Diszkrét matematika 2.C szakirány

Hasonló dokumentumok
Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2.C szakirány

Hibajavító kódok május 31. Hibajavító kódok 1. 1

Alapfogalmak a Diszkrét matematika II. tárgyból

Diszkrét matematika 2.C szakirány

A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2.C szakirány

Diszkrét matematika 1. estis képzés

Diszkrét matematika 2. estis képzés

Diszkrét matematika alapfogalmak

Nagy Gábor compalg.inf.elte.hu/ nagy

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés

Diszkrét matematika 1. estis képzés

Diszkrét matematika 2.C szakirány

Nagy Gábor compalg.inf.elte.hu/ nagy

A kódok típusai Kódolás: adatok megváltoztatása. Dekódolás: a megváltoztatott adatból az eredeti visszanyerése.

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2 (C) vizsgaanyag, 2012 tavasz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2.C szakirány

Diszkrét matematika 1.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

1. Gráfok alapfogalmai

Diszkrét matematika I.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Kódoláselmélet. (Humann kód, hibajavító kódok, véges testek konstrukciója. Reed-Solomon kód és dekódolása.)

Diszkrét matematika gyakorlat 1. ZH október 10. α csoport

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 2. estis képzés

KÓDOLÁSTECHNIKA PZH december 18.

Hibajavító kódolás (előadásvázlat, november 14.) Maróti Miklós

Az állítást nem bizonyítjuk, de a létezést a Paley-féle konstrukció mutatja: legyen H a

Diszkrét matematika II. feladatok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Diszkrét matematika 1. estis képzés

Lineáris kódok. u esetén u oszlopvektor, u T ( n, k ) május 31. Hibajavító kódok 2. 1

Diszkrét matematika 1.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy

Hibadetektáló és javító kódolások

Bevezetés az algebrába 2

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Bevezetés az algebrába 2 Lineáris algebra alkalmazásai

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

Hamming-kód. Definíció. Az 1-hibajavító, perfekt lineáris kódot Hamming-kódnak nevezzük. F 2 fölötti vektorokkal foglalkozunk.

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Algoritmuselmélet 6. előadás

1. tétel - Gráfok alapfogalmai

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

FELADATOK A BEVEZETŽ FEJEZETEK A MATEMATIKÁBA TÁRGY III. FÉLÉVÉHEZ. ÖSSZEÁLLÍTOTTA: LÁNG CSABÁNÉ ELTE IK Budapest

Nagy Gábor compalg.inf.elte.hu/ nagy

Kódelméleti és kriptográai alkalmazások

Hibajavítás, -jelzés. Informatikai rendszerek alapjai. Horváth Árpád november 24.

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.

Nagy Gábor compalg.inf.elte.hu/ nagy

Aleksziev Rita Antónia Matematika BSc Alkalmazott matematikus szakirány. Golay-kódok

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Miller-Rabin prímteszt

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.

KOVÁCS BÉLA, MATEMATIKA I.

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Diszkrét matematika 2.

Diszkrét matematika II. feladatok

Shannon és Huffman kód konstrukció tetszőleges. véges test felett

Permutációk véges halmazon (el adásvázlat, február 12.)

Diszkrét matematika I.

Lineáris kódok. sorvektor. W q az n dimenziós s altere. 3. tétel. t tel. Legyen K [n,k,d] kód k d (k 1). Ekkor d(k)=w(k)

Számítógépes Hálózatok

Diszkrét matematika I.

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Analízis előadás és gyakorlat vázlat

Vektorterek. =a gyakorlatokon megoldásra ajánlott

Diszkrét matematika 1. estis képzés. Komputeralgebra Tanszék ősz

Mohó algoritmusok. Példa:

KOVÁCS BÉLA, MATEMATIKA I.

Feladatok, amelyek gráfokkal oldhatók meg 1) A königsbergi hidak problémája (Euler-féle probléma) a

Az informatikai biztonság matematikai alapjai HIBAKORLÁTOZÁS

Diszkrét matematika 1. középszint

Algoritmuselmélet 7. előadás

Átírás:

Diszkrét matematika 2.C szakirány 2016. ősz 1. Diszkrét matematika 2.C szakirány 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2016. ősz

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 2. Betűnkénti kódolás Kódfa A betűnkénti kódolás szemléltethető egy címkézett irányított fával. Legyen ϕ : A B egy betűnkénti kódolás, és tekintsük rng(ϕ) prefixeinek halmazát. Ez a halmaz részbenrendezett a,,prefixe relációra. Vegyük ennek a Hasse-diagramját. Így egy irányított fát kapunk, aminek a gyökere az üres szó, és minden szó a hosszának megfelelő szinten van. A fa éleit címkézzük úgy B elemeivel, hogy ha β = αb valamely b B-re, akkor az α-ból β-ba vezető él címkéje legyen b. A kódfa csúcsait is megcímkézhetjük: az a A kódjának megfelelő csúcs címkéje legyen a A; azon csúcs címkéje, amely nincsen rng(ϕ)-ben, legyen,,üres. Megjegyzés Az előbbi konstrukció meg is fordítható. Tekintsünk egy véges, élcímkézett irányított fát, ahol az élcímkék halmaza B, az egy csúcsból kiinduló élek mind különböző címkéjűek, továbbá az A véges ábécének a csúcsokra való leképezését, amelynél minden levél előáll képként. Az a A betű kódja legyen az a szó, amelyet úgy kapunk, hogy a gyökértől az a-nak megfelelő csúcsig haladó irányított út mentén összeolvassuk az élek címkéit.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 3. Kódfa Példa 0 1 2 0 1 2 f 0 1 2 a h c j 0 1 2 i 0 1 b d g e A Huffman-kódos példában szereplő kódhoz tartozó kódfa. ϕ(a) =00, ϕ(b) =211, ϕ(c) =02, ϕ(d) =212, ϕ(e) =2101, ϕ(f ) =1, ϕ(g) =2100, ϕ(h) =01, ϕ(i) =22, ϕ(j) =20. A kódszavak prefixeinek halmaza: {λ, 1, 00, 0, 01, 02, 20, 2, 22, 211, 21, 212, 2100, 210, 2101}

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 4. Kódfa Példa 0 1 0 1 2 0 1 2 f a h c 0 2 1 0 j i 0 1 2 0 b d g 0 e A Shannon-kódos példában szereplő kódhoz tartozó kódfa. ϕ(a) =01, ϕ(b) =1120, ϕ(c) =10, ϕ(d) =1121, ϕ(e) =12000, ϕ(f ) =00, ϕ(g) =1122, ϕ(h) =02, ϕ(i) =111, ϕ(j) =110. A kódszavak prefixeinek halmaza: {λ, 01, 0, 1120, 112, 11, 1, 10, 1121, 12000, 1200, 120, 12, 00, 1122, 02, 111, 110}

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 5. Példa (ISBN (International Standard Book Number) kódolása) Legyen d 1, d 2,..., d n decimális számjegyek egy sorozata (n 10). Egészítsük ki a sorozatot egy n + 1-edik számjeggyel, amelynek értéke d n+1 = n j d j mod 11, j=1 ha az nem 10, különben d n+1 legyen X. Ha valamelyik számjegyet eĺırjuk, akkor az összefüggés nem teljesülhet: d n+1 eĺırása esetén ez nyilvánvaló, j n-re d j helyett d j -t írva pedig az összeg j(d j d j )-vel nőtt, ami nem lehet 11-gyel osztható (Miért?). Azt is észrevesszük, ha j < n esetén d j -t és d j+1 -et felcseréljük: az összeg jd j+1 + (j + 1)d j jd j (j + 1)d j+1 = d j d j+1 -gyel nő, ami csak akkor lehet 11-gyel osztható, ha d j = d j+1. Megjegyzés 2007 óta 13 jegyű. A személyi számnál is használják.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 6. Példa (Paritásbites kód) Egy n hosszú 0-1 sorozatot egészítsünk ki egy n + 1-edik bittel, ami legyen 1, ha a sorozatban páratlan sok 1-es van, különben pedig legyen 0. Ha egy bit megváltozik, akkor észleljük a hibát. Példa (Kétdimenziós paritásellenőrzés) b 0,0 b 0,j b 0,n 1 b 0,n.......... b i,0 b i,j b i,n 1 b i,n.......... b m 1,0 b m 1,j b m 1,n 1 b m 1,n b m,0 b m,j b m,n 1 b m,n Oszlopok és sorok végén paritásbit. Ha megváltozik egy bit, akkor a sor és az oszlop végén jelez az ellenőrző bit, ez alapján tudjuk javítani a hibát. Ha két bit változik meg, akkor észleljük a hibát, de nem tudjuk javítani.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 7. Definíció Egy kód t-hibajelző, ha minden olyan esetben jelez, ha az elküldött és megkapott szó legfeljebb t helyen tér el. Egy kód pontosan t-hibajelző, ha t-hibajelző, de van olyan t + 1-hiba, amit nem jelez. Példa ISBN - 1-hibajelző paritásbites kód - 1-hibajelző kétdimenziós paritásellenőrzés - 2-hibajelző Hiba javításának módjai ARQ (Automatic Retransmission Request) - újraküldés, FEC (Forward Error Correction) - javítható, pl.: kétdimenziós paritásell.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 8. Definíció Legyen A véges ábécé, továbbá u, v A n. Ekkor u és v Hamming-távolsága alatt az azonos pozícióban lévő különböző betűk számát értjük: d(u, v) = {i : 1 i n u i v i }. Példa 0 1 1 1 0 1 0 1 0 1 = d(01110,10101)=4 A L M A A N N A = = d(alma,anna)=2

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 9. Álĺıtás A Hamming-távolság rendelkezik a távolság szokásos tulajdonságaival, vagyis tetszőleges u, v, w-re 1) d(u, v) 0; 2) d(u, v) = 0 u = v; 3) d(u, v) = d(v, u) (szimmetria); 4) d(u, v) d(u, w) + d(w, v) (háromszög-egyenlőtlenség). Bizonyítás 1), 2) és 3) nyilvánvaló. 4) Ha u és v eltér valamelyik pozicióban, akkor ott u és w, illetve w és v közül legalább az egyik pár különbözik.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 10. Definíció A K kód távolsága (d(k)) a különböző kódszópárok távolságainak a minimuma. Példa (*) (0,0) (0,0,0,0,0) (0,1) (0,1,1,1,0) (1,0) (1,0,1,0,1) (1,1) (1,1,0,1,1) A kód távolsága 3. 3 4 3 3 3 4 Felmerül a kérdés, hogy vajon mi lehetett a kódszó, ha a (0,1,0,0,0) szót kapjuk.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 11. Definíció Minimális távolságú dekódolás esetén egy adott szóhoz azt a kódszót rendeljük, amelyik hozzá a legközelebb van. Több ilyen szó esetén kiválasztunk ezek közül egyet, és az adott szóhoz mindig azt rendeljük. Megjegyzés A dekódolás két részre bontható: a hibajavításnál megpróbáljuk meghatározni, hogy mi volt az elküldött kódszó, majd visszaálĺıtjuk az üzenetet. Mivel az utóbbi egyértelmű, ezért hibajavító kódok dekódolásán legtöbbször csak a hibajavítást értjük. Definíció Egy kód t-hibajavító, ha minden olyan esetben helyesen javít, amikor egy elküldött szó legfeljebb t helyen változik meg. Egy kód pontosan t-hibajavító, ha t-hibajavító, de van olyan t + 1 hibával érkező szó, amit helytelenül javít, vagy nem javít.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 12. Megjegyzés Ha a kód távolsága d, akkor minimális távolságú dekódolással t < d 2 esetén t-hibajavító. Példa Az előző példában szereplő kód pontosan 1-hibajavító. (0,0,0,0,0) (1,0,0,0,1) (1,0,1,0,1) Példa (ismétléses kód) a (a,a,a) d = 3 1-hibajavító, a (a,a,a,a,a) d = 5 2-hibajavító.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 13. Tétel (Singleton-korlát) Ha K A n, A = q és d(k) = d, akkor K q n d+1. Bizonyítás Ha minden kódszóból elhagyunk d 1 betűt (ugyanazokból a pozíciókból), akkor az így kapott szavak még mindig különbözőek, és n d + 1 hosszúak. Az ilyen hosszú szavak száma szerepel az egyenlőtlenség jobb oldalán. Definíció Ha egy kódra a Singleton-korlát egyenlőséggel teljesül, akkor azt maximális távolságú szeparábilis kódnak (MDS-kód) nevezzük. Példa Az n-szeri ismétlés kódja. Ekkor d = n, és K = q.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 14. Tétel (Hamming-korlát) Ha K A n, A = q és K t-hibajavító, akkor K t j=0 ( ) n (q 1) j q n. j Bizonyítás Mivel a kód t-hibajavító, ezért bármely két kódszóra a tőlük legfeljebb t távolságra lévő szavak halmazai diszjunktak (Miért?). Egy kódszótól pontosan j távolságra lévő szavak száma ( ) n j (q 1) j (Miért?), így egy kódszótól legfeljebb t távolságra lévő szavak száma t ( n ) j=0 j (q 1) j. A jobb oldalon az n hosszú szavak száma szerepel (Miért?).

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 15. Definíció Ha egy kódra a Hamming-korlát egyenlőséggel teljesül, akkor azt perfekt kódnak nevezzük. Példa A (*) kód esetén K = 4, n = 5, q = 2 és t = 1. B.O.= 4 (( ) 5 0 (2 1) 0 + ( 5 1) ) (2 1) 1 = 4(1 + 5) = 24, J.O.= 2 5 = 32. Nem perfekt kód.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 16. A kód távolságának és hibajelző képességének kapcsolata Tekintsünk egy kódot, aminek a távolsága d. Ha egy elküldött kódszó legalább 1, de d-nél kevesebb helyen sérül, akkor az így kapott szó biztosan nem kódszó, mivel két kódszó legalább d helyen különbözik. Tehát legfeljebb d 1 hiba esetén a kód jelez. A kódban van két olyan kódszó, amelyek távolsága d, és ha az egyiket küldik, és ez úgy változik meg, hogy éppen a másik érkezik meg, akkor d hiba történt, de nem vesszük észre. Tehát van olyan d hiba, amit a kód nem tud jelezni. Ezáltal a kód pontosan d 1-hibajelző.

Kódolás Diszkrét matematika 2.C szakirány 2016. ősz 17. A kód távolságának és hibajavító képességének kapcsolata Legyen a kód távolsága továbbra is d, és tegyük fel, hogy minimális távolságú dekódolást használunk. t < d 2 hiba esetén biztosan jól javítunk, hiszen a háromszög-egyenlőtlenség miatt az eredetileg elküldött kódszótól különböző bármely kódszó biztosan d 2 -nél több helyen tér el a vett szótól (Miért?). Másrészt legyenek u és w olyan kódszavak, amelyek távolsága d, és legyen v az a szó, amit úgy kapunk u-ból, hogy a d pozícióból t d 2 helyre a w megfelelő pozíciójában lévő betűt írjuk. Ekkor v az u-tól t helyen, míg w-től d t d 2 t helyen különbözik. Ha a kód t-hibajavító lenne, akkor v-t egyrészt u-ra, másrészt w-re kellene javítania. Ezáltal a kód pontosan d 1 2 -hibajavító.