VIZSGATEMATIKA Diszkrét Matematika BSC A szakirány, I. évfolyam 2016/2017 őszi szemeszter
|
|
- Éva Molnárné
- 7 évvel ezelőtt
- Látták:
Átírás
1 VIZSGATEMATIKA Diszkrét Matematika BSC A szakirány, I. évfolyam 2016/2017 őszi szemeszter Jelölés: D: definíció, T: tétel, TB: tétel bizonyítással. A betűméret a téma prioritását jelzi, a legnagyobb betűvel jelöltek az elégséges szintet mutatják, amit mindenkinek tudni kell. A jelesért a legapróbb betűseket is meg kell tanulni. A matematikai logika alapjai. Az ítéletlogika, kijelentések és igazságértékük, kijelentések összekapcsolása, kijelentés-logikai formulák; T: az ítéletlogika tételei; ellentmondás; a következtetés és szabályai, levezetés; elsőrendű logika, predikátumok, kvantorok, kötött és szabad változók, nyitott és zárt formulák. T: az elsőrendű logika tételei; axiómák és a bizonyítások formái, függetlenség, ellentmondásmentesség, teljesség. Direkt, indirekt bizonyítás; szükséges és elégséges feltétel; a definíció fogalma. Halmazok, relációk, függvények. Halmazok. D: halmaz és elemei, halmazok egyenlősége, üres halmaz, részhalmaz; D: hatványhalmaz, halmazműveletek; D: különbség, metszet, unió, komplementer; T: az unió és a metszet tulajdonságai; De Morgan szabályok; D: halmazrendszer metszete, uniója; D: osztályfelbontás. Relációk. D: rendezett pár; D: Descartes-féle direkt szorzat; D: n-változós reláció, binér reláció, homogén reláció; D: reláció értelmezési tartománya, értékkészlete, kiterjesztése, leszűkítése; D: reláció inverze, relációszorzat; TB: relációszorzat asszociatív; D: homogén binér relációk tulajdonságai; D: ekvivalenciareláció, ekvivalenciaosztály; TB: ekvivalenciareláció és osztályfelbontás kapcsolata; D: hányadoshalmaz, reprezentáns, teljes reprezentáns-rendszer. Függvények. D: függvény, kép, őskép, n-változós függvény; függvények típusai; D: szürjektív, injektív, bijektív függvény; Speciális függvények: projekció, kanonikus függvény, identitás, permutációfüggvény, konstansfüggvény, karakterisztikus függvény, Kronecker-féle delta, logikai függvény; D: leszűkítés, kiterjesztés; D: Indexelt rendszerek, indexelt halmazcsalád; Diszjunktív, konjunktív normálformák; TB: diszjunktív normálformára hozás; D: Függvények kompozíciója, inverze; TB: függvény inverze mikor függvény; Axiomatikus halmazelmélet: Zermelo axiómarendszere, a pótlás axiómája, ZFC.
2 Struktúrák. Rendezési struktúrák. D: részbenrendezés, szigorú részbenrendezés; TB: részbenrendezés és szigorú részbenrendezés kapcsolata; D: részbenrendezett struktúra, indukált részbenrendezés; D: minimális, maximális, legkisebb, legnagyobb elem; D: alsó korlát, felső korlát, alsó határ, felső határ; D: Hasse-diagram; D: monoton, szigorúan monoton függvények; D: zárt, nyílt intervallum; D: teljes rendezés; TB: véges halmazon részbenrendezés kiterjesztése rendezéssé; D: topologikus rendezés, lánc; D: jólrendezés; T: jólrendezési tétel; T: Zorn-lemma. Algebrai struktúrák. D: belső művelet, operandus, műveleti tábla D: algebrai struktúra, precedencia, lengyel jelölés; Grupoidok; D: semleges elem D: asszociatív struktúra; D: félcsoport, egységelemes félcsoport; D: inverz elem D: csoport; D: kommutatív művelet, Abel-csoport; Műveletek függvények között; Kétműveletes struktúrák; D: disztributivitás; D: gyűrű, nullelem, egységelem; D: kommutatív gyűrű, zérógyűrű, nullgyűrű; D: nullosztómentes gyűrű; D: integritási tartomány; D: test, ferdetest; D: külső műveletek; D: Ω- modulus; D: vektortér. Többszörös struktúrák. D: rendezett integritási tartomány D: rendezett test; Származtatott struktúrák. Részstruktúra, szorzatstruktúra, faktorstruktúra; D: művelet összeférhetősége ekvivalenciarelációval; D: lexikografikus rendezés; Kapcsolat struktúrák között. D: homomorfizmus, izomorfizmus, beágyazás; Speciális struktúrák. Polinomok. D: gyűrű feletti egyhatározatlanú polinom; D: polinom gyöke, zérushelye, foka; D: együtthatók, főegyüttható, főpolinom; D: polinomfüggvény; Mátrixok. D: gyűrű feletti m n-es mátrixok; D: mátrixok összege, szorzata, zérusmátrix, egységmárix; T: egységelemes gyűrű feletti n n-es mátrixok az összeadással és a szorzással egységelemes gyűrűt alkotnak; Reláció mátrixa. A számfogalom felépítése. Természetes számok. D: Peano-axiómák. D: rákövetkezési reláció; T: rekurziótétel; Műveletek D: összeadás; T: az összeadás asszociativitása, kommutativitása; D: szorzás; T: a szorzás szabályai, disztributivitás, asszociativitás, kommutativitás; D: a természetes számok rendezése; T: monotonia tételei, egyszerűsítési szabályok; D: sorozat; D: összeg, tag, szorzat, tényező; TB: általános asszociativitás, kommutativitás; T: általános disztributivitás (két tényezős esetre bizonyítással);
3 Egészek. D: egész számok konstrukciója; D: műveletek egész számokkal; TB: az egészek integritási tartományt alkotnak; D: egészek rendezése T: számolási szabályok T: az egészek rendezett integritási tartományt alkotnak; Racionális számok. D: konstrukció; D: műveletek racionális számokkal; TB: a racionális számok testet alkotnak; D: a racionális számok rendezése T: a racionális számok rendezett testet alkotnak; D: arkhimédeszi tulajdonság. TB: A racionális számtest arkhimédeszi tulajdonságú; Valós számok. D: felső határ tulajdonság D: nyílt kezdőszelet, nyílt kezdet D: irracionális számok D: valós számok rendezése T: műveletek valós számokkal, a műveletek tulajdonságai; T: a valós számok felső határ tulajdonságú rendezett testet alkotnak; D: abszolút érték, előjelfüggvény, alsó,-felső egészrész, törtrész D: gyökvonás, logaritmuskeresés, periodicitás, függvény paritása, nagy ordó; TB: számtani-mértani középre vonatkozó egyenlőtlenség; Komplex számok. D: konstrukció D: műveletek, szemléltetésük D: valós, képzetes rész D: abszolút érték TB: komplex szám abszolút értékének becslései; D: konjugált TB: műveletek komplex számokkal; D: argumentum Komplex számok alakjai TB: De Moivre-azonosság; D: komplex szám n-edik gyöke D: n-edik egységgyökök D: primitív n-edik egységgyökök TB: n-edik gyökök előállítása; TB: n-edik gyökök összege; komplex szám komplex hatványa T: algebra alaptétele; a komplex számok rendezési tulajdonsága; TB: nem létezik olyan teljes rendezés, amellyel C rendezett test lenne; C vektortér; TB: a hiperbolikus és Study-féle rendszerekben nincs inverz; Algebrai, transzcendens számok, függvények. D: Q feletti algebrai szám, transzcendens szám, algebrai és transzcendens függvény; D: kvaterniók, műveletek, skalár rész, vektor rész. T: Frobenius-tétel; Cayley-számok. Műveletek; T: Hurwitz-tétel; Kombinatorika. Véges halmazok. D: véges halmaz TB: Nem létezik bijekció egy véges halmaz és valódi részhalmaza között; D: véges halmaz számossága; TB: számolás véges halmazokon D: permutáció; TB: véges halmaz ismétlés nélküli permutációi száma; Stirling-formula, ciklikus permutálás; D: variáció; TB: n elem k-ad osztályú ismétlés nélküli variációi száma; D: kombináció; TB: n elemű halmaz k-ad osztályú ismétlés nélküli kombinációi száma; D: ismétléses
4 variáció; TB: n elem k-ad osztályú ismétléses variációi száma; D: ismétléses kombináció; TB: az ismétléses kombinációk száma; D: ismétléses permutáció; TB: az ismétléses permutációk száma; TB: binomiális tétel és következményei; TB: polinomiális tétel, következménye T: skatulya-elv, általános skatulya-elv TB: logikai szita formula; Speciális számok, sorozatok. D: rekurzív sorozatok, és típusaik D: a Fibonacci-számok TB: Binet-formula, aranymetszés; D: szubfaktoriális TB: a szubfaktoriális sorozat n-edik tagja D: a Pascal-háromszög; TB: a binomiális együtthatók tulajdonságai: szimmetria, addíciós képlet, felső összegzés, elnyelési tulajdonság, Vandermonde-azonosság, négyzetösszegtulajdonság; becslések. Catalan-számok, Másodfajú Stirling-számok, Bell-szám; TB: rekurziós formuláik. Elemi számelmélet. Általános alapfogalmak. D: osztó. TB: az oszthatóság tulajdonságai; D: egység TB: egy szám és egységszerese oszthatósági tulajdonságai; D: asszociáltság D: triviális osztók D: felbonthatatlan szám D: összetett szám D: prímszám TB: minden prím felbonthatatlan; D: legnagyobb közös osztó D: relatív prímség D: páronként relatív prímség D: legkisebb közös többszörös; Oszthatóság az egészek körében. TB: az egészek körében két egység van; TB: maradékos osztás tétele; TB: számrendszerek; TB: legnagyobb közös osztó létezése; TB: Ha c>0 akkor (ca,cb) = c(a,b); TB: Rekurziós tétel az lnko számítására TB: Bézout-tétel; TB: lineáris diofantikus egyenletek megoldhatósága; TB: az euklideszi algoritmus lépésszáma, Lamé tétele; TB: c ab és (c,a) = 1 c b; TB: egész szám pontosan akkor prím, ha felbonthatatlan; TB: számelmélet alaptétele; T: a természetes számok kanonikus és módosított kanonikus alakja; TB: kanonikus alakban adott szám pozitív osztói, pozitív osztói száma; TB: legnagyobb közös osztó és legkisebb közös többszörös kifejezése a kanonikus alakok segítségével; TB: Legkisebb közös többszörös, (a,b)[a,b]= ab ; TB: (ab,c)=1 (a,c)=1 és (b,c)=1; Prímek. TB: a prímek száma végtelen; TB: létezik tetszőleges hosszú csupa összetett számot tartalmazó intervallum; T: prímszámtétel; TB: Eratoszthenészi-szita T: Dirichlet-tétel, Páros Goldbach-sejtés, Fermat és Mersenne-prímek;
5 Kongruenciák. D: kongruencia TB: a kongruencia tulajdonságai; TB: kongruencia egyszerűsítése és ennek következménye; D: maradékosztály. TB: az osztályok elemei; D: teljes maradékrendszer TB: a b (m) (a,m) = (b,m); D: redukált maradékosztály, redukált maradékrendszer D: Euler-féle ϕ függvény T: teljes és redukált maradékrendszer tulajdonságai; TB: teljes és redukált maradékrendszer lineáris transzformációi; TB: Euler-tétel TB: Fermat-tétel alakjai; műveletek maradékosztályokkal TB: a modulo m maradékosztályok egységelemes kommutatív gyűrűt alkotnak D: multiplikatív inverz TB: redukált maradékosztályok és multiplikatív inverz kapcsolata; T: modulo m maradékosztály pontosan akkor test, ha m prím; Lineáris kongruencia-egyenletek. D: lineáris kongruencia megoldásszáma. TB: az ax b (m) lineáris kongruencia megoldhatósága és megoldásszáma; TB: az ax b (m) (a,m)=1 konguencia megoldása; Szimultán kongruenciák T: szimultán kongruencia megoldhatósága; TB: kínai maradéktétel; T: moduláris számábrázolás Számelméleti függvények. D: additív, teljesen additív, multiplikatív és teljesen multiplikatív számelméleti függvények, példák; D: Möbius-függvény TB: Euler-féle ϕ- függvény multiplikatív, ϕ(n) alakja.
1. Mondjon legalább három példát predikátumra. 4. Mikor van egy változó egy kvantor hatáskörében?
Definíciók, tételkimondások 1. Mondjon legalább három példát predikátumra. 2. Sorolja fel a logikai jeleket. 3. Milyen kvantorokat ismer? Mi a jelük? 4. Mikor van egy változó egy kvantor hatáskörében?
Mikor van egy változó egy kvantor hatáskörében? Milyen tulajdonságokkal rendelkezik a,,részhalmaz fogalom?
Definíciók, tételkimondások Mondjon legalább három példát predikátumra. Sorolja fel a logikai jeleket. Milyen kvantorokat ismer? Mi a jelük? Hogyan kapjuk a logikai formulákat? Mikor van egy változó egy
Diszkrét matematika I.
EÖTVÖS LORÁND TUDOMÁNYEGYETEM - INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Cserép Máté 2009.01.20. A dokumentum a programtervező informatikus szak Diszkrét matematika I. kurzusának vizsgaanyagát
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Diszkrét matematika I.
Diszkrét matematika I. - Vizsga anyag 1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR Diszkrét matematika I. Vizsgaanyag Készítette: Nyilas Árpád Diszkrét matematika I. - Vizsga anyag 2 Bizonyítások 1)
DEFINICIÓK. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ).
DEFINICIÓK 1. Mondjon legalább három példát predikátumra. Például a síkgeometriában predikátumok: ( egyenes ), ( pont ), ( illeszkedik - ra ). 2. Sorolja fel a logikai jeleket. A logikai formulák alkotóelemei:
Vizsgatematika Bevezetés a matematikába II tárgyhoz tavasz esti tagozat
8.2. Gyűrűk Fogalmak, definíciók: Gyűrű, kommutatív gyűrű, integritási tartomány, test Az (R, +, ) algebrai struktúra gyűrű, ha + és R-en binér műveletek, valamint I. (R, +) Abel-csoport, II. (R, ) félcsoport,
Bevezetés a matematikába 1. Definíciók, vizsgakérdések
Bevezet a matematikába 1 Definíciók, vizsgakérdek Tételek15 Mi lehet predikátumok értéke? Hogyan jelöljük?15 Mondjon legalább három példát predikátumra15 Sorolja fel a logikai jeleket15 Milyen kvantortokat
Bevezetés az algebrába az egész számok 2
Bevezetés az algebrába az egész számok 2 Wettl Ferenc Algebra Tanszék B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M 2015. december
1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy b = ax. Ennek jelölése a b.
1. Oszthatóság, legnagyobb közös osztó Ebben a jegyzetben minden változó egész számot jelöl. 1.1. Definíció. Azt mondjuk, hogy a oszója b-nek, vagy más szóval, b osztható a-val, ha létezik olyan x Z, hogy
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 5. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Számfogalom bővítése Diszkrét matematika I. középszint
DISZKRÉT MATEMATIKA I. TÉTELEK
DISZKRÉT MATEMATIKA I. TÉTELEK Szerkesztette: Bókay Csongor 2011 őszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. január 16. Ez a Mű a Creative Commons
Kongruenciák. Waldhauser Tamás
Algebra és számelmélet 3 előadás Kongruenciák Waldhauser Tamás 2014 őszi félév Tartalom 1. Diofantoszi egyenletek 2. Kongruenciareláció, maradékosztályok 3. Lineáris kongruenciák és multiplikatív inverzek
D(x, y) - x osztója y-nak
1. Mondjon legalább három példát predikátumra! P (x) - x prím M(x, y) - x merőleges y-ra E(x) - x egyenes D(x, y) - x osztója y-nak 2. Sorolja fel a logikai jeleket! - és (konjunkció) - vagy (diszjunkció)
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Készítettel: Szegedi Gábor (SZGRACI.ELTE)
Készítettel: Szegedi Gábor (SZGRACI.ELTE) http://people.inf.elte.hu/szgraci/egyetem Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév Logikai alapok Halmazelméleti alapfogalmak 1. Mondjon
Az eddig leadott anyag Diszkrét matematika II tárgyhoz tavasz
Az eddig leadott anyag Diszkrét matematika II tárgyhoz 2011. tavasz A (+)-szal jelzett tételek bizonyítással együtt, a (-)-szal anélkül értendők! A tételek esetleges neve, vagy száma a fóliákkal van szinkronban,
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
ELTE IK Esti képzés tavaszi félév. Tartalom
Diszkrét Matematika 2 vizsgaanyag ELTE IK Esti képzés 2017. tavaszi félév Tartalom 1. Számfogalom bővítése, homomorfizmusok... 2 2. Csoportok... 9 3. Részcsoport... 11 4. Generátum... 14 5. Mellékosztály,
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Polinomok (el adásvázlat, április 15.) Maróti Miklós
Polinomok (el adásvázlat, 2008 április 15) Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: gy r, gy r additív csoportja, zéruseleme, és multiplikatív félcsoportja, egységelemes
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Polinomok (előadásvázlat, október 21.) Maróti Miklós
Polinomok (előadásvázlat, 2012 október 21) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: gyűrű, gyűrű additív csoportja, zéruseleme, és multiplikatív félcsoportja,
Gy ur uk aprilis 11.
Gyűrűk 2014. április 11. 1. Hányadostest 2. Karakterisztika, prímtest 3. Egyszerű gyűrűk [F] III/8 Tétel Minden integritástartomány beágyazható testbe. Legyen R integritástartomány, és értelmezzünk az
nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:
Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Bevezetés az algebrába 1
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Bevezetés az algebrába 1 BMETE92AX23 Egész számok 2 H406 2016-09-13,15,18 Wettl Ferenc
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
1. előadás: Halmazelmélet, számfogalom, teljes
1. előadás: Halmazelmélet, számfogalom, teljes indukció Szabó Szilárd Halmazok Halmaz: alapfogalom, bizonyos elemek (matematikai objektumok) összessége. Egy halmaz akkor adott, ha minden objektumról eldönthető,
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. november 23. 1. Diszkrét matematika 2. 9. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. november 23. Diszkrét matematika
Vektorterek. Wettl Ferenc február 17. Wettl Ferenc Vektorterek február / 27
Vektorterek Wettl Ferenc 2015. február 17. Wettl Ferenc Vektorterek 2015. február 17. 1 / 27 Tartalom 1 Egyenletrendszerek 2 Algebrai struktúrák 3 Vektortér 4 Bázis, dimenzió 5 Valós mátrixok és egyenletrendszerek
Waldhauser Tamás szeptember 8.
Algebra és számelmélet előadás Waldhauser Tamás 2016. szeptember 8. Tematika Komplex számok, kanonikus és trigonometrikus alak. Moivre-képlet, gyökvonás, egységgyökök, egységgyök rendje, primitív egységgyökök.
SE EKK EIFTI Matematikai analízis
SE EKK EIFTI Matematikai analízis 2. Blokk A számelmélet a matematikának a számokkal foglalkozó ága. Gyakran azonban ennél sz kebb értelemben használják a számelmélet szót: az egész számok elméletét értik
2. Tétel (Az oszthatóság tulajdonságai). : 2. Nullát minden elem osztja, de. 3. a nulla csak a nullának osztója.
Számelmélet és rejtjelezési eljárások. (Számelméleti alapok. RSA és alkalmazásai, Die- Hellman-Merkle kulcscsere.) A számelméletben speciálisan az egész számok, általánosan a egységelemes integritási tartomány
Számelmélet (2017. február 8.) Bogya Norbert, Kátai-Urbán Kamilla
Számelmélet (2017 február 8) Bogya Norbert, Kátai-Urbán Kamilla 1 Oszthatóság 1 Definíció Legyen a, b Z Az a osztója b-nek, ha létezik olyan c Z egész szám, melyre ac = b Jelölése: a b 2 Példa 3 12, 2
1. Egész együtthatós polinomok
1. Egész együtthatós polinomok Oszthatóság egész számmal Emlékeztető (K3.1.3): Ha f,g Z[x], akkor f g akkor és csak akkor, ha van olyan h Z[x], hogy g = fh. Állítás (K3.1.6) Az f(x) Z[x] akkor és csak
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Diszkrét matematika I. bizonyítások
Diszkrét matematika I. bizonyítások Készítette: Szegedi Gábor SZGRACI.ELTE DYDHMF (http://szegedigabor.web.elte.hu) Burcsi Péter tanár úr előadása alapján készült 2010-2011. őszi félév 1. Fogalmazza meg
A Matematika I. előadás részletes tematikája
A Matematika I. előadás részletes tematikája 2005/6, I. félév 1. Halmazok és relációk 1.1 Műveletek halmazokkal Definíciók, fogalmak: halmaz, elem, üres halmaz, halmazok egyenlősége, részhalmaz, halmazok
17.2. Az egyenes egyenletei síkbeli koordinátarendszerben
Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.
DHARMA Initiative Diszkrét Matematika 1. DHARMA INITIATIVE
DHARMA INITIATIVE Diszkrét Matematika 1. Definíciók (középszint) E dokumentum az ELTE IK Diszkrét Matematika 1. 2010/2011-es vizsgájára készült. Az elkészítéshez a korábbi évek kidolgozott listáit használtuk.
Diszkrét matematika 1. középszint
Diszkrét matematika 1. középszint 2017. sz 1. Diszkrét matematika 1. középszint 3. el adás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
DiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
MATEMATIKA tanterv emelt szint 11-12. évfolyam
MATEMATIKA tanterv emelt szint 11-12. évfolyam Batthyány Kázmér Gimnázium, 2004. 1 TARTALOM 11.osztály (222 óra)... 3 1. Gondolkodási műveletek (35 óra)... 3 2. Számelmélet, algebra (64 óra)... 3 3. Függvények,
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
Záróvizsga tételek matematikából osztatlan tanárszak
Záróvizsga tételek matematikából osztatlan tanárszak A: szakmai ismeretek; B: szakmódszertani ismeretek Középiskolai specializáció 1. Lineáris algebra A: Lineáris egyenletrendszerek, mátrixok. A valós
Matematika pótvizsga témakörök 9. V
Matematika pótvizsga témakörök 9. V 1. Halmazok, műveletek halmazokkal halmaz, halmaz eleme halmazok egyenlősége véges, végtelen halmaz halmazok jelölése, megadása természetes számok egész számok racionális
DISZKRÉT MATEMATIKA: STRUKTÚRÁK Előadáson mutatott példa: Bércesné Novák Ágnes
1. Algebrai alapok: DISZKRÉT MATEMATIKA: STRUKTÚRÁK Művelet: Egy H nemüres halmazon értelmezett (kétváltozós) műveleten egy H H H függvényt értünk, azaz egy olyan leképezést, amely bármely a,b H elempárhoz
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Kombinatorika
Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 2. Függvények... 8 12 3. Elsőfokú egyenletek és egyenlőtlenségek... 13 16
Tartalomjegyzék 1. Műveletek valós számokkal... 1 8 1.1. Gyökök és hatványozás... 1 3 1.1.1. Hatványozás...1 1.1.2. Gyökök... 1 3 1.2. Azonosságok... 3 4 1.3. Egyenlőtlenségek... 5 8 2. Függvények... 8
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev
Algebra és számelmélet 3 előadás Nevezetes számelméleti problémák Waldhauser Tamás 2014 őszi félév Tartalom 1. Számok felbontása hatványok összegére 2. Prímszámok 3. Algebrai és transzcendens számok Tartalom
illetve a n 3 illetve a 2n 5
BEVEZETÉS A SZÁMELMÉLETBE 1. Határozzuk meg azokat az a természetes számokat ((a, b) számpárokat), amely(ek)re teljesülnek az alábbi feltételek: a. [a, 16] = 48 b. (a, 0) = 1 c. (a, 60) = 15 d. (a, b)
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 8. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA. 1. Csoportelméleti alapfogalmak
MTN714: BEVEZETÉS AZ ABSZTRAKT ALGEBRÁBA 1. Csoportelméleti alapfogalmak 1.1. Feladat. Csoportot alkotnak-e az alábbi halmazok a megadott műveletre nézve? (1) (Z 2 ; ), (2) (Z 2 ; +), (3) (R \ { 1}; ),
Klasszikus algebra előadás. Waldhauser Tamás április 14.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 14. Többhatározatlanú polinomok 4.3. Definíció. Adott T test feletti n-határozatlanú monomnak nevezzük az ax k 1 1 xk n n alakú formális kifejezéseket,
Matematikai logika és halmazelmélet
Matematikai logika és halmazelmélet Wettl Ferenc előadása alapján 2015-09-07 Wettl Ferenc előadása alapján Matematikai logika és halmazelmélet 2015-09-07 1 / 21 Tartalom 1 Matematikai kijelentések szerkezete
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2016. ősz 1. Diszkrét matematika 3. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.
HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata
Az osztályozóvizsgák követelményrendszere 9. évfolyam
Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és
Itt és a továbbiakban a számhalmazokra az alábbi jelöléseket használjuk:
1. Halmazok, relációk, függvények 1.A. Halmazok A halmaz bizonyos jól meghatározott dolgok (tárgyak, fogalmak), a halmaz elemeinek az összessége. Azt, hogy az a elem hozzátartozik az A halmazhoz így jelöljük:
KLASSZIKUS ALGEBRA ÉS SZÁMELMÉLET FELADATOK
KLASSZIKUS ALGEBRA ÉS SZÁMELMÉLET FELADATOK (a rutinfeladatokat O jelzi) Leképezések, relációk 1. feladat O Adja meg az A = {2, 3, 8, 9, 14, 15, 19, 26} alaphalmazon értelmezett ekvivalenciarelációhoz
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika II. feladatok
Diszkrét matematika II. feladatok 1. Gráfelmélet 1.1. Könnyebb 1. Rajzold le az összes, páronként nem izomorf 3, 4, illetve 5 csúcsú egyszerű gráfot! 2. Van-e olyan (legalább kétpontú) gráf, melyben minden
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
1. Részcsoportok (1) C + R + Q + Z +. (2) C R Q. (3) Q nem részcsoportja C + -nak, mert más a művelet!
1. Részcsoportok A részcsoport fogalma. 2.2.15. Definíció Legyen G csoport. A H G részhalmaz részcsoport, ha maga is csoport G műveleteire nézve. Jele: H G. Az altér fogalmához hasonlít. Példák (1) C +
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. március 9. 1. Diszkrét matematika 2. 4. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. március 9. Gráfelmélet Diszkrét
Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1
Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,
Az osztályozóvizsgák követelményrendszere MATEMATIKA
Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom
Bevezetés a matematikába
Bevezetés a matematikába matematika BSc előadás és gyakorlat Nagy Gábor Péter Szegedi Tudományegyetem Bolyai Intézet, Geometria Tanszék 2012/2013-os tanév I. féléve 1 / 201 Tagolás I 1 Matematikai alapfogalmak
Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1
Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival
Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18
Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök
Számelmélet. 1. Oszthatóság Prímszámok
Számelmélet Legnagyobb közös osztó, Euklideszi algoritmus. Lineáris diofantoszi egyenletek. Számelméleti kongruenciák, kongruenciarendszerek. Euler-féle ϕ-függvény. 1. Oszthatóság 1. Definíció. Legyen
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak
Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,
Matematika alapjai; Feladatok
Matematika alapjai; Feladatok 1. Hét 1. Tekintsük a,, \ műveleteket. Melyek lesznek a.) kommutativok b.) asszociativak c.) disztributívak-e a, műveletek? Melyik melyikre? 2. Fejezzük ki a műveletet a \
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak.
ÍRÁSBELI BELSŐ VIZSGA MATEMATIKA 8. évfolyam reál tagozat Az írásbeli vizsga gyakorlati és elméleti feladatai a következő témakörökből származnak. Időtartam: 60 perc 1. Halmazműveletek konkrét halmazokkal.
Algoritmuselmélet gyakorlat (MMN111G)
Algoritmuselmélet gyakorlat (MMN111G) 2014. január 14. 1. Gyakorlat 1.1. Feladat. Adott K testre rendre K[x] és K(x) jelöli a K feletti polinomok és racionális törtfüggvények halmazát. Mutassuk meg, hogy
Bevezetés a számításelméletbe (MS1 BS)
Matematika szigorlat - konzultációs szeminárium Azoknak, akik másodszorra vagy többedszerre veszik fel a Matematika szigorlat (NAMMS1SAND) tárgyat. Bevezetés a számításelméletbe (MS1 BS) FŐBB TÉMAKÖRÖK
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,
Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz
Diszkrét matematika 1. estis képzés 2015. ősz 1. Diszkrét matematika 1. estis képzés 6. előadás Mérai László diái alapján Komputeralgebra Tanszék 2015. ősz Elemi számelmélet Diszkrét matematika 1. estis
Waldhauser Tamás. Jelölés. Az egyszerűség kedvéért (a, b) ρ helyett gyakran azt írjuk, hogy aρb.
BEVEZETÉS A SZÁMELMÉLETBE vázlat az előadáshoz (2014 őszi félév) Waldhauser Tamás 1. Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében Az oszthatósági reláció alapvető tulajdonságai
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Testek március 29.
Testek 2014. március 29. 1. Alapfogalmak 2. Faktortest 3. Testbővítések 1. Alapfogalmak 2. Faktortest 3. Testbővítések [Sz] V/3, XIII/1,2; [F] III/1-7 (+ előismeretek!) Definíció Ha egy nemüres halmazon
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.
1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,
A permutáció fogalma. Ciklusfelbontás. 1. feladat. Számítsuk ki S 6 -ban a πρ, ρπ, π 1 és π 2014 permutációkat, ahol
A permutáció fogalma 11 Definíció Permutációnak nevezzük egy nemüres véges halmaz önmagára való bijektív leképezését 12 Definíció Az {1, 2,, n} halmaz összes permutációi csoportot alkotnak a leképezésszorzás
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
TARTALOM. Előszó 9 HALMAZOK
TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási