P (ξ < 490) = F ξ (490) = Φ( 490 m ) = 0.03 10



Hasonló dokumentumok
4.4. Egy úton hetente átlag 3 baleset történik. Mi a valószínűsége, hogy egy adott héten 2?

NEVEZETES FOLYTONOS ELOSZLÁSOK

Készítette: Fegyverneki Sándor

VALÓSZÍNŰSÉGSZÁMÍTÁS. MSc. Órai Feladatok

Gyakorló feladatok a 2. dolgozathoz

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 5. gyakorlat 2013/14. tavaszi félév

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

A valószínűségszámítás elemei

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

BIOMATEMATIKA ELŐADÁS

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

2. A ξ valószín ségi változó s r ségfüggvénye a következ : c f(x) =

Gyakorlat. Szokol Patricia. September 24, 2018

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

Poisson-eloszlás Exponenciális és normális eloszlás (házi feladatok)

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

1. Név:... Neptun Kód:... Feladat: Egy összeszerel½o üzemben 3 szalag van. Mindehárom szalagon ugyanazt

36 0,3. Mo.: 36 0,19. Mo.: 36 0,14. Mo.: 32 = 0, = 0, = 0, Mo.: 32 = 0,25

Biometria gyakorló feladatok BsC hallgatók számára

vásárlót átlag 2 perc alatt intéz el (blokkolás, kártyaleolvasás), de ez az

Feladatok 2. zh-ra. 1. Eseményalgebra április Feladat. Az A és B eseményekr l tudjuk, hogy P (A) = 0, 6, P (B) = 0, 7 és

Feladatok és megoldások a 13. hétre

a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

MATEMATIKA HETI 5 ÓRA. IDŐPONT: június 8.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

Gazdasági matematika II. tanmenet

Negyedik fejezet. meglehetősen nagy, de az is lehet, hogy az X szín 5 évvel ezelőtt elő sem fordult. Tehát két. P (a ξ b, c η d)

Azaz 56 7 = 49 darab 8 jegyű szám készíthető a megadott számjegyekből.

Valószínűségszámítás és Statisztika I. zh november MEGOLDÁS

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat, megoldással,

Valószínűségi változók. Várható érték és szórás

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

A valószínűségszámítás elemei

Régebbi Matek M1 zh-k. sztochasztikus folyamatokkal kapcsolatos feladatai.

1.4 Hányféleképpen rakhatunk sorba 12 könyvet, ha 3 bizonyos könyvet egymás mellé akarunk rakni és

MATEMATIKA ÉRETTSÉGI május 06. KÖZÉPSZINT I.

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

0,9268. Valószín ségszámítás és matematikai statisztika NGB_MA001_3, NGB_MA002_3 zárthelyi dolgozat

Számítógépes döntéstámogatás. Statisztikai elemzés

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Villamosmérnök A4 4. gyakorlat ( ) Várható érték, szórás, módusz

Valószínűségszámítás összefoglaló

i p i p 0 p 1 p 2... i p i

Abszolút folytonos valószín ségi változó (4. el adás)

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

1. Példa. A gamma függvény és a Fubini-tétel.

3. Egy szabályos dobókockát kétszer feldobva mennyi annak a valószínűsége, hogy a dobott számok különbségének abszolutértéke nagyobb mint 4?

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Biomatematika 2 Orvosi biometria

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

1. Oldja meg a z 3 (5 + 3j) (8 + 2j) 2. Adottak az A(1,4,3), B(3,1, 1), C( 5,2,4) pontok a térben.

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Matematika A2 vizsga mgeoldása június 4.

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2

(Independence, dependence, random variables)

A maximum likelihood becslésről

Matematika B4 VIII. gyakorlat megoldása

Lineáris leképezések. 2. Lineáris-e az f : R 2 R 2 f(x, y) = (x + y, x 2 )

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Számelmélet Megoldások

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Gazdasági matematika II. Tantárgyi útmutató

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

Egyenletek, egyenlőtlenségek VII.

Geometriai valo szí nű se g

Kutatásmódszertan és prezentációkészítés

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

[Biomatematika 2] Orvosi biometria

Együ ttes e s vetü leti eloszlá s, sü rü se gfü ggve ny, eloszlá sfü ggve ny

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Valószín ségszámítás és statisztika

Villamosmérnök A4 11. hét Kétdimenziós normális eloszlás, cht - Megoldások

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

MATEMATIKA HETI 5 ÓRA. IDŐPONT: Június 4.

STATISZTIKA PÉLDATÁR

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Bodó Beáta - MATEMATIKA II 1

egyetemi jegyzet Meskó Balázs

10. Exponenciális rendszerek

Gyakorló feladatok I.

Feladatok és megoldások a 4. hétre

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Átírás:

Valszám-megoldások. Feladat. Legyen P (A =, 3 és P (B =, 6... Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B függetlenek?... Megoldás. Ha A és B függetlenek, akkor A és B, valamint B és A, valamint komplementereik is függetlenek. Tehát P (AB = P (AP (B =, 7, 6 =, 42. P (A B = P (A =, 3 és P (A + B = P (A + P (B P (AP (B..2. Kérdés. Mennyi P (A + B, P (AB, ill. P (A B, ha A és B kizáróak?.2.. Megoldás. Ha A és B kizáróak, akkor AB =, A B, és B A, így P (A + B = P (B =, 4, P (AB = P (B =, 6, és P (A B = 2. Feladat. Egy automata cukorkát csomagol. (A zacskókban levő cukorka tömege normális eloszlásúnak tekinthető. 2.. Kérdés. Milyen mennyiségű adagra állítsák be az automatát, ha az 5 grammosnak címkézett zacskóknak legfeljebb 3%-ába kerülhet 49 grammnál kevesebb cukorka, és az adagok szórása gramm? 2... Megoldás. P (ξ < 49 = F ξ (49 = Φ( 49 m =.3 49 m =.88 2.2. Kérdés. Mennyi lehet szórás, ha azt akarjuk, hogy az automatát 5 grammra állítva, az 5 grammosnak címkézett zacskóknak legfeljebb 3%-ába kerüljön 49 grammnál kevesebb cukorka? 2.2.. Megoldás. P (ξ < 49 = F ξ (49 = Φ( 49 5 =.3 σ σ =.88 3. Feladat. Két telefon van az irodában, éppen mindkettőn beszélnek. Bálint átlagosan 5 percig szokott beszélni, Dénes 3 percig. Legyen ξ és η az a valószínűségi változó, amely azt mondja meg, hogy mostantól hány perc múlva fejezi be Bálint, illetve Dénes a beszélgetést. 3.. Kérdés. Írjuk fel a ξ és η (egymástól független, exponenciális eloszlású valószínűségi változók együttes sűrűségfüggvényét! 3... Megoldás. Ha függetlenek, akkor együttes sűrűségfüggvényük a peremsűrűségfüggvények szorzata. { x < vagy y < f ξ,η (x, y = 5 3 e x 5 e y 3 x, y 3.2. Kérdés. Mi a valószínűsége, hogy Bálint előbb fejezi be a beszélgetést, mint Dénes?

3.2.. Megoldás. Annak valószínűsége, hogy a ξ és η változók értékei egy adott tartományba esnek, egyenlő a sűrűségfüggvénynek az adott tartományon vett integráljával. P (ξ < η = f ξ,η (x, ydxdy = 5 e x y 5 e 3 dy dx =... x<y 4. Feladat. A Préri horgásztónál az egy bottal kifogható halak száma jó közelítéssel Poisson-eloszlást követ 2 óránként várható értékkel. Kiül egy horgász három bottal horgászni. 4.. Kérdés. Jelölje ξ az első fogásig eltelt időt órában mérve. Határozzuk meg ξ sűrűségfüggvényét! 4... Megoldás. Meghatározzuk ξ eloszlásfüggvényét, majd abból deriválással a sűrűségfüggvényt. ( x F ξ (x = P (ξ < x = van legalább egy kapás P x > x idő alatt A " legalább egy kapás" azt jelenti, hogy, vagy 2, vagy 3, stb. Sokkal egyszerűbb a komplementert számolni, azaz azt, hogy kapás van minden boton. Egy boton a kapások számának várható értéke óra alatt,5, így x óra alatt, 5x. Egy boton x óra alatt kapás valószínűsége (,5x! e,5x = e,5x. A három boton egymástól függetlenül mindegyiken kapás valószínűsége (e,5x 3 = e,5x. F ξ (x = P (ξ < x = A sűrűségfüggvény tehát: x { x P (van legalább egy kapás x idő alatt = e,5x x > f(x = { x, 5e,5x < x Vegyük észre, hogy ez egy exponenciális valószínűségi változó sűrűségfüggvénye, amelynek várható értéke 2 3. Ez annak felel meg, hogy ha egy boton általában kétóránként van kapás, akkor, mivel 3 bottal háromszor annyi hal várható, három bottal harmadannyi időnként várható kapás. 5. Feladat. Egy bizonyos típusú, 5 kg-os csomagolású hagyományos mosóport vizsgálunk. Azt látjuk, hogy a mosópor tömege jó közelítéssel normális eloszlású. 5.. Kérdés. Ha az esetek,5%-ában 5 gr-nál kisebb, 2,5%-ában 54 grnál nagyobb értéket mérünk, mennyi a mosópor tömegének várható értéke és szórása? 2

5... Megoldás. Jelölje ξ a csomagban levő mosópor tömegét grammban mérve. P (ξ < 5 = F ξ (5 = Φ( 5 m =, 5 = Φ( 2, 7, σ P (54 > ξ = F ξ (54 = Φ( 54 m =, 25 = Φ(, 96. σ Ebből 5 m 54 m σ = 2.7, σ =, 96. Ez két egyenlet két ismeretlenre, a megoldás m = 52,, σ =, 9685. 6. Feladat. A haverokkal kártyázunk. Az asztal alatt egy hűtőládában dobozos sörök vannak. db Soproni, 8 db Borsodi és 6 db Arany Ászok. Az asztal alá lenyúlva véletlenszerűen kiveszünk 4 dobozzal. Legyen a ξ valószínűségi változó értéke a kivett Borsodis, az η-é pedig a kivett Sopronis dobozok száma. 6.. Kérdés. Milyen eloszlású ξ, és mennyi a valószínűsége, hogy ξ 2? 6... Megoldás. 8 db Borsodisból és 6 db nem-borsodisból bármely 4-et ugyanakkora valószínűséggel választva a Borsodisok száma hipergeometriai eloszlású valószínűségi változó, és annak valószínűsége, hogy éppen k db Borsodis lesz a 4 között ( 8 6 P (ξ = k = k( 4 k ( 24 4 és P (ξ 2 = ( 8 ( 6 ( 8 ( 6 ( 8 ( 6 4 3 2 2 ( 24 + ( 24 + ( 24. 4 4 4 6.2. Kérdés. Mennyi P (ξ = 2, η = 2? 6.2.. Megoldás. 2 Borsodi, 2 Soproni, Arany Ászok ( 6 ( 8 ( 2 2 P (ξ = 2, η = 2 = ( 24 4 6.3. Kérdés. Független-e ξ és η? 6.3.. Megoldás. Nem függetlenek, hiszen annak valószínűsége, hogy pl. 3 Borsodis van a négy között, nem nulla, és az sem, hogy 3 Sopronis, de annak valószínűsége, hogy a 4-ből 3 Borsodi és 3 Soproni, az nulla, tehát nem a valószínűségek szorzata. 6.4. Kérdés. Milyen előjelű cov(ξ, η? 6.4.. Megoldás. Negatív. Ugyanis ha sok van az egyikből, csak kevés lehet a másikból. 7. Feladat. Egy üdítőital-automata által adagolt ital mennyisége normális eloszlásúnak tekinthető, liter szórással. 3

7.. Kérdés. Mennyire állították be az automatát, ha a félliteresnek címkézett palackoknak csak 2%-a tartalmaz,5 liternél kevesebbet? 7... Megoldás. Jelölje ξ az egy palackban levő ital mennyiségét. P (ξ <, 5 = F ξ (, 5 = Φ(, 5 m =, 2., Φ( 2.5 =, 2, ebből m =, 5 + 2.5, =, 54. 8. Feladat. A menzán egy adag leves átlagosan 3 dl,,2 dl szórással. 8.. Kérdés. Mennyi a valószínűsége, hogy 3 liter levesből legalább 2 adagot mérnek ki? 8... Megoldás. A levesadagok mennyiségének összegéről van szó. Jelölje ξ i az i-edik levesadag mennyiségét. A kérdés tehát: 2 P ( ξ i 3 i= Mivel kézenfekvő feltételezés, hogy a levesadagok mennyisége a várható érték körül meglehetősen szimmetrikusan oszlik el, a 2 már elég sok ahhoz, hogy a centrális határeloszlástételt alkalmazzuk. ( 2 ( 2 i= P ξ i 3 = P ξ ( i 2 3 3 2 3 3 2 3 < = Φ = 2, 2 2, 2 2, 2 i= = Φ( 2.9 =, 998 =, 9. Azaz, gyakorlatilag szinte sosem fordul elő, hogy 2 adag is kiteljen. 9. Feladat. Egy üzemben két gép állít elő egy bizonyos típusú alkatrészt, amelyek élettartama exponenciális eloszlásúnak tekinthető az első gépnél, a másodiknál 2 óra várható értékkel. Az első gép a termelés 4 %-át adja. 9.. Kérdés. Mennyi a valószínűsége, hogy ha az egy helyen gyűjtött alkatrészek közül kiveszünk egyet, az tovább fog működni, mint 3 óra? 9... Megoldás. Mivel könnyen meg tudjuk mondani azokat a feltételes valószínűségeket, hogy milyen valószínűséggel működik az alkatrész 3 óránál többet, ha az első, ill. a második gyártotta, a teljes valószínűség tételével próbálkozunk, és persze sikerrel. Ha ξ jelöli a kivett alkatrész élettartamát, akkor P (ξ > 3 = P (ξ > 3 első gépp (első gép+p (ξ > 3 második gépp (második gép. Exponenciális eloszlású valószínűségi változó paramétere a várható érték reciproka. P (ξ > 3 első gép = F (3 = ( e 3 = e,3 =, 2725 4

P (ξ > 3 második gép = F 2 (3 = ( e 3 2 = e,833 =, 3385 P (ξ > 3 =, 2725, 4 +, 3385, 6 =, 32 Figyelmeztetés: Kis kalkulátorral számolva könnyű elütni a számokat. Azt mindenesetre ránézésre tudjuk, hogy ha az egyik gépről kikerülő termékek 27%-a, a másikról kikerülők 34%-a éli túl az 3 órát, akkor az összesből az ilyenek a két % között lesznek, és ahhoz közelebb, amelyikből több van, jelen esetben a 34%-hoz. Ha nem ilyen jön ki, számoljunk újra. 9..2. Megoldás. Grafikus megoldás. Exponenciális eloszlású valószínűségi változó paramétere a várható érték reciproka. Ha ξ jelöli a kivett alkatrész élettartamát, akkor P (ξ > 3 első gép = F (3 = ( e 3 = e,3 =, 2725 Azaz, ez az első gépen gyártottak 27,25%-a. P (ξ > 3 második gép = F 2 (3 = ( e 3 2 = e,833 =, 3385 Azaz, ez a második gépen gyártottak 33,85%-a. ÁBRA P (ξ > 3 =, 2725, 4 +, 3385, 6 =, 32 9.2. Kérdés. Mennyi a valószínűsége, hogy ha az egy helyen gyűjtött alkatrészek közül kiveszünk négyet, akkor legalább kettő tovább fog működni, mint 3 óra? 9.2.. Megoldás. A " legalább kettő tovább működik" azt jelenti, hogy kettő, három, vagy négy tovább működik, a többi nem. Ezek egymást kizáró események. Feltehetjük, hogy az alkatrészek élettartama egymástól független, így felhasználva az előző pont eredményét P (legalább kettő tovább működik = 4 k=2 ( 4, 32 k, 6879 4 k =... k Nyilvánvaló, hogy a " négy közül továbbműködők" száma binomiális eloszlású. Ha a " legalább 2" -t úgy tekintjük, hogy " nem vagy ", a szumma egyszerűbb. A " működik tovább" azt jelenti, " mind tönkremegy" : ( legalább kettő P = (P ( működik tovább + P ( működik tovább = tovább működik ( 4 = (, 6879 4 +, 32, 6879 3 =... 9.3. Kérdés. Ha egy ilyen alkatrész tovább működött, mint 3 óra, akkor mennyi a valószínűsége, hogy a második gép gyártotta? Mielőtt kiszámítanánk, becsüljük meg, az eredmény több lesz, vagy kevesebb, mint a feltétel nélküli,6 valószínűség? 5

9.3.. Megoldás. Mivel az élettartam több, mint bármelyik gépen gyártott alkatrész átlaga, nagy valószínűséggel a jobbakat gyártó gép gyártotta, tehát a második. A valószínűségnek a feltétel nélküli,6-nál nagyobbnak kell lennie. A kérdés: P (második gyártotta ξ > 3 Ha felhasználjuk az első alkérdés eredményét, akkor ez egy egyszerű feltételes valószínűség: P (ξ > 3 és második gép P (második gyártotta ξ > 3 = = P (ξ > 3 P (ξ > 3 második gépp (második gép = =, 658 P (ξ > 3 Ha nem használjuk az első alkérdés eredményét, akkor az egyes gépekre vonatkozó valószínűségek meghatározása után a Bayes-tételt alkalmazzuk: P (ξ > 3 első gép = F (3 = ( e 3 = e,3 =, 2725 P (ξ > 3 második gép = F 2 (3 = ( e 3 2 = e,833 =, 3385 P (második gyártotta ξ > 3 = = P (ξ > 3 második gépp (második gép =, 658 P (ξ > 3 első gépp (elsgp + P (ξ > 3 második gépp (második gép. Feladat. Egy 8 cm sugarú körlapra 4 cm átmérőjű korongokat dobálunk (a középpontjuk helyét választva véletlenszerűen, egymástól függetlenül, és a korong nem lóghat le a körlapról... Kérdés. Ha a korongok középpontjainak helyét " területarányosan" választjuk, mennyi a valószínűsége, hogy ha 5 korongot ledobunk, akkor a kör középpontja el lesz takarva?... Megoldás. Mivel a korongok nem lóghatnak ki, egy 6 sugarú körből választjuk középpontjukat. A kör középpontja el lesz takarva, ha van olyan korong, amelyiknek a középpontja 2 cm-nél közelebb van a kör középpontjához, azaz a középpont körüli 2 cm sugarú körbe esik. Annak valószínűsége, hogy egy választás éppen ide esik, egyenlő a kettő területének arányával: P (egy véletlenül ledobott korong eltakarja a középpontot = 22 π 6 2 π = 9. Az " ötből legalább egy" bekövetkezhet úgy, hogy egy, kettő, három, stb. Egyszerűbb úgy számolni, hogy a komplementere " egyik sem" : P (5-ből legalább egy eltakarja = P (5-ből egyik sem takarja el = ( 8 9 5.. Feladat. Ketten azt játsszák, hogy dobókockákat feldobnak, és ha a számok összege osztható 4-gyel, akkor X fizet Y-nak, különben Y fizet X-nek. 6

.. Kérdés. Ha két kockával játszanak, és X 75 Ft-ot fizet, akkor mennyit fizessen Y X-nek, hogy a játék méltányos legyen?... Megoldás. A játék akkor méltányos, ha a nyeremény várható értéke mindkettőjüknek ugyanannyi, és mivel egymásnak fizetnek, ez nulla. Annak valószínűségét, hogy a dobott számok összege 4, a kedvező/összes képlettel számolhatjuk. Az összes esetek száma 36, a kedvezőké pedig (amikor az összeg osztható 4-gyel 9. Ha Y α forintot fizet, akkor X nyereményének várható értéke: amiből α = 25 Ft. α 27 36 75 9 36 =, 2. Feladat. A menzán kétféle menüből, az A és B jelűből lehet választani. Ma olyan az ebéd, hogy a tapasztalatok szerint a diákoknak kb. a 2 százaléka választja az A menüt. Ebből már csak 6 adag van, a B-ből még 6. 2.. Kérdés. Még 7 ember van hátra. Mennyi a valószínűsége, hogy mindenki kaphat olyat, amilyet szeretne? 2... Megoldás. Mindenki azt kap, amit szeretne, ha az A menüt választók száma legalább és legfeljebb 6.A hátralévő 7 ember egymástól függetlenül 2 százalék valószínűséggel választ A menüt, így az A menüt választók száma a 7-ből binomiális eloszlású. 6 ( 7 P ( az A menüt választók száma 6 =.2 k.8 7 k. k k= 2.2. Kérdés. Közelítse az előző pont eredményét normális eloszlással is. 2.2.. Megoldás. Ha ξ jelöli az A menüt választók számát, akkor M(ξ = 7, 2 = 4, D(ξ = 7, 2, 8 =, 2 = 3, 347. Jelöljön η egy olyan normális eloszlású valószínűségi változót, amelynek ugyanennyi a várható értéke és szórása. P ( ξ 6 P (9, 5 η 6.5 = F η (6, 5 F η (9, 5 = = Φ( 6, 5 4 3, 347 5 4 Φ(9, = Φ(, 75 Φ(, 34 = 3, 347 =, 7734 (, 999 =, 6833 3. Feladat. Egy nagyvárosban naponta átlagosan 3 baleset történik. 3.. Kérdés. Mennyi a valószínűsége, hogy egy nap nincs baleset? 3... Megoldás. Az egymástól függetlenül bekövetkező balesetek száma általában Poisson eloszlásúnak tekinthető. Egy napra a várható érték 3, ezért P (balesetek száma = = 3! e 3 = e 3. 7

3.2. Kérdés. Mennyi a valószínűsége, hogy három nap mindegyikén 2 baleset van? 3.2.. Megoldás. A Poisson eloszlásról tudjuk, hogy az egymást kizáró tartományokban felvett értékek egymástól függetlenek, azaz az egyes napokon bekövetkező balesetek száma független a többi napokon bekövetkezett balesetek számától. P (3 nap mindegyikén 2 baleset = 32 2! 32 32 2! 2! e 3 =, 46 3.3. Kérdés. Mennyi a valószínűsége, hogy három nap alatt 6 baleset van? 3.3.. Megoldás. Ha az egy nap alatt bekövetkező balesetek száma Poisson eloszlást követ 3 várható értékkel, akkor a Poisson eloszlás tulajdonságaiból következik, hogy a három nap alatt bekövetkező balesetek száma is Poisson eloszlást követ 3 3 = 9 várható értékkel. P (balesetek száma = 6 = 96 6! e 9 =, 9 3.3.2. Megoldás. Ha nem akarjuk használni az előző megoldásban adott " additív" tulajdonságot, akkor a következőképpen is okoskodhatunk, bár így sokkal bonyolultabb: Az előző pontban említett függetlenséget használjuk. Három nap alatt 6 baleset történhet úgy, hogy egyik nap 6, a többin, és a 6-balesetes napot 3 féleképpen jelölhetjük ki; lehet egyik nap 5, egy másikon, a harmadikon, ezt 3! sorrendben jelölhetjük ki; stb. Az előbb felsorolt esetek egymást valamennyien kizárják, így a valószínűség: P ( 3 nap alatt 6 baleset =3 36 6! + 3 34 4! + 6 33 3! + 32 2! 3 3! 3 3! 32 3 2!! e 3 + 6 35 5! 32 32 2! 2! e 3! e 3 + 6 34 4!! e 3 + 6 33 3! 3 3!! e 3 + 32 3 2!! e 3 + 33 3 3!! e 3 + Némi számolással meggyőződhetünk róla, hogy ez ugyanannyi, mint az előző megoldásban volt. 4. Feladat. Egy szerkezet élettartama exponenciális eloszlású valószínűségi változónak tekinthető 8 óra várható értékkel. A szerkezet használói a szerkezetet átlagosan napi órát üzemeltetik. 4.. Kérdés. Milyen hosszú garanciaidőt adjon a gyártó cég, ha az eladott szerkezeteknek legfeljebb 5%-át akarja garanciálisan cserélni? 8

4... Megoldás. Jelölje ξ egy ilyen szerkezet élettartamát. Ha a garanciaidő N óra, akkor P (ξ < N = F ξ (N = e 8 N, 5 Ebből, 95 e 8 N, azaz ln, 95 8N, azaz N 8 ln 95 5. Feladat. Egy gyárban az egyik elöregedett gép átlagosan 2 percenként elakad (az elakadások között eltelt idő exponenciális eloszlásúnak tekinthető, és 5 perc időbe telik, amíg újra lehet indítani. 5.. Kérdés. Várhatóan mennyi időbe telik, amíg a gép egy egyórás munkát elvégez? (Használjuk az exponenciális és a Poisson-eloszlás közötti kapcsolatot! 5... Megoldás. Ha az első elakadásig eltelt idő exponenciális, akkor adott idő alatt bekövetkező elakadások száma Poisson. Ha átlagosan 2 percenként akad el, akkor 6 percenként átlagosan 3 leállás várható. Így a 6 perces munka elvégzésére fordított idő átlagosan 6 + 3 5 = 75 perc. 5..2. Megoldás. Ha valaki nem bízik az előző megoldásban, mert " túl nagyvonalúnak", vagy " felületesnek" tartja, akkor a következőképpen okoskodhat: Az, hogy a 6 perc alatt bekövetkező leállások száma 3 várható értékű Poissoneloszlás, nem vitatható, ez közismert a valószínűségszámítás elméletéből. A 6 perces munka 6 + k 5 percet vesz igénybe, ha 6 perc működési idő alatt k leállás történik. A munka elvégzéséhez szükséges idő várható értéke: (6+k 5 3k k! e 3 = 6 3k k! e 3 + k= k= k= 5k 3k k! e 3 = 6 k= 3 k k! e 3 +5 k= k 3k k! e 3 A 6 mögötti szumma, hiszen ez épp a Poisson-eloszlás valószínűségeinek összege, az 5 mögötti szumma pedig 3, mert ez éppen egy 3 várható értékű Poisson-eloszlás várható értéke. 5.2. Kérdés. Ha indítás után 8 perccel benézünk, mennyi a valószínűsége, hogy a gép éppen az első sziesztáját tölti? 5.2.. Megoldás. A gép az első sziesztáját tölti, ha az első leállás a 3-ik és 8-ik perc közben következett be. Jelölje ξ az első leállásig eltelt időt percekben. Ekkor λ = 2. P (3 < ξ < 8 = F ξ (8 F ξ (3 = ( e 8 2 ( e 3 2 = e 3 2 e 8 2, vagy P (3 < ξ < 8 = 8 3 λe λx dx = 8 3 2 e 2 x dx = e 3 2 e 8 2 6. Feladat. Egy szerecsendió szállítmányban a belőle vett minta alapján a szemek átlagos tömege 5gr, és 5%-uk több, mint 6gr. 9

6.. Kérdés. Mennyi a szemek tömegének szórása, ha a tömeg normálisnak tekinthető? 6... Megoldás. Jelölje ξ egy dió tömegét. P (ξ < 6 = P (ξ 6 = P (ξ = 6 P (ξ < 6 = F ξ (6 = Φ( 6 5 σ = Φ( =, 5. σ Φ(.645 =, 95, így σ =, 645, amiből σ =, 68. 6.2. Kérdés. A diókat kettesével csomagolják. Mennyi lesz egy-egy csomag tömege és szórása? 6.2.. Megoldás. A csomag tömegének várható értéke gr. Az egybecsomagolt két dió tömege függetlennek tekinthető, így a csomag tömegének szórásnégyzete D 2 (ξ + D 2 (ξ =, 9248, a szórás pedig,967. 6.3. Kérdés. A szállítmány egyik dobozában összesen 2gr dió van. Mennyi a valószínűsége, hogy kevesebb, mint csomagot készítünk belőle? 6.3.. Megoldás. Jelölje η i az i-edik csomag tömegét. A keresett valószínűség P ( i= η i > 2. A centrális határeloszlástételt alkalmazzuk: P ( η i > 2 = P i= ( i= η i 2 >, 967, 967 ( 2 Φ = Φ(.2 =, 5832 =, 468, 967 6.4. Kérdés. Mennyi annak a valószínűsége, hogy 2gr dióból legalább 99 csomag készíthető? 6.4.. Megoldás. Jelölje η i az i-edik csomag tömegét. A keresett valószínűség P ( 99 i= η i < 2. A centrális határeloszlástételt alkalmazzuk: ( 99 99 i= P ( η i < 2 = P η i 99 2 99 < 99, 967 99, 967 i= ( 2 99 Φ = Φ(.25 =, 8944 99, 967 7. Feladat. A ξ és η valószínűségi változók együttes eloszlása a következő: η\ ξ - -,5,,2,5,2,,2,5,5 7.. Kérdés. Mennyi a kovarianciájuk?

7... Megoldás. A kovarianciához szükségünk van a külön-külön vett várható értékekre, ehhez pedig a peremeloszlásokra. η\ ξ - -,5,,2,35,5,2,,35,2,5,5,3,3,35,35 M(ξ = (, 3 +, 35 +, 35 =, 5, M(η = (, 35 +, 35 +, 3 =, 5, M(ξη = ( (, 5+(, +(, 2+ +, 5+, 5 =, 3, cov(ξη =, 3 (, 5 (, 5 =, 2975. 7.2. Kérdés. Mennyi M(η ξ =? 7.2.. Megoldás. A feltételes várható értékhez ismernünk kell a feltételes valószínűségeket. P (η =, ξ = P (η = ξ = = =, 2 P (ξ =, 35 P (η =, ξ = P (η = ξ = = =, P (ξ =, 35 P (η =, ξ =, 5 P (η = ξ = = = P (ξ =, 35 és így a feltételes várható érték M(η ξ = = (,2,,5,35 +,35 +,35 =,5,35 =, 4286. Látjuk, ez a szám jóval kisebb, mint a feltétel nélküli várható érték. Ez érthető: a kovarianciájuk negatív, ami azt jelenti, hogy ξ növekedésével általában η csökkenése jár. Az érték pedig ξ legnagyobb értéke, így η kicsi értékei dominálnak. 8. Feladat. Sztochasztikus folyamat Egy állandó átmenetvalószínűségű Markov-lánc két egymás utáni állapotához tartozó együttes eloszlás a következő: X k \ X k+ 2 6 2 3 3 2 2 6 2 2 2 2 8.. Kérdés. Adjuk meg a átmenetvalószínűségek mátrixát! 8... Megoldás. Az átmenetvalószínűségek mátrixában az i-edik sor j-edik eleme azt mutatja meg, hogy milyen valószínűséggel kerül a rendszer az i-edik

állapotból a j-edik állapotba egy lépés során, azaz, P (X k+ = a j X k = a i. Ez a valószínűség a P (X k+ = a j X k = a i = P (X k+ = a j, X k = a i P (X k = a i képletből kapható meg, de ehhez ismernünk kell X k peremeloszlását. X k \ X k+ 2 6 6 2 2 3 3 6 2 2 2 6 2 8 2 2 2 2 Ebből pl. P (X k+ = X k = = 6 2 6 =, P (X k+ = X k = = 3 2 6 2 2 stb., így az átmenetvalószínűség mátrixa a három állapot között: A = 2 2 3 4 4 8.2. Kérdés. Adjuk meg a stacionárius eloszlást! = 2, 8.2.. Megoldás. A stacionárius eloszlásra az áll, hogy ha a rendszer abban van, abból nem mozdul ki. Azaz, ha X k eloszlását a p vektor adja, akkor X k+ eloszlása ugyanaz. Mivel X k+ eloszlását az Ap szorzat adja, keressük az A mátrixnak az sajátértékhez tartozó sajátvektorait. Ennek a mátrixnak egyszeres sajátértéke a λ =, és a hozzá tartozó sajátvektor ( 3, 3, 3. 8.3. Kérdés. Adjuk meg a stacionárius eloszláshoz tartozó R(2-t! 8.3.. Megoldás. " E" -vel jelölve a várható értéket: R(2 = E((X k+2 m(x k m = E((X 2 m(x m, azaz X 2 és X kovarianciája. Az m várható érték a stacionárius eloszlásra 3 + 3 + 2 3 =. Két lépés átmenetvalószínűség mátrixa A 2, azaz A 2 = 4 4 8 8 3 5 8 8 6 8 8 8 Ebben a mátrixban a feltételes valószínűségek vannak, ezeket még be kell szorozni az X = a i feltételek valószínűségeivel, hogy megkapjuk az együttes eloszlását X -nak és X 2 -nek. Most P (X = a i = 3 minden lehetséges értékre. X \ X 2 2 4 4 24 24 3 5 24 24 6 2 24 24 24 A szorzat várható értékében csak a nem nulla tagokat írjuk ki: E(X X 2 = 5 24 + 2 6 24 + 4 24 = 2 24. Tehát E((X 2 m(x m = E(X X 2 E(X E(X 2 = 2 24. 2