KFKI Tartalom 1. Szolgáltatás életciklus 2.

Részletesebben

Némethné Vidovszky Ágens 1 és Schanda János 2

Némethné Vidovszky Ágens 1 és Schanda János 2 Némethné Vidovszky Ágens 1 és Schanda János 2 1.Budapesti Műszaki Egyetem; 2 Pannon Egyetem 1 Áttekintés A fotometria két rendszere: Vizuális teljesítmény alapú Világosság egyenértékű fénysűrűség alapú

Részletesebben

LEVEGŐMINŐSÉGI TRENDEK A DÉL-ALFÖLDÖN. Makra László - Horváth Szilvia - Zempléni András - Csiszár Villo - Rózsa Katalin - Motika Gábor 1.

LEVEGŐMINŐSÉGI TRENDEK A DÉL-ALFÖLDÖN. Makra László - Horváth Szilvia - Zempléni András - Csiszár Villo - Rózsa Katalin - Motika Gábor 1. Földrajzi konferencia, Szeged 2001. LEVEGŐMINŐSÉGI TRENDEK A DÉL-ALFÖLDÖN Makra László - Horváth Szilvia - Zempléni András - Csiszár Villo - Rózsa Katalin - Motika Gábor 1 Bevezetés A légszennyezés az

Részletesebben

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek

Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Infor PM10 Üzleti intelligencia megoldás

Infor PM10 Üzleti intelligencia megoldás Infor PM10 Üzleti intelligencia megoldás Infor Üzleti intelligencia (Teljesítmény menedzsment) Web Scorecard & Műszerfal Excel Email riasztás Riportok Irányít Összehangol Ellenőriz Stratégia Stratégia

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

led.osram.hu/professional LED fény új dimenziója Fedezze fel az OSRAM prémium minőségű LED fényforrásainak sokoldalú alkalmazásait Light is OSRAM

led.osram.hu/professional LED fény új dimenziója Fedezze fel az OSRAM prémium minőségű LED fényforrásainak sokoldalú alkalmazásait Light is OSRAM led.osram.hu/professional LED fény új dimenziója Fedezze fel az OSRAM prémium minőségű LED fényforrásainak sokoldalú alkalmazásait Light is OSRAM A mi LED szakértelmünk segít az Ön üzleti sikereiben Az

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK

VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10

P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10 Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint

Részletesebben

MISKOLCI EGYETEM GAZDASÁGTUDOMÁNYI KAR PÉNZÜGYI TANSZÉK. Tőzsdei ismeretek. feladatgyűjtemény

MISKOLCI EGYETEM GAZDASÁGTUDOMÁNYI KAR PÉNZÜGYI TANSZÉK. Tőzsdei ismeretek. feladatgyűjtemény MISKOLCI EGYETEM GAZDASÁGTUDOMÁNYI KAR PÉNZÜGYI TANSZÉK Tőzsdei ismeretek feladatgyűjtemény Miskolc, 005 MISKOLCI EGYETEM GAZDASÁGTUDOMÁNYI KAR PÉNZÜGYI TANSZÉK Összeállította: Galbács Péter demonstrátor

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

Élet a GDP-n túl Növekedés versus fejlődés

Élet a GDP-n túl Növekedés versus fejlődés Élet a GDP-n túl Növekedés versus fejlődés Dr. Szemlér Tamás Egyetemi docens, dékán BGF Külkereskedelmi Kar Gazdasági teljesítménymérések sokoldalú megközelítése A Budapesti Gazdasági Főiskola 14. tudományos

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Fénytechnika A szem, a látás és a színes látás Dr. Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013 Mi a szín? (MSz 9620) Fizika: a szín meghatározott hullámhosszúságú

Részletesebben

Kamerakalibráció és pozícióbecslés érzékenységi analízissel, sík mintázatokból. Dabóczi Tamás (BME MIT), Fazekas Zoltán (MTA SZTAKI)

Kamerakalibráció és pozícióbecslés érzékenységi analízissel, sík mintázatokból. Dabóczi Tamás (BME MIT), Fazekas Zoltán (MTA SZTAKI) , 2008 feb. 4-5 Kamerakalibráció és pozícióbecslés érzékenységi Bódis-Szomorú András Dabóczi Tamás (BME MIT), Fazekas Zoltán (MTA SZTAKI) Méréstechnika- és Információs Rendszerek Tanszék BME Rendszer-

Részletesebben

SZTOCHASZTIKUS JELENSÉGEK

SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No.1. Nagy Tamás Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK Budapest 00 Nagy Tamás Klafszky Emil SZTOCHASZTIKUS JELENSÉGEK OPERÁCIÓKUTATÁS No.1 Szerkeszti: Komáromi Éva Megjelenik a Budapesti

Részletesebben

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév

Vizsga Lineáris algebra tárgyból. 2012/13 akadémiai év, I. félév 1 Vizsga Lineáris algebra tárgyból 2012/13 akadémiai év, I. félév TARTALOM: 1. Elméleti anyag (melyet a vizsgára meg kell tanulni)...2. old. 2. A vizsga lebonyolítása, osztályozás...3. old. 2.1 Vizsga

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek.

hogy a tételben megfogalmazott feltételek nemcsak elégséges, hanem egyben szükséges feltételei is a centrális határeloszlástételnek. A Valószínűségszámítás II. előadássorozat második témája. A CENTRÁLIS HATÁRELOSZLÁSTÉTEL A valószínűségszámítás legfontosabb eredménye a centrális határeloszlástétel. Ez azt mondja ki, hogy független valószínűségi

Részletesebben

Általánosított lineáris modellek a biztosításban

Általánosított lineáris modellek a biztosításban Eötvös Loránd Tudományegyetem Természettudományi kar Általánosított lineáris modellek a biztosításban MSc Diplomamunka Készítette: Tóth András Biztosítási és Pénzügyi Matematika MSc Aktuárius szakirány

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a

Feladatok: a huszadik vagy valamely későbbi dobásban jelenik meg. n 1 5. hatos dobás a 20. dobásban vagy azután jelenik meg egyenlő annak a Feladatok:. Dobjunk fel egy szabályos dobókockát egymás után egymástól függetlenül végtelen sokszor. Számítsuk ki annak a valószínűségét, hogy a harmadik hatos dobás vagy a huszadik vagy valamely későbbi

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

Kockázati Mértékek Instabilitása

Kockázati Mértékek Instabilitása Kockázati Mértékek Instabilitása Doktori értekezés Varga-Haszonits István Témavezető: Dr. Kondor Imre DSc, egyetemi tanár ELTE TTK Komplex Rendszerek Fizikája Tanszék ELTE TTK Fizika Doktori Iskola Iskolavezető:

Részletesebben

Kockázatos pénzügyi eszközök

Kockázatos pénzügyi eszközök Kockázatos pénzügyi eszközök Tulassay Zsolt zsolt.tulassay@uni-corvinus.hu Tőkepiaci és vállalati pénzügyek 2006. tavasz Budapesti Corvinus Egyetem 2006. március 1. Motiváció Mi a fő különbség (pénzügyi

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40

Mer legesség. Wettl Ferenc 2015-03-13. Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Mer legesség Wettl Ferenc 2015-03-13 Wettl Ferenc Mer legesség 2015-03-13 1 / 40 Tartalom 1 Pszeudoinverz 2 Ortonormált bázis ortogonális mátrix 3 Komplex és véges test feletti terek 4 Diszkrét Fourier-transzformált

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Suliprogram. Vizsgakövetelmények

Suliprogram. Vizsgakövetelmények Suliprogram Vizsgakövetelmények az Egységes Európai Gazdasági Oklevél - EBC*L (angolul: European Business Competence* License, németül: Wirtschaftsführerschein ) vizsgához 2006. TÉMAKÖR: Mérleg összeállítás

Részletesebben

A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata

A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata XXII. Konferencia a felszín alatti vizekről Siófok, 2015. április 8-9. A rózsadombi megcsapolódási terület vizeinek komplex idősoros vizsgálata Bodor Petra 1, Erőss Anita 1, Mádlné Szőnyi Judit 1, Kovács

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS

ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS ÁRVIZEK A TISZÁN ÉS NÉHÁNY MELLÉKFOLYÓJÁN EXTRÉMÉRTÉK-MODELLEZÉS A GYAKORLATBAN BOZSÓ DÁVID RAKONCZAI PÁL ZEMPLÉNI ANDRÁS A tanulmányban bemutatjuk az extrémérték-elemzés módszereit, így különösen a blokkmaximumok

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Fogalomtár Etikus hackelés tárgyban Azonosító: S2_Fogalomtar_v1 Silent Signal Kft. Email: info@silentsignal.hu Web: www.silentsignal.

Fogalomtár Etikus hackelés tárgyban Azonosító: S2_Fogalomtar_v1 Silent Signal Kft. Email: info@silentsignal.hu Web: www.silentsignal. Fogalomtár Etikus hackelés tárgyban Azonosító: S2_Fogalomtar_v1 Silent Signal Kft. Email: info@silentsignal.hu Web: www.silentsignal.hu. 1 Tartalom 1. BEVEZETŐ... 3 1.1 Architektúra (terv) felülvizsgálat...

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele

Áramköri elemek. 1 Ábra: Az ellenállások egyezményes jele Áramköri elemek Az elektronikai áramkörök áramköri elemekből épülnek fel. Az áramköri elemeket két osztályba sorolhatjuk: aktív áramköri elemek: T passzív áramköri elemek: R, C, L Aktív áramköri elemek

Részletesebben

1. feladatsor, megoldások. y y = 0. y h = C e x

1. feladatsor, megoldások. y y = 0. y h = C e x 1. feladatsor, megoldások 1. Ez egy elsőrendű diffegyenlet, először a homogén egyenlet megoldását keressük meg, majd partikuláris megoldást keresünk: y y = 0 Ez pl. egy szétválasztható egyenlet, melynek

Részletesebben

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013

VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VESZÉLYES LÉGKÖRI JELENSÉGEK KÜLÖNBÖZŐ METEOROLÓGIAI SKÁLÁKON TASNÁDI PÉTER ÉS FEJŐS ÁDÁM ELTE TTK METEOROLÓGIA TANSZÉK 2013 VÁZLAT Veszélyes és extrém jelenségek A veszélyes definíciója Az extrém és ritka

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben