8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport, és III. teljesül mindkét oldalról a disztributivitás, vagyis a(b + c) = ab + ac, (b + c)a = ba + ca minden a, b, c R esetén. Kommutatív a gyűrű, ha a szorzás kommutatív. A (legalább két elemű), kommutatív, nullosztómentes gyűrűt integritási tartománynak nevezzük. Az R gyűrű test, ha 1. R kommutatív, 2. (R*, ) csoport. nullelem, egységelem Az additív csoport egységelemét a gyűrű nullelemének nevezzük és 0-val jelöljük. Egységelemes a gyűrű, ha a szorzásra vonatkozóan van egységelem (amit e-vel jelölünk). nullgyűrű, zérógyűrű Nullgyűrű: egyetlen elemből áll (nullelem). Zérógyűrű: ha tetszőleges két elem szorzata a nullelem. nullosztó Az R gyűrűben a bal oldali, b jobb oldali nullosztó, ha a 0, b 0 és ab = 0. karakterisztika Ha az R gyűrű legalább két elemű, nullosztómentes, akkor (R, +)-ban a 0-tól különböző elemek rendje megegyezik. Ez a közös rend vagy végtelen, vagy egy p prímszám. Jelölés: Előző esetben a gyűrű nulla-karakterisztikájú, azaz char(r) = 0, az utóbbiban p- karakterisztikájú, azaz char(r) = p. Bool-gyűrű A H -ra A A = A 2 = A is teljesül (Boole-gyűrű) gyűrűhomomorfizmus asszociáltak Legyen R egységelemes integritási tartomány, és a, b R. Azt mondjuk, hogy a és b
asszociáltak, ha létezik olyan c egység, amelyikkel a = bc. Ezt a tényt a ~b-vel jelöljük. legnagyobb közös osztó, felbonthatatlan, prím Legyen R egységelemes integritási tartomány és a, b R. Azt mondjuk, hogy d R az a és b legnagyobb közös osztója, 1. közös osztó, vagyis d a és d b, valamint 2. c a és c b esetén c d. Legyen R egységelemes integritási tartomány, ekkor 1. a R*\U(R) felbonthatatlan, ha a = b c (b, c R) esetén b U(R) vagy c U(R). 2. a R*\ U(R) prím, ha a b c (b, c R) a b vagy a c. részgyűrű, (triviális, valódi, fő) ideál, egyszerű gyűrű R gyűrűben S R részgyűrű, ha az R-beli műveletek S-re történő leszűkítésére nézve S maga is gyűrűt alkot. faktorgyűrű Legyen R gyűrű, I ideál R-ben. R-nek I szerinti maradékosztály gyűrűje (faktorgyűrűje) R/I = {I + r r R} a következő műveletekkel: 1.(I+ r ) + (I+ s ) = I+ (r + s ) 2.(I+ r ) (I+ s ) = I + r s 2-ben nem a normál értelemben vett komplexus szorzásról van szó! prímideál, maximális ideál Legyen R gyűrű, I R, I. I az R balideálja, ha I I I és R I I, jobbideálja, ha I I I és I R I, ideálja, ha jobb és baloldali is egyszerre. Triviális ideál: {0}, R Valódi ideál: R-től különböző ideál. Egyszerű gyűrű: csak triviális ideálja van. Legyen R egységelemes, kommutatív gyűrű. Egy R-beli I ideált prímideálnak nevezünk, ha a b I-ből a I vagy b I következik. euklideszi gyűrű Az R egységelemes integritási tartományt euklideszi gyűrűnek nevezzük, ha olyan φ függvény, amelyre ϕ : R* N, és I. α, β R, β 0 esetén létezik olyan γ, δ R, hogy α = βγ + δ, ahol δ = 0 vagy δ 0 és ϕ (δ) < ϕ (β), II. valamint ϕ (αβ) max(ϕ (α), ϕ (β)), α, β R* -ra. oszthatóság, egységek Legyen R integritási tartomány és a, b R. a osztója b-nek ha létezik c R, amelyre b = ac, jelben a b. x R egység, ha x r r R-re. Gauss-egészek Gauss-egészek G = { a+bi a, b Z }
φ: a+bi G esetén legyen ϕ(a+bi) = (a+bi)(a bi) = a+bi 2 = a 2 + b 2. triviális euklideszi gyűrű Gauss-gyűrű ((egyértelmű) faktorizációs tartomány, UFD) Legyen R egységelemes integritási tartomány és U(R) az egységeinek halmaza. R Gauss-gyűrű ((Egyértelmű) faktorizációs tartomány, UFD), ha minden r R* \ U(R) felírható r = p 1 p 2 p n alakban, ahol n pozitív egész és a tényezők nem feltétlenül különböző felbonthatatlan elemek, és ha létezik egy r = q 1 q 2 q k előállítás is k felbonthatatlannal, akkor n= k és minden 1 i, j n esetén p i asszociáltja egy q j -nek. Másképp: Gauss-gyűrűben fennáll a számelmélet alaptétele. főideál Legyen R gyűrű és A R. Az A által generált ideálon R összes, A-t tartalmazó ideáljának metszetét értjük. Jelben (A). Ha A = {a} valamely a R elemre, akkor az a által generált főideálról beszélünk. Jelben (a). Bal és jobboldali def. hasonlóan. főideálgyűrű Egy egységelemes integritási tartomány főideálgyűrű, ha benne minden ideál főideál. hányadostest (Hányadostest) Legalább 2 elemű R integritási tartomány T testbe ágyazható. Legyen T = { (a, b) a, b R, b 0 } és ~ ekvivalenciareláció R R* halmazon: (a, b) ~ (c, d) a d = b c A ~ által meghatározott osztályok testet alkotnak a köv. műveletekre: (a,b ) +(c,d ) =(a d+ b c,b d ), (a, b) (c, d )= (a c, b d ). gyűrűhierarchia felrajzolása.
Tételek(+): Észrevételek (előjelszabály, véges integritási tartomány, nullosztó testben, szorzás a nullelemmel) 1. (szorzás nullelemmel): Legyen 0 az R gyűrű nulleleme. Ekkor a0 = 0a = 0 minden a R esetén. 2. (előjelszabály): Legyen R gyűrű, és a, b R. Az a elem additív inverzét jelöljük a-val. Ekkor (ab) = ( a)b = a( b), továbbá ( a)( b) = ab. 3. Véges integritási tartomány test. 4. Testben nincs nullosztó. (1. 3. és 4. gyakorlaton) 2. ab additív inverze létezik, mert (R, +) csoport. ab + ( (ab)) = 0, valamint ab + ( a)b = (a + ( a))b = 0b = 0, (ab) = ( a)b. Továbbá: ( a)( b) + ( a)b = ( a)(( b) + b) = 0 = ab + ( a)b, + egyszerűsíthető ( a)( b) = ab. nullosztó és regularitás R gyűrűben a multiplikatív művelet akkor és csak akkor reguláris, ha R zérusosztómentes. 1. Tfh a 0, a nem bal oldali nullosztó és ab = ac / (ac) mindkét oldalhoz, ab + ( (ac)) = 0. Előjel szabály + disztri. ab + (a( c)) = a(b + ( c)) = 0. feltétel b + ( c) = 0 b = c. 2. Tfh a bal oldali nullosztó, tehát a 0 és létezik b 0: ab = 0. tetszőleges c R-re ac = ac. Adjuk a jobb oldalhoz az ab = 0-t. ac = ac + ab, disztributivitás ac = a(c+b). mert b 0 c c + b. gyűrű karakterisztikája Ha az R gyűrű legalább két elemű, nullosztómentes, akkor (R, +)-ban a 0-tól különböző elemek rendje megegyezik. Ez a közös rend vagy végtelen, vagy egy p prímszám. Jelölés: Előző esetben a gyűrű nulla-karakterisztikájú, azaz char(r) = 0, az utóbbiban p- karakterisztikájú, azaz char(r) = p. 1. Tfh a R*: a = n a N n a a = 0
Továbbá tetszőleges b R* -re: n a (ab) = ab+ +ab = (a+ +a)b = (n a a)b = 0b = 0 másrészt n a (ab) = a(b+ +b) = a(n a b) nullosztó mentesség n a b = 0 b a = n a b a hasonlóan látható be b = a = n a 2. Tfh nem létezik véges rendű elem. Minden elem rendje végtelen. 3. Tfh a közös rend n = 1 véges szám. 0 = 1a = a a = 0. 4. Tfh a közös rend n összetett véges szám: n = kl és 1 < k < n, 1 < l < n, na = (kl)a = a +...+ a +... + a+... + a = l(ka) = 0. k db a k db a l-szer 1. eset: ka 0. ka = n és ka l < n. 2. eset: ka = 0. a k< n és a = n. gyűrű homomorf képe (8.2.8) Gyűrű homomorf képe gyűrű. (Csak a disztributivitást kell belátni!) a (b +c ) = a (b+c) = (a(b+c)) = (ab+ac) = (ab) +(ac) = a b + a c ideál szerinti mellékosztályok (8.2.15) + következmény Egy R gyűrű egy I ideál szerinti mellékosztályai a gyűrűnek mindkét művelettel kompatibilis osztályozását alkotják. Minden, mindkét művelettel kompatibilis osztályozás esetén a nulla osztálya ideál, és az osztályozás ezen ideál szerinti mellékosztályokból áll. (I; +) Abel csoport, tehát normálosztó R-ben 8.1.34 Tétel (1) pont az osztályozás kompatibilis az összeadással továbbá az osztályok összeadása a komplexusszorzás. A multiplikatív művelet is kompatibilis az osztályozással: (I + a)(i + b) = II + ai + Ib + ab I + ab. Most tfh egy, mindkét művelettel kompatibilis osztályozás és legyen I a 0 additív egységelem osztálya, ekkor 8.1.34 Tétel (2) pont I normálosztó R-ben továbbá az osztályozás pont az I szerinti mellékosztályokból áll I ideál? X osztályra : 0 I 0 X I X I I RI I. IR I hasonlóan. Következmény: Egy R gyűrűnek egy I ideál szerinti mellékosztályai a összeadásra és a szorzásra nézve gyűrűt alkotnak.
Ha ~ a megfelelő ekvivalenciareláció, akkor x x ~ mindkét műveletre nézve művelettartó. felbonthatatlan és prím integritási tartományban R tetszőleges egységelemes integritási tartomány és a R*\ U(R). Ha a prím R ben a felbonthatatlan R ben. tfh a prím és a = bc 1 a = bc a bc a prím a b vagy a c így 1 = b/a c vagy 1 = b c/a b vagy c egység. felbonthatatlan és prím Gauss-gyűrűben) R tetszőleges Gauss gyűrű és a R*\ U(R). a prím R ben a felbonthatatlan R -ben. : Előző tétel : tfh a irreducibilis és a p q p q = a r egyértelmő felbontás p = p 1... p k, q = q 1... q l, r = r 1... r t p 1... p k q 1... q l = a r 1... r t a asszociált p i -vel, vagy q j -vel, különben nem lenne egyértelmű a felbontás a p vagy a q. egység és egységelem integritási tartományban (8.2.26) R integritási tartományban akkor és csak akkor létezik egységelem, ha létezik egység. Az R egységelemes integritási tartományban a R akkor és csak akkor egység, ha a e. Ha van e egységelem, akkor er = r minden r R esetén. Ha a R egység, akkor tetszőleges r R esetén a a e R : ae = a. Ekkor e egységelem, mert a r s R : as = r, tehát e r= e a s= (e a) s= (a e) s= a s= r. a többi trivi. egységek euklideszi gyűrűben (8.2.30) Euklideszi gyűrűben pontosan azok az elemek az egységek, amelyekre φ minimális értéket vesz fel. Az a, b nem nulla elemekre a b esetén φ(a) φ(b) és egyenlőség pontosan akkor teljesül, ha a és b asszociáltak. Legyen E = { r r R*, φ(r) minimális } 1. Kérdés: E elemei egységek? Legyen a E, és b R tetszőleges. b-t oszthatjuk a-val maradékosan c, d R : b = ac+d, ahol a. d = 0, vagy b. d 0 és ϕ (d) < ϕ (a). A b. eset nem fordulhat elő ϕ(a) minimalitása miatt d = 0 a b. 2. Kérdés: Minden egység E-ben van? Legyen a R egység, b E adott a b b = ac.
b E, b 0 a, c R*. Az euklideszi gyűrűk II. tulajdonsága ϕ(b) = ϕ(a c) max (ϕ(a), ϕ(c)), ϕ(b) ϕ (a). φ(b) minimális φ(a) is minimális. Euklideszi gyűrű II. tulajdonsága miatt ϕ(a) ϕ(b). Tfh a b és ϕ(a)=ϕ(b). Az I. tulajdonság miatt létezik r, s R: a = b r+s, ahol a. s = 0, vagy b. s 0 és ϕ(s)<ϕ(b)=ϕ(a). (*) s = a+( ( b r ) ) = a + b ( r ) a b t R : b = a t továbbá a = a e s = a (e + t ( r ) ) (e+ t ( r ) ) R a s. Ha s 0 ϕ ( s ) max(ϕ ( a ),ϕ ( e + t ( r )) ) ϕ (a ) (*) miatt ez nem fordulhat elő s = 0, b a azaz a b. számelmélet alaptétele euklideszi gyűrűben (8.2.34) Euklideszi gyűrűben minden nem nulla és nem egység elem, sorrendtől és asszociáltságtól eltekintve egyértelműen felírható prímelemek szorzataként. Először megmutatjuk, hogy R euklideszi gyűrűben minden nullától és az egységektől különböző elemnek van felbonthatatlan osztója. Tfh a R*\U(R), és legyen D = {r r R*\U(R), r a és, ha s R*\U(R)és s a ϕ(r) ϕ(s)}. Tehát D az a elem azon nem nulla, nem egység osztóit tartalmazza, amikre a ϕ érték minimális. D f D Indirekte tfh f nem felbonthatatlan f = b c és b, c U(R) b a. b f és nem asszociáltak 8.2.30. Tétel ϕ(b) ϕ(f) ϕ(b)<ϕ(f), mert ekkor b lenne D-ben f helyett. tehát van a-nak felbonthatatlan osztója Tfh ϕ(a) minimális az R*\U(R) -beli elemekre nézve 8.2.30. Tétel a felbonthatatlan. Most legyen a R*\U(R), ϕ(a) = n, és tegyük fel, hogy n-nél kisebb ϕ értékkel rendelkező elemek esetén az állítás igaz. f felbonthatatlan : f a a = fh. Lehet ϕ(h) = ϕ(a)? Ekkor h a a ~ h lenne, de f nem egység, tehát ϕ(h) ϕ(a). h a ϕ(h) < ϕ(a). 1. eset: Tfh h egység a felbonthatatlan. 2. eset: Tfh h nem egység indukciós feltétel h-nak megfelelő felbontása: h = f 1 f 2 f r a = f f 1 f 2 f r. Unicitás: tfh indirekte, hogy van olyan elem, amelynek két különböző felbontása létezik. Legyen ezek közül a olyan, hogy φ(a) minimális.
a = p 1... p k = q 1... q r p 1 a p 1 q 1... q r p 1 q i asszociáltak, mert irreducibilisek egyszerűsítve kapjuk a -t, amelyre φ(a ) < φ(a) euklideszi gyűrű főideálgyűrű (2.8.35) Euklideszi gyűrűben minden ideál főideál. Ha I = { 0 } I = 0. Tfh I { 0 }, ekkor legyen S = { ϕ(x) x I és x 0 } S legkisebb eleme ϕ(a) : a 0 I. Maradékosan osztjuk b I -t a-val: b= aq + r és 0 ϕ(r) < ϕ(a) I ideál r = b aq I ϕ(a) minimális r =0. b = aq I = a irreducibilitás és főideál kapcsolata euklideszi gyűrűben Legyen R tetszőleges euklideszi gyűrű és a R*\ U(R). a valódi ideál maximális R ben a felbonthatatlan R ben. Legyen R tetszőleges egységelemes integritási tartomány, a R*\ U(R) Feltétel : a felbontható b, c R*\ U(R): a = bc. a b R Tehát a nem maximális ideál. : Indirekt feltétel : a felbonthatatlan, de a nem maximális. I R beli ideál : a I R R főideálgyűrű 0 b nemegység : I = b R a b R azaz a minden többszöröse b többszöröse a = bc c nem egység, mert akkor a = b lenne a nem felbonthatatlan. Szükséges és elégséges feltétel, hogy R/I test, illetve integritási tartomány legyen + következmény Legyen R kommutatív, egységelemes győrő és I az R-nek ideálja. I. R/I akkor és csak akkor integritási tartomány, ha I R és I prímideál. II. R/I akkor és csak akkor test, ha I maximális ideál. I. R/I int. tart. nincs nullosztó. (I+a) (I+b) = I I+a = I vagy I+b = I. II/1. Tfh hogy I maximális ideál R-ben, és (I ) I+a R/I.
S = {i+a x i I, x R} ideál, hiszen: S S S : i 1 + ax 1 i 2 ax 2 = (i 1 i 2 ) + a( x 1 x 2 ) S. I R RS S : ri +rax =ri +arx S. I R Valamint I S, mert a I. I maximális S = R alkalmas i I, x R-rel e = i+a x I + e = I+ i + a x = I+ a x= (I+ a) (I+ x) R/I kommutatív egységelemes gyűrű invertálható test. II/2. Tfh R/I test, és legyen M egy olyan ideál, amely valódi módon tartalmazza I-t, azaz a R elem, amelyre a M és a I. R/I test ( I + a ) ( I+ x ) = ( I+ b) egyenlet bármely b R-re megoldható I+ a x = I + b. I M és a M I + a x M b M M = R. Következmény. Kommutatív, egységelemes gyűrűben maximális ideál prímideál. Legyen R kommutatív, egységelemes gyűrű. Ha I maximális ideál R-ben R/I test R/I integritási tartomány tétel I prímideál valódi ideálokról szóló tétel. Tételek(-): homomorfizmus-tétel Egy R gyűrű egy φ homomorfizmusánál a homomorfizmus magja ideál. Ha R képe R, akkor az R/ker(φ ) maradékosztály-gyűrű izomorf R vel. Az R bármely I ideálja magja valamely homomorfizmusnak, például R kanonikus leképezése R/I re homomorfizmus, amelynek magja I. főideálokról szóló állítások (8.2.25, 8.2.26) Egy R kommutatív egységelemes gyűrűben az a R által generált főideálra (a) = ar. Speciálisan a nulla által generált főideál {0}, az egységelem által generált főideál pedig R. Egy R egységelemes integritási tartomány a,b elemeire (1) (a) (b) akkor és csak akkor, ha b a; (2) (a) = (b) akkor és csak akkor, ha a és b asszociáltak; (3) (a) = R akkor és csak akkor, ha a egység. bővített euklideszi algoritmus A következő eljárás egy R euklideszi gyűrűben meghatározza az a, b R elemek egy d legnagyobb közös osztóját, valamint x, y R elemeket úgy, hogy d=ax + by teljesüljön. (Az eljárás során végig ax n + by n = r n, n=0, 1, )
(1) [Inicializálás] Legyen x 0 e a gyűrű egységeleme, y 0 0, r 0 a, x 1 0, y 1 e, r 1 b, n 0. (2) [Vége?] Ha r n+1 =0, akkor x x n, y y n, d r n, és az eljárás véget ér. (3) [Ciklus] Legyen r n = q n+1 r n+1 + r n+2, ahol r n+2 =0 vagy φ(r n+2 ) < φ(r n+1 ), legyen x n+2 x n - q n+1 x n+1, y n+2 y n - q n+1 y n+1, n n+1, és menjünk (2)-re. főideálgyűrű Gauss-gyűrű.