ACTA ACADEMIAE PAEDAGOGICAE AGRIENSIS

Hasonló dokumentumok
PELL EGYENLETEK MEGOLDÁSA LINEÁRIS REKURZÍV SOROZATOK SEGÍTSÉGÉVEL

Acta Acad. Paed. Agriensis, Sectio Mathematicae 29 (2002) PARTÍCIÓK PÁRATLAN SZÁMOKKAL. Orosz Gyuláné (Eger, Hungary)

Egy euklidészi gyűrű

minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

Egészrészes feladatok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Funkcionálanalízis. n=1. n=1. x n y n. n=1

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

VEKTORTEREK I. VEKTORTÉR, ALTÉR, GENERÁTORRENDSZER október 15. Irodalom. További ajánlott feladatok

Analízis I. Vizsgatételsor

FFT. Második nekifutás. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék október 2.

6. gyakorlat. Gelle Kitti. Csendes Tibor Somogyi Viktor. London András. jegyzetei alapján

3. Lineáris differenciálegyenletek

Nagy Gábor compalg.inf.elte.hu/ nagy

1. Interpoláció. Egyértelműség Ha f és g ilyen polinomok, akkor n helyen megegyeznek, így a polinomok azonossági tétele miatt egyenlők.

1.9. B - SPLINEOK B - SPLINEOK EGZISZTENCIÁJA. numerikus analízis ii. 34. [ a, b] - n legfeljebb n darab gyöke lehet. = r (m 1) n = r m + n 1

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Magasabbfokú egyenletek

1. Polinomfüggvények. Állítás Ha f, g C[x] és b C, akkor ( f + g) (b) = f (b) + g (b) és ( f g) (b) = f (b)g (b).

Klasszikus algebra előadás. Waldhauser Tamás április 14.

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Sorozatok, sorok, függvények határértéke és folytonossága Leindler Schipp - Analízis I. könyve + jegyzetek, kidolgozások alapján

1. Bázistranszformáció

Nagy Gábor compalg.inf.elte.hu/ nagy

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.

Memo: Az alábbi, "természetes", Gentzen típusú dedukciós rendszer szerint készítjük el a levezetéseket.

Egyenletek, egyenlőtlenségek VII.

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

1. Polinomok számelmélete

First Prev Next Last Go Back Full Screen Close Quit

KOVÁCS BÉLA, MATEMATIKA I.

Klasszikus algebra előadás. Waldhauser Tamás március 24.

Bevezetés az algebrába az egész számok

összeadjuk 0-t kapunk. Képletben:

Arany Dániel Matematikai Tanulóverseny 2014/2015-ös tanév első (iskolai) forduló Haladók II. kategória

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Hadamard-mátrixok Előadó: Hajnal Péter február 23.

On The Number Of Slim Semimodular Lattices

Numerikus módszerek 1.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

1. A polinom fogalma. Számolás formális kifejezésekkel. Feladat Oldjuk meg az x2 + x + 1 x + 1. = x egyenletet.

A PiFast program használata. Nagy Lajos

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Az egydimenziós harmonikus oszcillátor

Diszkrét matematika 2. estis képzés

Nagy Gábor compalg.inf.elte.hu/ nagy

y + a y + b y = r(x),

Taylor-polinomok. 1. Alapfeladatok április Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

Diszkrét matematika 2.C szakirány

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

Más szavakkal formálisan:, ahol olyan egész szám, hogy. Más szavakkal formálisan:, ahol olyan egész szám, hogy.

Diszkrét matematika 2.C szakirány

Modellek és Algoritmusok - 2.ZH Elmélet

Nagyordó, Omega, Theta, Kisordó

HHF0CX. k darab halmaz sorbarendezésének a lehetősége k! Így adódik az alábbi képlet:

II. Két speciális Fibonacci sorozat, szinguláris elemek, természetes indexelés

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

Feladatok a Diffrenciálegyenletek IV témakörhöz. 1. Határozzuk meg következő differenciálegyenletek általános megoldását a próba függvény módszerrel.

Lineáris algebra numerikus módszerei

Számításelmélet. Második előadás

2. Rekurzió. = 2P2(n,n) 2 < 2P2(n,n) 1

Algebra es sz amelm elet 3 el oad as Nevezetes sz amelm eleti probl em ak Waldhauser Tam as 2014 oszi f el ev

Függvények július 13. Határozza meg a következ határértékeket! 1. Feladat: x 0 7x 15 x ) = lim. x 7 x 15 x ) = (2 + 0) = lim.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Diszkrét idej rendszerek analízise az id tartományban

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

Differenciálegyenlet rendszerek

6. feladatsor: Inhomogén lineáris differenciálegyenletek (megoldás)

Diszkrét matematika 2. estis képzés

Az optimális megoldást adó algoritmusok

Diszkrét matematika I.

1.1. Alapfeladatok. hogy F 1 = 1, F 2 = 1 és általában F n+2 = F n+1 + F n (mert a jobboldali ág egy szinttel lennebb van, mint a baloldali).

3. SOROZATOK. ( n N) a n+1 < a n. Egy sorozatot (szigorúan) monotonnak mondunk, ha (szigorúan) monoton növekvő vagy csökkenő.

Diszkrét matematika 2. estis képzés

Formális nyelvek - 9.

2010. október 12. Dr. Vincze Szilvia

1.1. Alapfogalmak. Vektor: R 2 beli elemek vektorok. Pl.: (2, 3) egy olyan vektor aminek a kezdo pontja a (0, 0) pont és a végpontja a

15. LINEÁRIS EGYENLETRENDSZEREK

Analízis előadás és gyakorlat vázlat

Diszkrét matematika 2.

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

3. előadás Stabilitás

1. Absztrakt terek 1. (x, y) x + y X és (λ, x) λx X. műveletek értelmezve vannak, és amelyekre teljesülnek a következő axiómák:

Számrendszerek Feladat. Számrendszerek. Németh Bence május 13.

1. Diagonalizálás. A Hom(V) diagonalizálható, ha van olyan bázis, amelyben A mátrixa diagonális. A diagonalizálható van sajátvektorokból álló bázis.

Polinomok, Lagrange interpoláció

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

1. A Horner-elrendezés

Numerikus módszerek beugró kérdések

Egész pontokról racionálisan

Átírás:

Separatum ACTA ACADEMIAE PAEDAGOGICAE AGRIESIS OVA SERIES TOM. XXII. SECTIO MATEMATICAE TÓMÁCS TIBOR Egy rekurzív sorozat tagjainak átlagáról EGER, 994

Egy rekurzív sorozat tagjainak átlagáról TÓMÁCS TIBOR Abstract. Avarage order of the terms of a recursive sequence For a fixed positive integer k 2 let the sequence G k n of natural numbers be defined by G k 0 = 0 and G k n = n G k Gk... Gk n..., n with k iterations of G k on the right-hand side. Denote by =, 2, 3,..., k the roots of the characteristic polynomial fx = x k x k of the generalized Fibonacci sequence b n. It is known that these roots are distinct and that there is a positive root among them with the greatest modulus, thus we can suppose that > 2 3 k > 0 see e. g. []. In [2] P. Kiss proved that for any positive integer n, large enough, and k 2 we have G ki = v + v 2 n 2 + v 3 n 3 + on 2 + O, where = b n+ and v,v 2,v 3 are constants depending only on k. In this paper we generalize this result. Legyen k 2 rögzített egész szám. Definiáljuk a természetes számok egy G k n, n = 0,,2,... sorozatát a G k 0 = 0 kezdő elemmel és a G k n = n G k Gk... Gk n... rekurzív formulával n > 0 esetre, ahol a jobb oldalon G k -nak k-szoros iterációja van. Belátható, hogy a sorozat minden tagja jól definiált természetes szám lásd Zay B. [4]. Legyen { n, ha n =,2,...,k, b n = b n + b n k, ha n > k a Fibonacci sorozat k-adrendű általánosított sorozata. Egy m pozitív egész esetén tekintsük azt a legnagyobb i egész számot, melyre b i m teljesül. Legyen m = m b i. Ha m 0, válasszuk a legnagyobb i 2 egész számot, melyre b i2 m. Legyen m 2 = m b i2. Ha m 2 0, folytassuk az eljárást. Ez az algoritmus véges sok lépésben befejeződik. Így minden pozitív egész szám egyértelműen felírható b n sorozatbeli elemek összegeként m = j a i b i

32 Tómács Tibor alakban, ahol a i = vagy 0. Jelöljük ezt röviden m = a j a j...a módon. Definiáljuk a T k m sorozatot T k 0 = T k = 0 kezdő értékkel és a 2 T k m = a j a j...a 2 = j a i b i m > formulával, ahol az a i számok m-nek -ben difiniált előállításában szereplő együtthatói. A G k n és T k n sorozatok szoros kapcsolatban vannak egymással, D. S. Meek és G. H. J. Van Rees [3]-ban bizonyították, hogy i=2 3 G k n = T k n + n. Jelöljük =, 2, 3,..., k -val a b n sorozat karakterisztikus polinomjának az x k x k polinomnak a gyökeit. Ismert, hogy van a gyökök között egy legnagyobb abszolút értékű pozitív valós gyök, ezért feltehetjük, hogy 4 > 2 3 k > 0, ahol > valós szám lásd K. Dilcher []. Kiss Péter [2]-ben a G k n sorozat tagjainak átlagát vizsgálta, és bizonyította, hogy elég nagy n egészek esetén 5 G k i = v + v 2 n 2 + v 3 n 3 + o n 2 + O, ahol = b n+ és a v,v 2,v 3 csak k-tól függő valós konstansok. Ezen dolgozat célja megmutatni, hogy nemcsak = b n+ alakú egészek esetén igaz az 5 formula. A következő tételeket bizonyítjuk:. Tétel. Legyenek k 2 és t rögzített pozitív egészek. Ekkor elég nagy pozitív n egészek esetén G k i = v + v 2 n 2 + v 3 n 3 + O + o n 2 + o,

Egy rekurzív sorozat tagjainak átlagáról 33 ahol = b n+ + t és a v,v 2,v 3 csak k-tól függő konstansok. 2. Tétel. Legyenek k 2 és t k rögzített egészek. Ekkor elég nagy pozitív n egészek esetén G k i = v + v 2 n 2 + v 3 n 3 + O + o n 2 + o, ahol = b n+ + b n t+, és a v,v 2,v 3 csak k-tól és t-től függő konstansok. Megjegyzés. Az.tételben a v,v 2,v 3 konstansok megegyeznek az 5-ben található konstansokkal.. TÉTEL BIZOYÍTÁSA. Vizsgáljuk a G k i összeget. Bontsuk fel két tagra az alábbi módon. 6 G k i = b n+ G k i + i=b n+ + G k i Az első összeg [2] szerint 7 b n+ G k i = r 2n + r 2 n n 3 + r 3 n n 3 + r 4 2n 2 + + r 5 2n 3 + r 6 n 2 n 3 + O n + O n n 4 alakban írható fel, ahol r i i =,2,3,4,5,6 k-tól függő konstansok. 3- ból i=b n+ + G k i = T k b n+ + + T k b n+ + + + + T k + = = b n+ + i=b n+ T k i = t + b n+ +t i=b n+ T k i következik. Elég nagy n esetén teljesül, hogy t < b n k+2, ezért < b n+2. Így T k i definiciója miatt minden b n+ i b n+ + t egész esetén T k i = b n + T k i b n+. Ebből következik, hogy i=b n+ + t G k i = t + tb n + T k i. i=0

34 Tómács Tibor Ebben az összegben az n-től független tagok összegét jelöljük f k,t -vel. Tehát t f k,t := t + T k i. i=0 Ismert, hogy a b n sorozat tagjai felírhatók 8 b n = c n + c 2 n 2 + + c k n k alakban, ahol c i Dilcher []. Ezért i=b n+ + i =,2,...,k csak k-tól függő komplex konstansok K. G k i = f k,t + tc n + c 2 n 2 + + c k n k. Az > valós szám, másrészt 4 miatt f k,t + tc n + c 2 n 2 + + c k n k f k,t n + tc n + tc 2 n 2 + + tc k n k Ebből következik, hogy f k,t + tc + tc 2 + + tc k n. 9 i=b n+ + G k i = O n. 6, 7 és 9-ből adódik, hogy 0 G k i = r 2n + r 2 n n 2 + r 3 n n 3 + r 4 2n 2 + + r 5 2n 3 + r 6 n 2 n 3 + O n + O n n 4, továbbá 8-ból = b n+ + t = n + s 2 n 2 + + s k n k + t = n + O n 2 + t, ahol s i = c i i i =,2,...,k. Felhasználva -et G k i = G k i n + O n 2 + t = G k i G k i + n + On 2 +t n + o n

adódik, amiből 0 alapján kapjuk az 2 G k i = Egy rekurzív sorozat tagjainak átlagáról 35 p n + p 2 n 2 + p 3 n 3 + p 4 2 2 n 3 + p 6 + O n 4 + O + o n n 3 n 2 + p 5 n 3 + becslést, ahol p i = r i i =,2,...,k. De p n = n + s 2 n 2 + + s k n k + tp p s 2 n 2 p s 3 n 3 p s k n k p t. Mivel n + s 2 n 2 + + s k n k + t =, továbbá 4 miatt és p s 4 n 4 p s 5 n 5 p s k n k = On 4, p t = O, így v := p, d 2 := p s 2, d 3 := p s 3 jelöléssel 3 p n = v + d 2 n 2 + d 3 n 3 + O n 4 + O adódik.tudjuk még, hogy 4 p 4 2 n n 2 + p 5 3 Ezért 2, 3 és 4 alapján n n 2 n 3 3 + p 6 + O n 4 = o n 2. G k i = v + v 2 n 2 + v 3 n 3 + O + on 2 + o, ami a tételünket bizonyítja. A bizonyítás során a konstansok értékét nem befolyásolta t, így valóban igaz a megjegyzés állítása is.

36 Tómács Tibor 2. TÉTEL BIZOYÍTÁSA., 2, 3 és 7 alapján G k i = b n+ ahol x i = r i + t t i x 5 = r 5 + 2t 3 A továbbiakban b n t+ T k i + + b n t+ b n + T k i = = x 2n + x 2 n n 2 + x 3 n n 3 + x 4 2n 2 + x 5 2n 3 + + x 6 n 2 n 3 + O n + O n n 4 + + b n b n t+, i =,2,3, x 4 = r 4 + és x 6 = r 6 + t 2 t 3 2t 2 b n b n t+ = c n + c 2 n 2 + + c k n k s t n + s 2 t n 2 + + s k 2 t n k k = z 2n + z 2 n n 2 + z 3 n n 3 + z 4 2n 2 + z 5 2n 3 + z 6 n 2 n 3 + O n n 4 felhasználásával, ahol. z = s2 t+, z 2 = s 2 t + s 2 2 t, z 3 = s 3 2 t + s 3 3 t, 3 z 4 = s2 2 t+ 2, z 5 = s2 3 t+, z 6 = s 2s 3 3 2 t + s 2s 3 3 t 2, 3 a tétel hasonlóan bizonyítható, mint az előző. továbbá Megjegyzés. Kiszámolva v és v konstansokat v = c 4k + 4k v = r + s + 2 2t t+ s 2 + 2, t k q=2 c q 2 q 2 q, + 4k 2k 2 + 2 2 = adódik. Belátható behelyettesítéssel, hogy k = 2 és k = 3 esetén v = v. A sejtés az, hogy ez minden k 2 esetén teljesül, vagyis a 2. tételben definiált -re is igaz az 5 formula.

Egy rekurzív sorozat tagjainak átlagáról 37 Az. tétel bizonyításából látható, hogy v = r c 2 2. Ezért v = v akkor és csak akkor teljesül, ha c 2 = 2r. Visszaírva r -et v -be kapjuk, hogy a sejtés ekvivalens a v = 2 állítással. Irodalom [] K. DILCHER, On a class of iterative recurrence relations, Fibonacci Quart., to appear. [2] P. KISS, Avarage order of the terms of a recursive sequence, Proc. of the Austrian-Hungarian-Slovak. umber Theory Coll., Graz, 992, to appear. [3] D. S. MEEK and G. H. J. VA REES, The solution of an iterated recurrence, Fibonacci Quart., 22 984, 0 04. [4] ZAY B.: Egy rekurzív sorozatról. Acta Academiae Paedagogicae Agriensis, Sectio Mat., megjelenés alatt.