Bolygómozgás. Számítógépes szimulációk 1n4i11/1. Csabai István tavasz. ELTE Komplex Rendszerek Fizikája Tanszék csabaiθcomplex.elte.
|
|
- Donát Székely
- 8 évvel ezelőtt
- Látták:
Átírás
1 Bolygómozgás Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék csabaiθcomplex.elte.hu 2009 tavasz
2 A bolygómozgás Kepler törvényei 1 A bolygók pályája ellipszis, és annak egyik gyújtópontjában van a Nap. 2 A bolygók vezérsugara (a bolygót a Nappal összeköt szakasz) azonos id k alatt azonos területet súrol. 3 A bolygók Naptól való átlagos távolságainak, azaz a pálya fél nagytengelyeinek (a) köbei úgy aránylanak egymáshoz, mint a keringési idejük (T ) négyzetei. Tehát a a3 T 2 hányados minden bolygó esetén ugyanakkora (ha azok ugyanabban a naprendszerben keringenek).
3 Kepler az el z törvényeket nem elméleti úton vezette le, hanem Tycho Brahe csillagászati meggyelései alapján találta meg. A törvényeket kés bb Isaac Newton vezette le a gravitációs elmélete alapján. A gravitációs elmélet alapján több általánosítás is tehet : a törvények nem csak egy bolygó-csillag párosra, hanem bolygó körül kering holdakra és m holdakra, illetve bármely nagy tömeg égitest körül kering más égitestekre is igazak a természetben nem csak kötött ellipszis alakú pályák lehetésgesek, hanem parabola és hiperbola is lehetséges
4 Newton gravitációs törvénye Kepler törvényei Newton gravitációs törvényéb l vezethet ek le: F 12 = Gm 1m 2 r 3 12 r 12, F 21 = Gm 1m 2 r21 3 r 21 A középpontba mutató er k következtében a perdület megmarad, így a pályák síkban helyezkednek el.
5 A Kepler probléma egzakt megoldása a Nap tömege legalább 1000-szerese bármely bolygó tömegénél feltehetjük, hogy a Nap mozdulatlan, illetve elhanyagolhatjuk a bolygók tömegét bolygó-hold, csillag-csillag rendszerek esetén a tömegek nem hanyagólhatóak el, ekkor a tömegközéppont lesz mozdulatlan (redukált tömeg!) µ = m 1m 2 m 1 + m 2, r = r 1 r 2, m 1 r 1 + m 2 r 2 = 0 Kepler pálya egyenlete (ɛ a pálya excentricitása) r(θ) = a(1 ɛ2 ) 1 ɛ cos θ, b = a 1 ɛ 2
6 A Kepler probléma egzakt megoldása a pálya sebesség v = G(m 1 + m 2 ) ( 2 r 1 ) a a teljes energia = kinetikus + potenciális energia E = 1 2 µv2 Gm 1m 2 r keringési id - Kepler 3-ik törvényéb l T 2 = 4π 2 G(m 1 + m 2 ) a3 = Gm 1m 2 2a a perdület L = r (µv)
7 A Kepler probléma numerikus számítása Két bolygó kering a közös tömegközéppontjuk körül. Határozzuk meg a pálya paramétereit! Csillagászati egységek a Föld fél nagytengelye: Kepler 3-ik törvénye 1AU = m G(M Sun + m Earth ) = 4π2 a 3 a távolságot mérjük csillagászati egységben (AU) és az id t években (yr) G(M Sun + m Earth ) = 4π 2 AU 3 /yr 2 t 2
8 A Kepler probléma numerikus számítása Kezdeti értékek válasszuk a nagytengelyt x tengelynek rögzítsük x(t = 0)-t a közelpontban: x(0) = a(1 + ɛ) a közelpontban a sebesség y irányú, adjuk meg v y (t = 0)-t a sebesség a pálya egyenletb l v = G(m 1 + m 2 ) ( 2 r 1 ) a az el z összefüggések alapján t = 0-ban meghatározhatjuk a megadott paraméterek mellett az excentricitást és a fél nagytengely méretét ɛ = x(0)v y (0) 2 /(G(M + m)) 1, a = x(0)/(1 + ɛ)
9 C++ program #include <cstdlib> #include <fstream> #include <iostream> using namespace std; #include "vector.hpp" #include "odeint.hpp" using namespace cpl; const double pi = 4 * atan(1.0); const double GmPlusM = 4 * pi * pi; bool switch_t_with_y = false; // to interpolate to y = 0 // Derivative vector for Newton's law of gravitation Vector f(const Vector& x) { double t = x[0], r_x = x[1], r_y = x[2], v_x = x[3], v_y = x[4]; double rsquared = r_x*r_x + r_y*r_y; double rcubed = rsquared * sqrt(rsquared); Vector f(5); f[0] = 1; f[1] = v_x; f[2] = v_y; f[3] = - GmPlusM * r_x / rcubed; f[4] = - GmPlusM * r_y / rcubed; if (switch_t_with_y) { // use y as independent variable for (int i = 0; i < 5; i++) f[i] /= v_y; } return f; }
10 A pálya vizsgálatához ki akarjuk íratni az x-tengely metszeteket. Mivel a véges lépések miatt nem lenne mindig kiértékelés itt, amikor keresztezzük az x-tengelyt, visszaléptatünk oda. A következ függvény vissza-interpolálja a pályát egy x-tengely metszése után az y = 0-hoz. ehhez áttérünk t-r l y változóra: a Runge-Kutta lépésköz legyen -y dx dy = dx/dt dy/dt // Change independent variable from t to y and step back to y = 0 void interpolate_crossing(vector x, int& crossing) { ++crossing; switch_t_with_y = true; RK4Step(x, -x[2], f); cout << " crossing " << crossing << "\t t = " << x[0] << "\t x = " << x[1] << endl; switch_t_with_y = false; }
11 //The code contains both simple and adaptive Runge-Kutta method int main() { cout << " Kepler orbit comparing fixed and adaptive Runge-Kutta\n" << " \n" << " Enter aphelion distance in AU, and eccentricity: "; double r_ap, eccentricity, a, T, v0; cin >> r_ap >> eccentricity; a = r_ap / (1 + eccentricity); T = pow(a, 1.5); v0 = sqrt(gmplusm * (2 / r_ap - 1 / a)); cout << " Enter number of periods, step size, and adaptive accuracy: "; double periods, dt, accuracy; cin >> periods >> dt >> accuracy; Vector x0(5); x0[0] = 0; x0[1] = r_ap; x0[2] = 0; x0[3] = 0; x0[4] = v0; ofstream datafile("fixed.data"); Vector x = x0; int steps = 0, crossing = 0; cout << "\n Integrating with fixed step size" << endl; do { for (int i = 0; i < 5; i++) datafile << x[i] << '\t'; datafile << '\n'; double y = x[2]; RK4Step(x, dt, f); ++steps; if (y * x[2] < 0) interpolate_crossing(x, crossing); } while (x[0] < periods * T); cout << " number of fixed size steps = " << steps << endl; cout << " data in file fixed.data" << endl; datafile.close();
12 } datafile.open("adaptive.data"); x = x0; steps = crossing = 0; double dt_max = 0, dt_min = 100; cout << "\n Integrating with adaptive step size" << endl; do { for (int i = 0; i < 5; i++) datafile << x[i] << '\t'; datafile << '\n'; double t_save = x[0]; double y = x[2]; adaptiverk4step(x, dt, accuracy, f); double step_size = x[0] - t_save; ++steps; if (step_size < dt_min) dt_min = step_size; if (step_size > dt_max) dt_max = step_size; if (y * x[2] < 0) interpolate_crossing(x, crossing); } while (x[0] < periods * T); cout << " number of adaptive steps = " << steps << endl; cout << " step size: min = " << dt_min << " max = " << dt_max << endl; cout << " data in file adaptive.data" << endl; datafile.close();
13 Három test probléma Egzakt megoldások a probléma egyszer nek t nik: három tömeg (m 1, m 2, m 3 ), három pozició ( r 1, r 2, r 3 ) és három egyenlet : d 2 r 1 dt 2 = Gm r 1 r 2 2 r 1 r 2 Gm r 1 r 3 3 r 1 r 3 (ez az 1. testre vonatkozik, hasonló egyenletek írhatóak fel a 2. és 3. testre) a megoldások azonban er sen függenek a kezdeti feltételekt l! analitikusan csak nagyon kevés eset kezelhet kezelhet egyszer bb esetek: síkbeli 3 test probléma - a 3 test egy síkban mozog korlátozott 3 test probléma - m 3 = 0, ekkor m 1, m 2 Kepler pályán mozog, míg a 3-ik körülöttük kering
14 Síkbeli 3 test probléma általában a 3 test problémák nem síkbeliek, de pl. a Naprendszer kezelhet síkbeliként gyorsulások relatív poziciók mozgás egyenletek a 1 = Gm 2 r 2 12 r 12 Gm 3 r13 2 r 13 s 1 = r 3 r 2, s 2 = r 1 r 3, s 3 = r 2 r 1 s 1 + s 2 + s 3 = 0 d 2 s i dt 2 = mg s 2 s i + m i G m = m 1 + m 2 + m 3, 3 G s i = G s 2 i=1 i
15 Linkek Nap-Föld-Jupiter applet: t/t : keringési id, r: távolság, v: sebesség állíthatóak: m i : a Jupiter és a Föld tömege, e i excentricitásuk, a: a Föld fél nagytengelye, theta: a Föld kezdeti pálya szöge, a keringési iránya, valamint a egy csúszkával az animáció sebessége.
16 Feladatok Használjuk a kepler.cpp programot! 1 A nagytengely iránya és nagysága elvileg állandó. Teszteljük, hogy a numerikus hibák miatt ez változik-e, és ha igen, akkor mennyire. Vizsgáljuk meg, hogy a lépéshossz és az alkalmazott integrál módszer mennyire befolyásolja ezt. (Keressük meg a trajektória perihéliumát és mérjük le a nagytengely szögét és hosszát a kiindulási helyzethez képest.) 2 Vizsgáljuk meg, hogy az adaptív lépéshossz hogyan változik a pálya mentén! Ábrázoljuk és magyarázzuk meg a kapott eredményt! Szorgalmi feladat: Hasonlítsuk össze, hogy ugyanakkora precizitás megkövetelésekor (pl. 10 teljes pálya után ugyanakkora hiba) mennyi futási id szükséges a normál és az adaptív Runge-Kutta szimulációhoz. 3 A Merkúr perihélium precessziója (lapozz!)
17 Feladatok 3 A Merkúr perihélium precessziója. A Merkúr pályája er sen elnyúlt (excentricitása: ɛ = ), így a pályán hosszú id alatt meggyelhet annak elfordulása. Erre az elfordulásra az általános relativitás elmélet adott magyarázatot. Ennek alapján a következ korrekció szükséges az er k megadásakor: F = Gm ( Summ Mercury r α ) r 2 Írjuk át a kódot ennek a korrekciónak a gyelembevételére. Vizsgáljuk meg, hogy α AU 2 érték mellett mekkora perihélium mozgást tapasztalunk. A kapott értéket vessük össze a a Merkúr pályájának évszázadonkénti 43 ívmásodperces mért elfordulásával. (tipp: kis α esetén a precesszó rátája α, azaz meghatározhatjuk a meredekséget és extrapolálhatunk α AU 2 -ra) 4 Alakítsd át a kepler.cpp forráskódot, hogy 3 test problémát kezeljen. Próbálj ki különféle paramétereket, ábrázold a pályákat, vizsgáld a stabilitást!
18 Feladatok 5 Szorgalmi feladat: Largrange pontok (lásd Wikipédia) stabilitása. Szimuláljuk a Nap-Jupiter rendszert, és vizsgáljuk meg az L1, L2, L3, L4, L5 Lagrange pontokba helyezett kis (a bolygó tömegénél sokkal kisebb) tömegek mozgását, igazoljuk, hogy (csak) a L4-L5 pontok stabilak. A Jupiter esetében az utóbbi pontokban valóban összegy lnek aszteroibák, az ún Trójai kisbolygók (linkek: trójaiak az SDSS-ben, wikipedia).
Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering
3. jegyz könyv: Bolygómozgás
3. jegyz könyv: Bolygómozgás Harangozó Szilveszter Miklós, HASPABT.ELTE 21. április 6. 1. Bevezetés Mostani feladatunk a bolygók mozgásának modellezése. Mint mindig a program forráskódját a honlapon [1]
2. Alapfeltevések és a logisztikus egyenlet
Populáció dinamika Szőke Kálmán Benjamin - SZKRADT.ELTE 22. május 2.. Bevezetés A populációdinamika az élőlények egyedszámának és népességviszonyainak térbeli és időbeli változásának menetét adja meg.
Tömegvonzás, bolygómozgás
Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test
Inga. Szőke Kálmán Benjamin SZKRADT.ELTE május 18. A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt.
Inga Szőke Kálmán Benjamin SZKRADT.ELTE 2012. május 18. 1. Bevezetés A jegyzőkönyv célja a matematikai és fizikai inga szimulációja volt. A program forráskódját a labor honlapjáról lehetett elérni, és
Égi mechanika tesztkérdések. A hallgatók javaslatai 2008
Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek
Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt
Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti
Naprendszer mozgásai
Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer
Földünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
A bolygók mozgására vonatkozó Kepler-törvények igazolása
A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
Dinamikai rendszerek, populációdinamika
Dinamikai rendszerek, populációdinamika Számítógépes szimulációk 1n4i11/1 Csabai István ELTE Komplex Rendszerek Fizikája Tanszék 5.102 Email: csabaiθcomplex.elte.hu 2009 tavasz Dierenciálegyenletek a zikán
A világtörvény keresése
A világtörvény keresése Kopernikusz, Kepler, Galilei után is sokan kételkedtek a heliocent. elméletben Ennek okai: vallási politikai Új elméletek: mozgásformák (egyenletes, gyorsuló, egyenes, görbe vonalú,...)
Differenciálegyenletek numerikus integrálása április 9.
Differenciálegyenletek numerikus integrálása 2018. április 9. Differenciálegyenletek Olyan egyenletek, ahol a megoldást függvény alakjában keressük az egyenletben a függvény és deriváltjai szerepelnek
A Kepler-féle egyenlet és az affin transzformációk
DIMENZIÓK 29 Matematikai Közlemények IV. kötet, 2016 doi:10.20312/dim.2016.04 A Kepler-féle egyenlet és az affin transzformációk Péntek Kálmán NymE SEK TTMK Matematika és Fizikai Intézet pentek.kalman@nyme.hu
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények
Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó
Ingák. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József
Ingák Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés A harmonikus oszcillátor
Egy keveset a bolygók perihélium - elfordulásáról
1 Egy keveset a bolygók perihélium - elfordulásáról Szép ábrákat / animációkat találtunk az interneten, melyek felkeltették érdeklődésünket. Ilyen az 1. ábra is. 1. ábra forrása: https://upload.wikimedia.org/wikipedia/commons/thumb/8/83/drehung_der_apsidenlinie.
Programozás II. 2. Dr. Iványi Péter
Programozás II. 2. Dr. Iványi Péter 1 C++ Bjarne Stroustrup, Bell Laboratórium Első implementáció, 1983 Kezdetben csak precompiler volt C++ konstrukciót C-re fordította A kiterjesztés alapján ismerte fel:.cpp.cc.c
Kora modern kori csillagászat. Johannes Kepler ( ) A Világ Harmóniája
Kora modern kori csillagászat Johannes Kepler (1571-1630) A Világ Harmóniája Rövid életrajz: Született: Weil der Stadt (Német -Római Császárság) Protestáns környezet, vallásos nevelés (Művein érezni a
Maximum kiválasztás tömbben
ELEMI ALKALMAZÁSOK FEJLESZTÉSE I. Maximum kiválasztás tömbben Készítette: Szabóné Nacsa Rozália Gregorics Tibor tömb létrehozási módozatok maximum kiválasztás kódolása for ciklus adatellenőrzés do-while
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:
Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek
Fizika példák a döntőben
Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén
A hiperbolikus Kepler-egyenlet geometriai szemléletű tárgyalása
DIMENZIÓK 31 Matematikai Közlemények IV. kötet, 2017 doi:10.20312/dim.2017.05 A hiperbolikus Kepler-egyenlet geometriai szemléletű tárgyalása Péntek Kálmán ELTE SEK TTMK Savaria Matematikai Tanszék pentek.kalman@sek.elte.hu
Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására
Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására A bolygók és kisbolygók pályájának analitikus meghatározása rendszerint több éves egyetemi előtanulmányokat igényel. Ennek oka
3D számítógépes geometria 2
3D számítógépes geometria Numerikus analízis alapok ujjgyakorlat megoldások Várady Tamás, Salvi Péter / BME October, 18 Ujjgyakorlat 1 Feladat: 1 cos(x) dx kiszámítása trapéz-módszerrel Ujjgyakorlat 1
Bevezetés a programozásba I.
Bevezetés a programozásba I. 5. gyakorlat Surányi Márton PPKE-ITK 2010.10.05. C++ A C++ egy magas szint programozási nyelv. A legels változatot Bjarne Stroutstrup dolgozta ki 1973 és 1985 között, a C nyelvb
Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben
Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma
3. Nevezetes ponthalmazok a síkban és a térben
3. Nevezetes ponthalmazok a síkban és a térben 1. 1. Alapfogalmak 2. Nevezetes sík- és térbeli alakzatok, definícióik 3. Thalész-tétel 4. Gyakorlati alkalmazás Pont: alapfogalom, nem definiáljuk Egyenes:
Populációdinamika. Számítógépes szimulációk szamszimf17la
Populációdinamika Számítógépes szimulációk szamszimf17la Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Dierenciálegyenletek
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör Gravitáció, égi mechanika Tanári jegyzet
Nemzetközi Csillagászati és Asztrofizikai Diákolimpia Szakkör 2015-16 1. Gravitáció, égi mechanika Tanári jegyzet Bécsy Bence, Dálya Gergely 1. Tematika Newton-féle gravitációs törvény Kozmikus sebességek
Bevezetés a programozásba. 8. Előadás: Függvények 2.
Bevezetés a programozásba 8. Előadás: Függvények 2. ISMÉTLÉS Helló #include using namespace std; int main() cout
1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket.
1. Írjunk programot mely beolvas két egész számot és kinyomtatja az összegüket. // változó deklaráció int number1; // első szám int number2; // második szám int sum; // eredmény std::cout
1. Alapok. Programozás II
1. Alapok Programozás II Elérhetőség Név: Smidla József Elérhetőség: smidla dcs.uni-pannon.hu Szoba: I916 2 Irodalom Bjarne Stroustrup: A C++ programozási nyelv 3 Irodalom Erich Gamma, Richard Helm, Ralph
A Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Programozás C nyelven (3. ELŐADÁS) Sapientia EMTE
Programozás C nyelven (3. ELŐADÁS) Sapientia EMTE 2015-16 Classic Empire - A turn Based Wargame Classic Empire is a real time, multiplayer, Internet-based game, featuring military, diplomatic, and economic
Égi mechanika tesztfeladatok 2006
Égi mechanika tesztfeladatok 2006 1 2 Bartha Zsolt 1. Az n tömegpontból álló rendszer Lagrange-féle értelemben stabil, ha a tömegpontok közti összes r ij távolságoknak... a.) nincs felső határa. b.) véges
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
Mozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
Földünk a világegyetemben
Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője
Baran Ágnes, Burai Pál, Noszály Csaba. Gyakorlat Differenciálegyenletek numerikus megoldása
Matematika Mérnököknek 2. Baran Ágnes, Burai Pál, Noszály Csaba Gyakorlat Differenciálegyenletek numerikus megoldása Baran Ágnes, Burai Pál, Noszály Csaba Matematika Mérnököknek 2. Gyakorlat 1 / 18 Fokozatos
Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig
Gnädig Péter: Golyók, labdák, korongok és pörgettyűk csalafinta mozgása 2015. április 16. Pörgettyűk különböző méretekben az atomoktól a csillagokig Egyetlen tömegpont: 3 adat (3 szabadsági fok ) Példa:
Bevezetés a programozásba I.
Bevezetés a programozásba I. 6. gyakorlat C++ alapok, szövegkezelés Surányi Márton PPKE-ITK 2010.10.12. Forrásfájlok: *.cpp fájlok Fordítás: a folyamat, amikor a forrásfájlból futtatható állományt állítunk
Analízis III. gyakorlat október
Vektoranalízis Analízis III. gyakorlat 216. október Gyakorló feladatok és korábbi zh feladatok V1. Igazolja az alábbi "szorzat deriválási" szabályt: div(ff) = F, f + f div(f). V2. Legyen f : IR 3 IR kétszer
Ellipszissel kapcsolatos képletekről
1 Ellipszissel kapcsolatos képletekről Előző dolgozatunkban melynek címe: A Lenz - vektorról viszonylag sokat kellett ellipszissel kapcsolatos képletekkel dolgozni. Ennek során is adódott pár észrevételünk,
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait.
Közönséges differenciálegyenletek Meghatározás: Olyan egyenlet, amely a független változók mellett tartalmaz egy vagy több függvényt és azok deriváltjait. Célunk a függvény meghatározása Egyetlen független
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
117. AA Megoldó Alfréd AA 117.
Programozás alapjai 2. (inf.) pót-pótzárthelyi 2011.05.26. gyak. hiányzás: kzhpont: MEG123 IB.028/117. NZH:0 PZH:n Minden beadandó megoldását a feladatlapra, a feladat után írja! A megoldások során feltételezheti,
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
2014/2015. tavaszi félév
Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés
Pénzügyi algoritmusok
Pénzügyi algoritmusok A C++ programozás alapjai Az Integrált Fejlesztői Környezet C++ alapok Az Integrált Fejlesztői Környezet Visual Studio 2013 Community Edition Kitekintés: fordítás Preprocesszor Fordító
HD ,06 M 5911 K
Bolygó Távolság(AU) Excentricitás Tömeg(Jup.) Tömeg(Nep.) Tömeg(Föld) Sugár(Jup.) Sugár(Nep.) Sugár(Föld) Inklináció( ) Merkúr 0,387 0,206 0,00017 0,0032 0,055 0,0341 0,099 0,382 3,38 Vénusz 0,723 0,007
Programozási nyelvek I. 5. előadás (Gregorics Tibor anyagának felhasználásával)
Programozási nyelvek I. 5. előadás (Gregorics Tibor anyagának felhasználásával) I. A nyelv története C++ C (ős: B???) 1972 Ritchie AT&T Bell laboratórium UNIX 1978 Kernighan & Ritchie az első tankönyv,
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek
Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből
Bevezetés a programozásba I.
Bevezetés a programozásba I. 9. gyakorlat Intelligens tömbök, mátrixok, függvények Surányi Márton PPKE-ITK 2010.11.09. C++-ban van lehetőség (statikus) tömbök használatára ezeknek a méretét fordítási időben
Programozási alapismeretek :: beadandó feladat. Felhasználói dokumentáció. Molnár Tamás MOTIABT.ELTE motiabt@inf.elte.
Programozási alapismeretek :: beadandó feladat Készítő adatai Név: Molnár Tamás EHA: MOTIABT.ELTE E-mail cím: motiabt@inf.elte.hu Gyakorlatvezető: Horváth László Feladat sorszáma: 23. Felhasználói dokumentáció
Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.
Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik
EGY ABLAK - GEOMETRIAI PROBLÉMA
EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
MATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
Párhuzamos programozási feladatok
Párhuzamos programozási feladatok BMF NIK 2008. tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült Gravitációs N-test probléma Fizikai törvények alapján testek helyzetének, mozgásjellemzőinek
A mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód:
Szerző Név: Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: vp.05@hotmail.com Kurzuskód: IP-08PAEG/27 Gyakorlatvezető neve: Kőhegyi János Feladatsorszám: 20 1 Tartalom Szerző... 1 Felhasználói dokumentáció...
Determinisztikus folyamatok. Kun Ferenc
Determinisztikus folyamatok számítógépes modellezése kézirat Kun Ferenc Debreceni Egyetem Elméleti Fizikai Tanszék Debrecen 2001 2 Determinisztikus folyamatok Tartalomjegyzék 1. Determinisztikus folyamatok
Minimum feladat: Teljes feladat: Minimum feladat: Teljes feladat: Minimum feladat:
Megjegyzések: Ez a dokumentum a 2017-es tavaszi fiznum2 gyakorlat házi feladatait, és annak általam beadott megoldásait tartalmazza. Összesen 150 pontot kaptam rájuk, a vizsgázáshoz 120-ra volt szükség.
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen. Fermat-elv
Optika gyakorlat 1. Fermat-elv, fénytörés, reexió sík és görbült határfelületen Kivonat Geometriai optika: közelítés, amely a fényterjedést, közeghatáron való áthaladást geometriai alakzatok görbék segítségével
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
A Föld helye a Világegyetemben. A Naprendszer
A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű
Hamilton rendszerek, Lyapunov függvények és Stabilitás. Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek
Hamilton rendszerek, Lyapunov függvények és Stabilitás Hamilton rendszerek valós dinamikai rendszerek, konzerva3v mechanikai rendszerek Sokszor nem lehetséges, hogy a tanult linearizációs módszerrel meghatározzuk
20. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek.
. tétel A kör és a parabola a koordinátasíkon, egyenessel való kölcsönös helyzetük. Másodfokú egyenlőtlenségek. Először megadom a síkbeli definíciójukat, mert ez alapján vezetjük le az egyenletüket. Alakzat
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Programozási alapismeretek beadandó feladat: ProgAlap beadandó feladatok téma 99. feladat 1
Programozási alapismeretek beadandó feladat: ProgAlap beadandó feladatok téma 99. feladat 1 Készítette: Gipsz Jakab Neptun-azonosító: A1B2C3 E-mail: gipszjakab@vilaghalo.hu Kurzuskód: IP-08PAED Gyakorlatvezető
ANALÍZIS II. Példatár
ANALÍZIS II. Példatár Többszörös integrálok 3. április 8. . fejezet Feladatok 3 4.. Kett s integrálok Számítsa ki az alábbi integrálokat:...3. π 4 sinx.. (x + y) dx dy (x + y) dy dx.4. 5 3 y (5x y y 3
INFORMATIKA tétel 2018
INFORMATIKA tétel 2018 ELIGAZÍTÁS: 1 pont hivatalból; Az 1-4 feladatokban (a pszeudokód programrészletekben): (1) a kiír \n utasítás újsorba ugratja a képernyőn a kurzort; (2) a minden i = n,1,-1 végezd
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
Mérnöki alapok 10. előadás
Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Tartalomjegyzék. Általános Információ! 2. Felhasználói dokumentáció! 3. Feladat! 3. Környezet! 3. Használat! 3. Bemenet! 3. Példa!
Tartalomjegyzék Általános Információ! 2 Felhasználói dokumentáció! 3 Feladat! 3 Környezet! 3 Használat! 3 Bemenet! 3 Példa! 3 A program eredménye! 3 Példa! 3 Hibalehetőségek! 3 Példa! 3 Fejlesztői dokumentáció!
Bevezetés a programozásba. 11. Előadás: Esettanulmány
Bevezetés a programozásba 11. Előadás: Esettanulmány ISMÉTLÉS Függvényhívás #include #include #include #include using using namespace namespace std; std; double double
Programok értelmezése
Programok értelmezése Kód visszafejtés. Izsó Tamás 2016. szeptember 22. Izsó Tamás Programok értelmezése/ 1 Section 1 Programok értelmezése Izsó Tamás Programok értelmezése/ 2 programok szemantika értelmezése
3. előadás Stabilitás
Stabilitás 3. előadás 2011. 09. 19. Alapfogalmak Tekintsük dx dt = f (t, x), x(t 0) = x 0 t (, ), (1) Jelölje t x(t; t 0, x 0 ) vagy x(.; t 0, x 0 ) a KÉF megoldását. Kívánalom: kezdeti állapot kis megváltozása
ÉGITESTEK MOZGÁSA, ÉGI KOORDINÁTA- RENDSZEREK NAVIGÁCIÓS ÖSSZEFÜGGÉSEI BEVEZETÉS ÉGITESTEK NAVIGÁCIÓS TRANSZFORMÁCIÓI
Urbán István ÉGITESTEK MOZGÁSA, ÉGI KOORDINÁTA- RENDSZEREK NAVIGÁCIÓS ÖSSZEFÜGGÉSEI BEVEZETÉS Napjaink navigációs módszerei és eljárásai között ha érdemtelenül is de mindinkább visszaszorulni látszik a
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz
Gyakorló feladatok a Közönséges dierenciálegyenletek kurzushoz Vas Gabriella 204. február A feladatgy jtemény a TÁMOP-4.2.4.A/2-/-202-000 azonosító számú Nemzeti Kiválóság Program Hazai hallgatói, illetve
L 4πd 2 1 L 4πd 2 2. km 3,5. P max = P min = Az 5 naptömegű bolygó esetén ez alapján a zóna belső és külső határai (d 1 és d 2): 2.
1. feladat (a) A feladat megadta a Naprendszer esetében a lakhatósági zóna határait, jelölje ezeket d 1 és d. A továbbiakban feltételezzük, hogy a csillag által kibocsátott sugárzás a tér minden irányában
Programozás II gyakorlat. 8. Operátor túlterhelés
Programozás II gyakorlat 8. Operátor túlterhelés Kezdő feladat Írjunk egy Vector osztályt, amely n db double értéket tárol. A konstruktor kapja meg az elemek számát. Írj egy set(int idx, double v) függvényt,
Az egyenes ellipszishenger ferde síkmetszeteiről
1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges
4. Öröklődés. Programozás II
4. Öröklődés Programozás II Mielőtt belevágunk Egy Tárgy típusú objektumokat tároló tömb i. elemében tároljunk el egy új tárgyat Rossz módszer: tomb[i].setnev( uj.getnev() ); tomb[i].setertek( uj.getertek()
MODELLEZÉS - SZIMULÁCIÓ
Mechatronika = Mechanikai elemek+ elektromechanikai átalakítók+ villamos rendszerek+ számítógép elemek integrációja Eszközök, rendszerek, gépek és szerkezetek felügyeletére, vezérlésére (manapság miniatürizált)
Az elliptikus hengerre írt csavarvonalról
1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása
A brachistochron probléma megoldása
A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e
Molekuláris dinamika I. 10. előadás
Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,
(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus)
Széchenyi István Egyetem Műszaki Tudományi Kar Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA 2.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Gépek dinamikája - 2. gyakorlat
A Kepler - problémáról. Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó.
1 A Kepler - problémáról Megint az interneten találtunk egy szép animációt 1. ábra, amin elgondolkoztunk: Ezt hogyan oldanánk meg? Most erről lesz szó. 1. ábra forrása: https://hu.wikipedia.org/wiki/kepler-probl%c3%a9ma
A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a
a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten