HALMAZOK Hlmz: bizoyos dolgok összessége. Hlmz megdás: Elemeiek felsorolásávl Tuljdoság megdásávl Hlmzok egyelősége: Két hlmz egyelő, h zoosk z elemei. Részhlmz: A hlmz részhlmz B -ek, h A mide eleme B hlmzk is eleme. Vlódi részhlmz: A hlmz vlódi részhlmz B -ek, h A részhlmz B -ek, de A hlmz em egyelő B hlmzzl. Üres hlmz: Egy hlmzt üresek evezük, h ics eleme. Jele: vgy { }. Véges hlmz: Egy hlmzt véges hlmzk evezük, h elemeiek szám véges. Végtele hlmz: Egy hlmzt végtele hlmzk evezük, h elemeiek szám végtele. HALMAZMŰVELETEK Alphlmz: Alphlmzk evezzük zt hlmzt, melye belül értelmezük külöféle hlmzokt. Uió: A és B hlmz uiój zo elemek hlmz, melyek két hlmz közül leglább z egyikbe bee vk. Jele: A B. Metszet: A és B hlmz metszete zo elemek hlmz, melyek midkét hlmzb bee vk. Jele: A B Külöbség: A és B hlmz külöbsége zo elemek hlmz, melyek z A hlmzb bee vk, de B -be icseek. Jele: A\B. Komplemeter (kiegészítő) hlmz: A hlmz komplemetere z hlmz, melyek elemei z lphlmzb bee vk, de A -b icseek. Jele: A. Véges hlmzok elemeiek szám (számosság): zt dj meg, hogy háy eleme v z dott hlmzk. Csk természetes szám lehet, vgy végtele. Jele: A.
ALGEBRA ÉS SZÁMELMÉLET ALAPMŰVELETEK Alpműveletek: A számelmélet lpműveletei z összedás, kivoás, szorzás és z osztás. Elletett: Egy szám elletettje z szám, mellyel összedv 0-t kpuk. Egy szám elletettje. Reciprok: Egy szám reciprok z szám, mellyel összeszorozv -et kpuk. Egy szám reciprok. OSZTHATÓSÁG Osztó: Egy természetes szám osztój b egész számk, h v oly k természetes szám, melyre k=b. Jele b (ejtsd: osztój b -ek). Vlódi osztó: egy természetes számk z z osztój, mely em mg szám, és em is. Nem vlódi osztó: Mide természetes szám oszthtó ömgávl és -gyel, ezért ezeket em vlódi osztókk evezzük. Többszörös: H egy természetes szám osztój b természetes számk, kkor b-t z többszöröséek evezzük. Prímszám (prím, törzsszám): Azokt természetes számokt, melyekek potos két osztójuk v (mg szám és z ), prímszámokk evezzük. (; 3; 5; 7; ; 3; 7; 9; 3; 9; 3; 37...) Végtele sok prímszám v. A z egyetle páros prímszám. Összetett szám: Azokt természetes számokt, melyekek kettőél több osztójuk v, összetett számokk evezzük. Tehát z em prím és em is összetett szám, mert csk db osztój v: z. Prímtéyezős felbotás: H egy természetes számot oly szorzttá lkítuk, melybe mide téyező prím, kkor szám prímtéyezős felbotását hozzuk létre. A számelmélet lptétele: Mide, -él gyobb természetes szám, sorredtől eltekitve egyértelműe (zz potos egyféleképpe) bothtó fel prímszámok szorztkét. Leggyobb közös osztó: Két vgy több természetes szám leggyobb közös osztój z természetes szám, mely z dott számok midegyikéek osztój, és bármely más közös osztóál gyobb. Kiszámítás: számok prímtéyezős felbotásáb szereplő zoos prímtéyezőket, z előforduló legkisebb kitevőre emelve összeszorozzuk. Legkisebb közös többszörös: Két vgy több természetes szám legkisebb közös többszöröse z természetes szám, mely z dott számok midegyikéek többszöröse, és bármely más közös többszörösél kisebb. Kiszámítás: számok prímtéyezős felbotásáb szereplő mide prímtéyezőt, z előforduló leggyobb kitevőre emelve összeszorozzuk. Reltív prímek: két vgy több természetes számot reltív prímekek evezük, h leggyobb közös osztójuk z. A defiícióból következik, hogy reltív prímekek emcsk leggyobb, hem z egyetle közös osztójuk z. Úgy is foglmzhtuk, hogy reltív prímekek ics vlódi közös osztójuk.
OSZTHATÓSÁGI SZABÁLYOK Az osztó Mit kell vizsgáli A potos szbály I. ; 5; 0 Az utolsó számjegy II. 4; 5; 00 Az utolsó két számjegy III. 8; 5; 000 Az utolsó három számjegy IV. 3; 9 A számjegyek összege Egy egész szám potos kkor oszthtó -vel / 5-tel / 0-zel, h z utolsó számjegye oszthtó -vel / 5-tel / 0-zel. Egy egész szám potos kkor oszthtó 4-gyel / 5-tel / 00- zl, h z utolsó két számjegyéből álló szám oszthtó 4-gyel / 5-tel / 00-zl. Egy egész szám potos kkor oszthtó 8-cl / 5-tel / 000-rel, h z utolsó három számjegyéből álló szám oszthtó 8-cl / 5-tel / 000-rel. Egy egész szám potos kkor oszthtó 3-ml / 9-cel, h számjegyeiek összege oszthtó 3-ml / 9-cel. V. pl. 6= 3; =3 4; 5=3 5 stb. Szorzó szbály (z osztót reltív prímek szorztár botjuk) Egy egész szám potos kkor oszthtó reltív prímek szorztávl, h oszthtó eze reltív prímek midegyikével SZÁMHALMAZOK N={természetes számok}={0; ; ; 3; 4;...} Z={egész számok}={... ; -; -; 0; ; ; 3;...} Q={rcioális számok}={két egész szám háydoskét felírhtó számok, h z osztó em 0} Rcioális számok z egész számok, közöséges törtek, véges tizedestörtek és végtele szkszos tizedestörtek. Q*={irrcioális számok}=}={két egész szám háydoskét NEM felírhtó számok} Irrcioális számok végtele emszkszos tizedestörtek. Legismertebb irrcioális számok pl. π (pi), gyök. R={vlós számok}=quq* A vlós számok z egész számegyeest folytoos kitöltik. ABSZOLÚT ÉRTÉK Abszolút érték: Egy szám bszolút értéke szám számegyeese mért 0-tól vló távolságávl egyezik meg. Nemegtív szám bszolút értéke ömg, egtív szám bszolút értéke szám elletettje. Normállk: Egy szám ormállkját megkpjuk, h számot oly kéttéyezős szorzttá botjuk, melybe z egyik téyező egy -él emkisebb, 0-él kisebb szám, másik téyezője pedig 0-ek vlmely egész kitevőjű htváy.
HATVÁNYOZÁS Pozitív egész kitevőjű htváy: H bármilye vlós szám, pedig pozitív egész szám,, kkor ( z -edike) zt z -téyezős szorztot jelöli, melyek mide téyezője. Null kitevőjű htváy: Bármely (em ull) szám 0-dik htváy : 0 = Negtív kitevőjű htváy: k Törtkitevőjű htváy: = = k A HATVÁNYOZÁS AZONOSSÁGAI Azoos lpú htváyok, h. k + k = Azoos lpú htváyok úgy is szorozhtók, hogy z lpot kitevők összegére emeljük. k = k k k ( ) Azoos lpú htváyok úgy is eloszthtók, hogy z lpot kitevők külöbségére emeljük. = Htváyt úgy is htváyozhtuk, hogy z lpot kitevők szorztár emeljük. k k = Htváyból úgy is vohtuk gyököt, hogy z lpot rr htváyr emeljük, melyek kitevője z eredeti htváykitevő és gyökkitevő háydos. ( ) b Szorzt, háydos htváyozás b = Szorztot úgy is htváyozhtuk, hogy téyezőket közös kitevőre emelve összeszorozzuk. b = b Törtet úgy is htváyozhtuk, hogy számlálót és evezőt közös kitevőre emeljük, mjd e htváyokt elosztjuk egymássl. ( + b) = + b + b ( b) = b + b NEVEZETES SZORZATOK ( + b)( b) = b
GYÖKVONÁS Négyzetgyök: egy emegtív szám égyzetgyöke z emegtív szám, melyek égyzete -edik gyök (h páros): egy emegtív szám -edik gyöke z emegtív szám, melyek -edik htváy -edik gyök (h pártl): egy vlós szám -edik gyöke z vlós szám, melyek -edik htváy A GYÖKVONÁS AZONOSSÁGAI Szorzt gyöke: b = b Háydos gyöke: = b b Htváy gyöke: k = k Gyök gyöke: k = k Htváy gyöke, gyök htváy: = ( ) =
EGYENLETEK, EGYENLETRENDSZEREK, EGYENLŐTLENSÉGEK Egyelet: H két lgebri kifejezés közé egyelőségjelet teszük, egyeletet kpuk. Azokt számokt, melyeket z egyeletbe levő betűk helyébe írv z egyelőség teljesül, z egyelet megoldásik vgy gyökeiek evezzük. Alphlmz: Egy egyelet lphlmzák evezzük zt hlmzt, melybe z egyelet gyökeit (megoldásit) keressük. Megoldáshlmz: Egy egyelet gyökeiek hlmzát z egyelet megoldáshlmzák evezzük. EGYENLETMEGOLDÁSI MÓDSZEREK Mérlegelv: H egy egyelet midkét oldlához hozzádjuk ugyz számot vgy lgebri kifejezést, vgy midkét oldlából kivojuk ugyz számot vgy lgebri kifejezést, vgy midkét oldlát beszorozzuk ugyzzl em 0 számml vgy lgebri kifejezéssel, vgy midkét oldlát leosztjuk ugyzzl em 0 számml vgy lgebri kifejezéssel, kkor z egyelőség igz mrd. Grfikus módszer: Az egyelet két oldlá álló függvéyt zoos koordiát-redszerbe ábrázoljuk. Az egyelet megoldási két grfiko közös potjik x koordiátái. KÉTISMERETLENES EGYENLETRENDSZEREK MEGOLDÁSI MÓDSZEREI Behelyettesítő módszer: Az egyik egyeletből kifejezzük z egyik ismeretlet, mjd ezt behelyettesítjük másik egyeletbe. Így egy ismeretleük lesz, zt kiszámoljuk, mjd visszhelyettesítjük vlmelyik eredeti egyeletbe. Egyelő együtthtók módszere: Az egyeleteket úgy szorozzuk be vlmilye számml, hogy vlmelyik ismeretle együtthtói két egyeletbe megegyezzeek, vgy egymás elletettjei legyeek. Ezutá két egyeletet kivojuk egymásból, vgy összedjuk egymássl. Így egy ismeretleük lesz, zt kiszámoljuk, mjd visszhelyettesítjük vlmelyik eredeti egyeletbe. MÁSODFOKÚ EGYENLET A másodfokú egyelet 0-r redukált áltláos lkj: x + bx + c = 0, 0 Megoldóképlet: x, b ± = b 4c Diszkrimiás: A másodfokú egyelet megoldóképletébe gyök ltti kifejezést diszkrimiásk evezzük. D = b 4c H D > 0 két külöböző vlós gyöke v másodfokú egyeletek H D = 0 két zoos (zz egy) vlós gyöke v másodfokú egyeletek H D < 0 ics vlós gyöke másodfokú egyeletek
Viète-formulák ( gyökök és együtthtók kpcsoltáról): b x + x = x x = A másodfokú egyelet gyöktéyezős lkj: x + bx + c = ( x x )( x x ) = 0 c KÖZÉPÉRTÉKEK Számti közép: Két szám számti közepe két szám összegéek fele. Mérti közép: Két szám mérti közepe két szám szorzták égyzetgyöke. Kpcsolt számti és mérti közép között: Két emegtív szám számti közepe midig leglább kkor, mit mérti közepe. A két középérték potos kkor egyelő, h két szám egyelő.
GEOMETRIA SÍKGEOMETRIA Szög: Egy potból kiiduló két félegyees áltl htárolt síkrészt szögtrtomáyk vgy szögek evezzük. Szögfjták: ullszög, egyeesszög, derékszög, tompszög, egyeesszög, homorúszög, teljes szög, forgásszög. (Defiíciójukt lásd tköyvekbe vgy szkszerű holpoko.) Nevezetes szögfjták: Párhuzmos szárú szögek: Egyállású szögek: oly szögek, melyek szári párokét párhuzmosk és egyiráyúk. Az egyállású szögek egyelőek. Társszögek (kiegészítő szögek): oly szögek, melyek szári párokét párhuzmosk, és egyik száruk egyiráyú, másik száruk elletétes iráyú. Összegük 80. Mellékszögek: társszögek speciális esete, mikor két szög egyiráyú szögszár egybeesik. Váltószögek: oly szögek, melyek szári párokét párhuzmosk és elletétes iráyúk. A váltószögek egyelőek. Csúcsszögek: váltószögek speciális esete, mikor két szög csúcs egybeesik, szárik pedig egymás meghosszbbítási. Merőleges szárú szögek: oly szögek, melyekek szári párokét merőlegesek. A merőleges szárú szögek vgy egyelőek, vgy 80 -r egészítik ki egymást. TÉRELEMEK TÁVOLSÁGA Két pot távolság: potokt összekötő egyees szksz hossz. Egy pot és egyees távolság: potból z egyeesre állított merőleges szksz hossz. Két egymást metsző egyees, ill. két egybeeső egyees távolság 0. Két párhuzmos egyees távolság: z egyik egyees egy potjából másik egyeesre állított merőleges szksz hossz. Egy pot és egy sík távolság: potból síkr állított merőleges szksz hossz. Két párhuzmos sík távolság: z egyik sík egy potjából másik síkr állított merőleges szksz hossz. TÉRELEMEK HAJLÁSSZÖGE Két metsző egyees hjlásszöge: z áltluk bezárt szögek közül derékszögél emgyobb szög. Két kitérő egyees hjlásszöge: egy tetszőleges poto átmeő, velük párhuzmos egyeesek hjlásszöge. Egyees és egy áltl metszett sík hjlásszöge: z egyees és síkr eső merőleges vetületéek hjlásszöge. Egyees és vele párhuzmos (vgy rá illeszkedő) sík hjlásszöge 0. Két, egymást metsző sík hjlásszöge: A két sík metszésvolák egy tetszőleges potjáb két sík midegyiké merőlegest állítuk metszésvolr. Az így kpott két egyees hjlásszöge két sík hjlásszöge. Két párhuzmos (vgy egybeeső) sík hjlásszöge 0.
NEVEZETES PONTHALMAZOK Kör: egy dott pottól egyelő távolságr levő potok hlmz síko. Gömb: egy dott pottól egyelő távolságr levő potok hlmz térbe. Szkszfelező merőleges: egy szksz két végpotjától egyelő távolságr levő potok hlmz síko. Szögfelező: egy szög száritól egyelő távolságr levő potok hlmz szögfelező síkjáb. GEOMETRIAI TRANSZFORMÁCIÓK EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Tegelyes tükrözés Középpotos tükrözés Párhuzmos eltolás Pot körüli forgtás Egy lkzt tegelyese szimmetrikus, h létezik oly egyees, melyre z lkztot tükrözve z lkzt képe ömg. Egy lkzt középpotos szimmetrikus, h létezik oly pot, melyre z lkztot tükrözve z lkzt képe ömg. Egy lkzt forgásszimmetrikus, h létezik oly pot, mely körül 360 egész számú többszöröseitől külöböző szöggel vló elforgtássl keletkező képe ömg. HASONLÓSÁG Hsoló síkidomok területe, hsoló testek felszíe, térfogt Hsoló síkidomok területéek ráy hsolóság ráyák égyzete. Hsoló testek felszíéek ráy hsolóság ráyák égyzete. Hsoló testek térfogták ráy hsolóság ráyák köbe. Háromszögek csoportosítás oldlk szerit: HÁROMSZÖGEK Áltláos háromszög: oly háromszög, melyek mide oldl külöböző. Egyelő szárú háromszög: oly háromszög, melyek v két egyelő oldl. A két egyelő oldlt szárkk, hrmdik oldlt lpk evezzük. A szárk áltl bezárt szöget szárszögek evezzük. Egyelő oldlú (más éve szbályos) háromszög: oly háromszög, melyek midhárom oldl egyelő. Háromszögek csoportosítás szögek szerit: Hegyesszögű háromszög: oly háromszög, melyek leggyobb szöge hegyesszög. Derékszögű háromszög: oly háromszög, melyek leggyobb szöge derékszög. A derékszög szárit lkotó oldlkt befogókk, derékszöggel szemközti oldlt átfogók evezzük. Tompszögű háromszög: oly háromszög, melyek leggyobb szöge tompszög. Háromszög-egyelőtleség: bármely háromszögbe bármely két oldl összege gyobb, mit hrmdik oldl.
Bármely háromszögbe igz: A belső szögek összege 80. A külső szögek összege 360. Egy belső és egy mellette levő külső szög összege 80. Egy külső szög egyelő két em mellette levő belső szög összegével. Egyelő szárú háromszögek tuljdosági: Az lpo fekvő szögek egyelők. Az lphoz trtozó mgsság felezi z lpot és szárk szögét. Egyelő oldlú háromszögek tuljdosági: Mide szöge egyelő. Mide mgsság egyelő. A mgsságvolk, súlyvolk, oldlfelező merőlegesek, szögfelezők egybeesek. HÁROMSZÖGEK NEVEZETES VONALAI Háromszög mgsságák egy csúcsból szemközti oldlr bocsátott merőleges szksz hosszát evezzük. A háromszög mgsságvoli egy potb metszik egymást, ez pot háromszög mgsságpotj. Háromszög oldlfelező merőlegeséek háromszög két csúcsától egyelő távolságr levő potok hlmzát evezzük háromszög síkjáb. A háromszög oldlfelező merőlegesei egy potb metszik egymást, ez pot háromszög köré írhtó kör középpotj. Háromszög szögfelezőjéek háromszög két oldlától egyelő távolságr levő potok hlmzát evezzük. A háromszög szögfelezői egy potb metszik egymást, ez pot beírhtó kör középpotj. Háromszög súlyvolák egy csúcsból szemközti oldl felezőpotjáb húzott szkszt evezzük. A háromszög súlyvoli egy potb metszik egymást, ez pot háromszög súlypotj. A súlypot : ráyb osztj súlyvolkt. Háromszög középvolák z oldlfelező potokt összekötő szkszokt evezzük. A háromszög középvoli párhuzmosk em felezett oldlkkl, és fele oly hosszúk. DERÉKSZÖGŰ HÁROMSZÖGEK TÉTELEI Pitgorsz-tétel: Derékszögű háromszögbe befogók égyzetéek összege egyelő z átfogó égyzetével. Mgsságtétel: Derékszögű háromszögbe z átfogóhoz trtozó mgsság égyzete z átfogó két szeletéek szorztávl egyelő. Befogótétel: Derékszögű háromszög befogóják égyzete egyelő z átfogók és befogó átfogór eső merőleges vetületéek szorztávl.
NÉGYSZÖGEK A égyszögek belső szögeiek összege és külső szögeiek összege is 360. év ábr Speciális égyszögfjták defiíció: oly égyszög, oldlk szögek átlók terület melyek trpéz v párhuzmos oldlpárj (ezek eve: lpok, másik két oldl: szár) lpok párhuzmosk szárko társszögek + c m húrtrpéz (szimmetrikus trpéz, körbe írhtó trpéz) v párhuzmos oldlpárj és szimmetrikus z lp felezőmerőlegesére lpok párhuzmosk, szári egyelőek lpoko egyelők, szárko társszögek egyelőek + c m prlelogrmm két párhuzmos oldlpárj v szemközti oldlk egyelőek szemköztiek egyelők, szomszédosk társszögek felezik egymást m bmb bsiα deltoid két-két szomszédos oldl egyelő két-két szomszédos oldl egyelő egyik szemközti szögpár egyelő merőlegesek, szimmetriátló felezi másikt ef rombusz mide oldl egyelő szemközti oldlk egyelőek, párhuzmosk szemköztiek egyelők, szomszédosk társszögek merőlegese felezik egymást ef m siα tégllp mide szöge egyelő szemközti oldlk egyelőek, párhuzmosk egyelőek egyelőek, felezik egymást b égyzet oldli és szögei egyelőek egyelők, szemköztiek párhuzmosk egyelőek egyelők, merőlegese felezik egymást
SOKSZÖGEK Egy oldlú kovex sokszög átlóik szám (-3)/ belső szögeiek összege (-)80 külső szögeiek összege 360 Szbályos sokszög: oly sokszög, melyek oldli és szögei is egyelőek. KÖR Kör (körvol): Egy dott pottól egyelő távolságr levő potok hlmz síko. Az dott pot kör középpotj, z álldó távolság kör sugr. Nyílt/zárt körlp: A kör középpotjától sugráál kisebb/emgyobb távolságr levő potok hlmz síkb. A kör részei Húr: A körvol két potját összekötő szkszt kör húrják evezzük. Átmérő: A kör középpotjá átmeő húrját átmérőek evezzük. Szelő: A körvol két potjá átmeő egyeest szelőek evezzük. Éritő: Azt z egyeest, melyek potos egy közös potj v körrel, kör éritőjéek evezzük. Az éritő és kör közös potját éritési potk evezzük. Az éritési potb húzott sugár merőleges z éritőre. Körcikk: A kör két sugr és egy köríve áltl htárolt részét körcikkek evezzük. Körszelet: A kör egy húrj és egy köríve áltl htárolt részét körszeletek evezzük. Körgyűrű: Két zoos középpotú körvol áltl htárolt síkidom. Szögek mérése fokb, rdiáb: Mide szög foko kívül rdiáb is mérhető, mely z dott szöghöz trtozó egységyi sugrú körív hossz. A 80 -os szög rdiáb π. Ezzel ráyos kifejezhető bármely szög gyság fokb is, és rdiáb is. Középpoti szög: oly szög, melyek csúcs egy kör középpotj, szári kör sugri. Kerületi szög: oly szög, melyek csúcs egy körvol egy potj, szári kör húrji. Egy kör vlmely középpoti szöge midig kétszer kkor, mit z ugyzo ívhez trtozó kerületi szög. Thlész-tétel: H egy kör átmérőjéek két végpotját összekötjük körvol bármely más potjávl, derékszögű háromszöget kpuk. Thlész-tétel megfordítás: Derékszögű háromszög köré írhtó köréek középpotj z átfogó felezőpotjáb v.
TRIGONOMETRIA HEGYESSZÖGEK SZÖGFÜGGVÉNYEK DEFINÍCIÓJA DERÉKSZÖGŰ HÁROMSZÖGBEN Sziusz: Derékszögű háromszög egy hegyesszögéek sziusz egyelő szöggel szemközti befogók és z átfogók háydosávl. Kosziusz: Derékszögű háromszög egy hegyesszögéek kosziusz egyelő szög melletti befogók és z átfogók háydosávl. Tges: Derékszögű háromszög egy hegyesszögéek tgese egyelő szöggel szemközti befogók és szög melletti befogók háydosávl. Kotges: Derékszögű háromszög egy hegyesszögéek kotgese egyelő szög melletti befogók és szöggel szemközti befogók háydosávl. A Pitgorsz-tétel trigoomterikus lkj: si α + cos α = Pótszögekre votkozó zoosságok: o ( 90 ) o ( 90 ) o ( 90 ) o ( 90 ) si α = cos α cos α = si α tg α = ctg α ctg α = tg α Tges és kotges: siα tg α = = cosα ctgα cosα ctg α = = siα tgα SZÖGFÜGGVÉNYEKRE VONATKOZÓ AZONOSSÁGOK Nevezetes szögek szögfüggvéyei si cos tg 30 45 60 3 3 3 ctg 3 3 3 3 3
Egy síkidom kerülete z síkidomot htároló vol hossz. Egy sokszög kerülete sokszög oldlik összege. KERÜLET, TERÜLET Háromszög területe: bármely oldl és hozzá trtozó mgsság szorzták fele bármely két oldl és közbezárt szög sziusz szorzták fele Hero-képlet Nevezetes égyszögek területe (lásd Négyszögek c. potb levő tábláztot) Szbályos sokszögek területe: pl. köré írhtó kör sugrák ismeretébe, sugár áltl lkotott háromszögekre botv. Kör kerülete: K=rπ. (r kör sugr, π Ludolph-féle szám) Kör területe: T=r π. (r kör sugr, π Ludolph-féle szám) Körcikk területe: kör területéek yid része, háyd része körcikk középpoti szöge 360 -k. Körszelet területe: körcikk területéből középpoti háromszög területe.
VEKTOROK Az iráyított szkszokt vektorokk evezzük. Három fő tuljdoság v, mivel megdhtuk egy dott vektort: bszolút érték, állás, iráy. Egy vektor bszolút értéké vektor hosszát értjük. Azt vektort, melyek kezdőpotj egybeesik végpotjávl, zérusvektork vgy ullvektork evezzük, jele 0. A zérusvektor bszolútértéke ull, állás, iráy tetszőleges. Két vektor szögé z iráyukt jellemző félegyeesekkel mit szögszárkkl meghtározott kisebbik szöget értjük. Egyállású vektorokk evezzük zokt vektorokt, melyekhez tlálhtó egy oly egyees, mely midegyikőjükkel párhuzmos. Egysíkú vektorokk evezzük zokt, melyekhez tlálhtuk oly síkot, mely midegyikkel párhuzmos. Két vektor csk kkor egyelő, h bszolútértékük egyelő, egyállásúk és zoos iráyúk. Két vektor egymás elletettje, h bszolútértékük egyelő, egyállásúk és elletétes iráyúk. MŰVELETEK VEKTOROKKAL Vektorok összege Két vektor összedásáál egy potból kiidulv felmérjük z egyik vektort, mjd eek végpotjáb másik vektort. A két vektor összege z vektor, mely z első kezdőpotjából másik végpotjáb mutt. Több vektor összedás eseté először két vektort összegzük, mjd z összeghez hozzáduk egy újbb vektort. A vektorok összedás kommuttív és sszocitív művelet. +b b Vektorok külöbsége Két vektor külöbsége z zzl vektorrl egyelő, melyek kezdőpotj kivodó vektor végpotj, végpotj kisebbítedő vektor végpotj. Gykr hszáljuk még prlelogrmm-módszert. A két vektort közös kezdőpotb felvesszük, mjd eltoljuk z egyiket másik végpotjáb. Ezt műveletet midkét vektorrl végrehjtjuk. Az így kpott prlelogrmmáról egyszerre olvshtjuk le két vektor összegét és külöbségeit is. Vektor szorzás számml Amikor vektorok és számok együtt szerepelek, kkor számot sklár meyiségek, rövide sklárk evezzük. Adott egy vektor és egy λ (λ ε R). A λ vektor bszolútértéke λ, egyállású -vl és iráy, h = 0, kkor λ = 0, H 0, kkor: h 0 < λ, kkor z iráy, h λ < 0, kkor z iráyávl elletétes, h λ = 0, kkor λ = 0. H λ <, kkor z kicsiyítéséről beszélük, h λ >, kkor pedig gyításáról. Két vektor skláris (belső) szorzt A fizikáb értelmezett mukát z erő és z út szorzt htározz meg, tehát két vektormeyiségből egy sklárt kpuk. Két vektorból eze módo képzett sklár vektorlgebráb és geometriáb is hszálhtók bizoyul. b -b
Defiíció: A és b vektor skláris szorztá zt szorztot értjük, melybe két vektor bszolút értékét megszorozzuk hjlásszögük cosiusávl. b = b cos(,b) H z egyik téyező zérusvektor, kkor hjlásszög em egyértelmű, de ez em zvró, mivel z bszolút értéke ull, így skláris szorzt is ull. Tétel: Két em zérusvektor skláris szorzt kkor és csk kkor ull, h két vektor merőleges egymásr. Az skláris szorzás, melyikbe zérusvektor szerepel biztos ull. KOORDINÁTA GEOMETRIA A helyvektor defiíciójából kiidulv rögzítsük egy vektor kezdőpotját koordiátredszer origójáb, végpotj pedig legye koordiátsík egy tetszőleges P potj. Ekkor z OP helyvektor koordiátáj megegyezik végpot koordiátájávl. MŰVELETEK A HELYVEKTOROKKAL Helyvektorok összegéek koordiátái z egyes helyvektorok megfelelő koordiátáik z összege dj meg: x ; y ) ; b x ; y + b(x + x ; y y ( ) ) ( + Helyvektorok külöbségéek koordiáti: x ; y ) ; b( x ; y ) b(x x ; y y ) ( Vektor szorzás számml: Egy vektor sklárszorosák koordiátái z eredeti vektor koordiátáik sklárrl törtéő szorztávl egyelő. Vektorok skláris szorzt: ( x; y) ; b( x ; y ) b = x x + y y Egy vektor hosszák kiszámolás: v(x; y) vektor hossz v = x + y Tetszőleges AB szksz hosszák megdás: (x ; y ) B(x ; y ) (x ; y ) (x ; y ) AB = b AB(x A b ( x x ) + ( y ) x; y y) AB = AB = y Az A(x ; y) és B(x ; y) végpotú szksz F felezőpotják koordiátái: x + x y + y ; F. Az A(x ; y) és B(x ; y) végpotú szksz H, A-hoz közelebbi hrmdolópotják koordiátái: x + x y + y ; 3 3 H.
Az A(x ; y), B(x ; y), C(x3 ; y3) csúcspotú háromszög súlypotják koordiátái: x + x + x3 y + y + y ; 3 3 3 S. AZ EGYENES HELYZETÉT JELLEMZŐ ADATOK Iráyvektor: Az egyeessel párhuzmos vektor, mely em ullvektor. Jele: v ( v ; ) Normálvektor: Az egyeesre merőleges vektor, mely em ullvektor. Jele: ( A;B) Egy egyees iráyvektori és ormálvektori midig merőlegesek egymásr. Iráyszög: Az iráyvektor x tegely pozitív iráyávl bezárt szöge. Jele: α v Iráytges: Az egyees iráyszögéek tgese, h létezik. Jele: m = tgα cosα 0 y Vlmely egyees iráyszöge zoos z iráyvektorák és z x tegelyek hjlásszögével. H z iráyszöget 90 < α < 90 itervllumr korlátozzuk, kkor z iráyszög tgesét megdj z iráyvektor két koordiátáják háydos. α O α v v x v m = tgα = v y v v Egy egyeesek végtele sok iráyvektor v, ezek egymástól külöböző sklárszoros vektorok. α Egy egyeesek végtele sok ormálvektor v, ezek egymástól külöböző sklárszoros vektorok. v 3 3 x Úgy lehet megdi egy tetszőleges vektorr merőleges vektort, hogy z eredeti vektor koordiátáit felcseréljük és z egyiket megszorozzuk (-)-gyel. Ezzel módszerrel lehet iráyvektor segítségével z egyees ormálvektorit, illetve ormálvektor segítségével z iráyvektorit megdi.
Két egyees párhuzmos, h ormálvektorik párhuzmosk; iráyvektorik párhuzmosk; iráyszögük egyelő; iráytéyezőjük egyelő (h v). Két egyees merőleges, h ormálvektorik merőlegesek ormálvektorik skláris szorzt 0; iráyvektorik merőlegesek iráyvektorik skláris szorzt 0; koordiáttegelyekkel em párhuzmos egyeesek iráytéyezőiek szorzt. Egyeest meghtározhtuk, h ismerjük z egyees egy potját és Egy másik potját Iráyvektorát Normálvektorát Iráyszögét / iráytgesét Meredekségét P( x; y) (A;B) P0 (x0; y0) Az egyees ormálvektoros egyelete: Ax + By = Ax 0 + By 0 Két egyees metszéspotját úgy htározzuk meg, hogy megoldjuk két egyees egyeletéből álló egyeletredszert. A KÖR A körvol és körlp között foglmi külöbség v, de gykr midkettőt körek evezzük. Ebbe témáb kör ltt körvolt értük. A kör zo potok hlmz síkb, melyek sík egy dott O potjától, kör középpotjától, egyelő távolságr vk. Ez távolság kör sugr, jele: r. Az O (u;v) középpotú, r sugrú kör egyelete (x u) + (y v) = r.
STATISZTIKA Sttisztiki sokság, mit A sttisztik tömegjeleségekbe érvéyesülő tpsztlti törvéyeket tár fel sokság részhlmzi (mitáko) elvégzett mérésekre lpozv. Sttisztiki sokságk evezzük z objektumok, eseméyek zo összességét, melyre sttisztiki vizsgált votkozik. A sttisztiki sokság tgjit egyedekek, sokságot lkotó egyedek számát pedig sttisztiki sokság méretéek evezzük. Az egyedek vizsgált tuljdoságit ismérvekek, z ismérv egy kokrét előfordulását pedig dtk evezzük. Sttisztiki miták evezzük sttisztiki sokság zo vlódi részhlmzát, melyről dtokkl redelkezük. A sttisztiki mitávl szembe lpkövetelméy, hogy reprezettív legye, zz hűe tükrözze zt sokságot, melyből vló, és lehető legtöbb iformációt yújts vizsgált ismérvvel kpcsoltos ismeretle eloszlásról. Gykoriság, gykorisági eloszlás, osztályokb sorolás Egy dt (bszolút) gykoriságá zt számot értjük, háyszor z dt mitáb előfordul. A gykorisági táblázt lehetséges dtokt és zok gykoriságit trtlmzz. Egy dt reltív gykoriságá gykoriságák és mit elemszámák háydosát értjük. A reltív gykoriság százlékb kifejezett értékét százlékos gykoriságk evezzük. Adtok ábrázolás, redszerezése A mit dtik jól megválsztott elredezésével, ábrázolásávl megköyíthetjük vizsgálti szempotokk megfelelő következtetések meghoztlát. Táblázt: Az dtok áttekithetőbbé, köyebbe feldolgozhtóvá válk, h tábláztb redezzük őket. A grfikook áltláb sokkl szemléletesebbek tábláztokál, sűrítik z iformációt, átláthtóbbá teszik z dthlmzt. A hsolóságok és külöbségek köye észrevehetővé válhtk. Fotosbb grfikotípusok Görbe, voldigrm: Derékszögű koordiát-redszerbe görbékkel vgy összefüggő törött volll szemléltetjük z dtok változását, egymáshoz vló viszoyát. Oszlopdigrm: Az ábrázoldó meyiséggel ráyos mgsságú tégllpok (oszlopok) lkotják. Az oszlopok szélessége egyelő, de szbdo megválszthtó. Akkor hszáljuk, h z dtok változását, egymáshoz vló viszoyát krjuk szemlélteti. Kördigrm: Áltláb reltív gykoriságok ábrázolásár hszáljuk. Egy körbe z ábrázoldó dtok reltív gykoriságivl ráyos középpoti szögű körcikkek lkotják. A teljes kör jeleti 00%-ot. A kördigrmo z egyes dtok gykoriságát is fel lehet tüteti. Tortdigrm: A kördigrm térbeli megfelelője. A térbeli elforgtás mitt torzítj középpoti szögeket, mi megehezíti z összehsolításokt. Középértékek A mitáb leggykrbb előforduló dtot mit móduszák evezzük. H több ilye v, kkor zok móduszok hlmzát lkotják. A mit gyság szerit redezett dti közül középsőt mediák evezzük. Pártl számú dt mediájá középső dtot értjük. Páros számú dt mediáj két középső dt számti közepe. A sttisztiki mit x,x,x3,...x dtik számti közepe: x + x + x3 +... + x