TÁRGYLEÍRÁSOK. Valószínűségelméleti és Statisztika Tanszék
|
|
- Tamás Hajdu
- 8 évvel ezelőtt
- Látták:
Átírás
1 EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS TÁRGYLEÍRÁSOK Valószínűségelméleti és Statisztika Tanszék BUDAPEST 2013
2 Tantárgy neve: Bevezetés az információelméletbe (C46) kreditértéke: 3+0 tantárgyfelelős neve: Csiszár Villő Forráskódolás változó hosszúságú és blokk-kódokkal. Entrópia és formális tulajdonságai. I- divergencia és formális tulajdonságai. Tipikus sorozatok. A zajos csatorna fogalma, csatornakódolási tételek. Csatornakapacitás és kiszámítási módjai. Forrás- és csatornakódolás lineáris kódokkal. Több felhasználós hírközlő rendszerek: korrelált források egyedi kódolása. Az additív Gauss-zajú csatorna. Csiszár Körner: Information Theory: Coding Theorems for Discrete Memoryless Systems. Akadémiai Kiadó, Cover Thomas: Elements of Information Theory. Wiley,
3 Tantárgy neve: Diszkrét és folytonos paraméterű Markov-láncok (B16) kreditértéke: 2+0 tantárgyfelelős neve: Prokaj Vilmos előtanulmányi feltétel: Valószínűségszámítás és statisztika (gyenge előfeltétel) (a matematikus és alkalmazott matematikus szakirányról érkezetteknél teljesítettnek tekintve) Sztochasztikus folyamatok: Markov-tulajdonság, erős Markov-tulajdonság, homogenitás. Diszkrét paraméterű Markov-láncok: definíció, átmenetmátrix, az állapotok osztályozása. Periódus, visszatérőség. Az átmenetvalószínűségek konvergenciája. Stacionárius eloszlás. Nagy számok törvénye és centrális határeloszlás-tétel irreducibilis, pozitív rekurrens Markovlánc funkcionáljára. Átmenetvalószínűségek tabu állapotokkal. Reguláris mérték, Doeblin hányados tétele. Megfordított Markov-lánc. Elnyelődési valószínűségek. Perron-Frobenius tételek. Folytonos paraméterű Markov-láncok: definíció, átmenetmátrix, derivált a nullában, infinitezimális generátor. Példák: Poisson folyamat, születési és halálozási folyamatok. Karlin Taylor: Sztochasztikus folyamatok. Gondolat Kiadó, Chung: Markov Chains With Stationary Transition Probabilities. Springer, Isaacson Madsen: Markov Chains: Theory and Applications. Wiley,
4 Tantárgy neve: Diszkrét paraméterű martingálok (B17) kreditértéke: 2+0 tantárgyfelelős neve: Móri Tamás Martingálok 1 valószínűségű és Lp-beli konvergenciája, reguláris martingálok. Reguláris megállási idők, Wald-azonosság. Négyzetesen integrálható martingálok konvergenciahalmaza. Hilbert-tér értékű martingálok. Centrális határeloszlás-tétel martingálokra. Fordított martingál, U-statisztikák, felcserélhetőség. Alkalmazások: Martingálok a pénzügyi matematikában, a Conway-algoritmus, optimális stratégiák nyereséges játékokban, elágazó folyamat kétféle típusú egyedekkel. Móri Tamás.: Diszkrét paraméterû martingálok. Typotex Kft., Budapest, Y. S. Chow H. Teicher: Probability Theory Independence, Interchangeability, Martingales. Springer, New York, J. Neveu: Discrete-Parameter Martingales. North-Holland, Amsterdam,
5 Tantárgy neve: Független növekményű folyamatok, határeloszlás-tételek (C47) kreditértéke: 3+0 tantárgyfelelős neve: Prokaj Vilmos Korlátlanul osztható eloszlás és karakterisztikus függvény. Poisson folyamat, összetett Poisson folyamat. Poisson pontfolyamat általános karakterisztikus mérték mellett. Pontfolyamat szerinti integrál. Lévy Hincsin formula. Nem negatív és véges szórású korlátlanul osztható eloszlások karakterisztikus függvénye. Stabilis eloszlások karakterisztikus függvénye. Stabilis eloszlások generálása, farok-valószínűség nagyságrendje. Szériasorozatok határeloszlásai. Y. S. Chow H. Teicher: Probability Theory: Independence, Interchangeability, Martingales. Springer, New York, W. Feller: An Introduction to Probabilty Theory and its Applications, vol. 2. Wiley, New York,
6 Tantárgy neve: Kriptográfia (C48) kreditértéke: 3+0 tantárgyfelelős neve: Szabó István Valószínűségelméleti és Statisztika számonkérés rendje: C típusú kollokvium Az informatikai adatvédelem alapjai: jogi környezet, veszélyek, szteganográfia-kriptográfia alapfogalmai Adatvédelmi módszerek: algoritmusok és a biztonság garanciális /bizonyítási/ módszerei - A kriptográfia története, történelmi hibák és kihasználásuk - Információelméleti megközelítés (Shannon modell, egyértelműségi pont, OTP) - Szimmetrikus (titkos) kulcsú rendszerek - Stream ciphers: LFSR, lineáris ekvivalens fogalma, LFSR rendszerek, benne a GSM titkosítás (A5/1-A5/2), WLAN, BlueTooth titkosítás, statisztikai és algebrai követelmények a biztonságos stream-cipher rendszerekkel szemben - Block ciphers: LUCIFER, DES, PES, IDEA, AES - Aszimmetrikus (nyilvános) kulcsú (PKI) rendszerek Egyirányú függvények, klasszikus matematikai problémákon alapuló algoritmusok, kulcsegyeztetők (Merkle-Hellmann, DLP-n alapuló), PKI kódolók (RSA, ECC), Hash függvények, elektronikus aláírási algoritmusok (RSA, DSA, ECDSA), elektronikus aláírási rendszerek (technológia, jogi-, szervezeti intézményi rendszer), egyéb protokollok (blind signature, secret sharing, ) - Lineáris- és differenciál kriptoanalízis, faktorizációs módszerek, protokollhibák Adatvédelmi rendszerek felépítése: primitívek, sémák, protokollok, alkalmazások (gyenge pontok és követelmények) Nemzetközi és hazai szabványok és projektek (ISO/IEC, NIST, ANSI, FIPS, RFC, ETSI). IT biztonsági módszertanok: MSZ ISO 15408: /Common Criteria/ 2008; /CEM/:2009; FIPS PUB 140-2:2001. Nemetz-Vajda: Algoritmusos adatvédelem. Buttyán-Vajda: Kriptográfia és alkalmazásai. Bruce Schneier: Applied Cryptography. Alfred J. Menezes, Paul C. van Oorshchor, Scott A. Vanstone: Handbook of Applied Cryptography, CRC Press, 1997, online: 5
7 Tantárgy neve: Statisztikai hipotézisvizsgálat (C49) kreditértéke: 3+0 tantárgyfelelős neve: Csiszár Villő Statisztikai hipotézisek, próbák, véletlenített próbák. Elsőfajú, másodfajú hiba, szint, terjedelem, erőfüggvény. Likelihood-hányados próba, Neyman-Pearson lemma. Az erő aszimptotikája. Egyoldali ellenhipotézis monoton likelihood-hányadosú osztályban. Kétodali ellenhipotézis exponenciális eloszláscsaládban. Hasonlóság, Neyman-struktúra. Hipotézisvizsgálat zavaró paraméterek jelenlétében. A klasszikus paraméteres próbák optimalitása. Aszimptotikus próbák. Általánosított likelihood-hányados próba, a khi-négyzet próbák levezetése. A tapasztalati folyamat konvergenciája Brown-hídhoz. Gauss-folyamatok Karhunen-Loève sorfejtése. A klasszikus nemparaméteres próbák aszimptotikus elemzése. Invariáns és Bayes-próbák. A konfidenciahalmazok elméletének kapcsolata a hipotézisvizsgálattal. Móri Tamás: Statisztikai hipotézisvizsgálat. Typotex Kft., Budapest, Bolla M. Krámli A.: Statisztikai következtetések elmélete. Typotex Kiadó, Budapest, A. A. Borovkov: Matematikai statisztika. Typotex Kiadó, Budapest, E. L. Lehmann: Testing Statistical Hypotheses, 2nd Ed., Wiley, New York,
8 Tantárgy neve: Statisztikai programcsomagok 1 (B18) Tantárgy heti óraszáma: 0+2 kreditértéke: 0+3 tantárgyfelelős neve: Zempléni András számonkérés rendje: gyakorlati jegy Az elemi, egydimenziós paraméterbecslés és hipotézisvizsgálat gyakorlati, számítógépes eszközeinek áttekintése. A leíró statisztikai módszerek. A várható érték és a szórás becslése. Hipotézisvizsgálat. Eloszlások. Eloszlásfüggvények előállítása, véletlen számok generálása, sűrűségfüggvények illesztése, becslése. Függés vizsgálata. Szórásanalízis. Regresszió. A statisztika különböző kategóriájú számítógépes eszközeinek megismerése: irodai programok, oktatási eszközök, zárt célprogramok, rugalmasan programozható szakértői környezetek. Az óra számítógépes gyakorlat (EXCEL, Statistica, SPSS, SAS, R-project, MATLAB). Mogyoródi J. - Michaletzky Gy. (szerk.): Matematikai statisztika. Egyetemi jegyzet. Nemzeti Tankönyvkiadó, Budapest, Móri T.F., Szeidl L., Zempléni A.: Matematikai statisztika példatár, ELTE Eötvös Kiadó, Bp., Móri F. T.- Székely J. G. (szerk.). Többváltozós statisztikai analízis, Műszaki Könyvkiadó, 1986, ISBN
9 Tantárgy neve: Statisztikai programcsomagok 2 (C50) Tantárgy heti óraszáma: 0+2 kreditértéke: 0+3 tantárgyfelelős neve: számonkérés rendje: előtanulmányi feltétel: Zempléni András gyakorlati jegy Többdimenziós statisztikai eljárások Többdimenziós statisztikai eljárások és számítógépes eszközeik megismerése és áttekintése. Dimenziócsökkentés. Főkomponens-, faktoranalízis és kanonikus korreláció. Diszkrét adatok feldolgozási módszerei. Bináris adatok feldolgozása, logisztikus regresszió. Skálázás, skálázáson alapuló módszerek. Korrespondencia-analízis. Csoportosítás. Klaszteranalízis és klasszifikáció. Élettartam-adatokat feldolgozó módszerek. Probit, logit és nemlineáris regresszió. Élettartam-táblák, Cox-regresszió. Az óra számítógépes gyakorlat. Felhasznált eszközök EXCEL, Statistica, SPSS, SAS, R-project, MATLAB. Móri F. T.- Székely J. G. (szerk.). Többváltozós statisztikai analízis, Műszaki Könyvkiadó, 1986, ISBN
10 Tantárgy neve: Többdimenziós statisztikai eljárások (B19) Tantárgy heti óraszáma: 4+0 kreditértéke: 6+0 tantárgyfelelős neve: Michaletzky György A többdimenziós normális eloszlás paramétereinek becslése. Mátrixértékű eloszlások. A Wishart-eloszlás: sűrűségfüggvénye, determinánsa, inverzének várható értéke. Többdimenziós normális eloszlás paramétereire vonatkozó hipotézis vizsgálat. Függetlenségvizsgálat. Normalitásvizsgálat. Lineáris regresszió. A változók közötti kapcsolat mérése: korrelációs együttható, maximálkorreláció, parciális korreláció, kanonikus korreláció. Főkomponensanalízis, faktoranalízis, szórásanalízis. Diszkrét, többváltozós modellek, Kontingenciatáblák. Maximum-likelihood becslés loglineáris modellben. Kullback-Leibler-féle divergencia. Lineáris és exponenciális eloszláscsaládok. Az L-vetület numerikus meghatározása (Csiszár-féle módszer, Darroch- Ratcliff-eljárás). J. D. Jobson, Applied Multivariate Data Analysis, Vol. I-II. Springer Verlag, 1991, Móri T. Székely G. (szerk.) Többváltozós statisztikai módszerek, Műszaki Könyvkiadó, C. R. Rao, Linear statistical inference and its applications, Wiley and sons,
11 Tantárgy neve: Valószínűségszámítás és statisztika (A12) Tantárgy heti óraszáma: 3+2 kreditértéke: 3+3 tantárgyfelelős neve: számonkérés rendje: előtanulmányi feltétel: Móri Tamás kollokvium + gyakorlati jegy Mérték- és integrálelmélet elemei: Mérhető tér, mérhető leképezések. Mérték és integrál. Mértékek kiterjesztése.lebesgue- és Lebesgue Stieltjes-mérték. Mértéktartó leképezések. Előjeles mértékek és variációik. Abszolút folytonos és szinguláris mértékek. Mértékek differenciálása. Abszolút folytonos és szinguláris függvények. Mértékterek szorzata. Valószínűségi mező, valószínűségi változó, eloszlásfüggvény, sűrűségfüggvény, várható érték, szórás, kovariancia, függetlenség. Konvergenciafajták és kapcsolatuk: 1 valószínűségű, sztochasztikus, Lp-beli, gyenge. Egyenletes integrálhatóság. Karakterisztikus függvény, centrális határeloszlás-tétel Feltételes várható érték, feltételes valószínűség, reguláris feltételes eloszlás, feltételes sűrűségfüggvény. Martingál, szubmartingál, konvergenciatétel, reguláris martingálok. A nagy számok erős törvénye, független tagú sorok, 3-sor-tétel. Statisztikai mező, elégségesség, teljesség. Fisher-információ. Cramér-Rao egyenlőtlenség, Blackwell-Rao tétel, becslési módszerek: tapasztalati becslések, momentum-módszer, maximum-likelihood becslés, Bayes-becslés. Hipotézisvizsgálat, likelihood-hányados próba, aszimptotikus tulajdonságok. Többdimenziós normális eloszlás, a paraméterek becslése Lineáris modell, legkisebb négyzetes becslés. Lineáris hipotézis normális lineáris modellben. Petruska Gy.: Analízis II. kötet. Egyetemi jegyzet. ELTE Eötvös Kiadó, Rényi A.: Valószínűségszámítás. Tankönyvkiadó, J. Galambos: Advanced probability theory. Marcel Dekker, New York, A. A. Borovkov: Matematikai statisztika. Typotex kiadó, Budapest, Mogyoródi J. Michaletzky Gy. (Szerk.): Matematikai statisztika. Egyetemi jegyzet. Nemzeti Tankönyvkiadó, Budapest, Bolla M. Krámli A.: Statisztikai következtetések elmélete. Typotex Kiadó, Budapest,
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
TÁRGYLEÍRÁSOK. Valószínűségelméleti és Statisztika Tanszék
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS TÁRGYLEÍRÁSOK Valószínűségelméleti és Statisztika Tanszék BUDAPEST 2013 Tantárgy neve: Valószínűségszámítás és statisztika
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:
Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 ALKALMAZOTT MATEMATIKUS MESTERSZAK (2013 ) Képzési idő: 4 félév A szak indításának tervezett
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika
Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra
YBL - SGYMMAT2012XA Matematika II.
YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
Tantárgy kódja Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2
Tantárgy neve Alkalmazott matematika II. Tantárgy kódja MT003 Meghirdetés féléve 3 Kreditpont 4 Összóraszám (elm+gyak) 2+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi kód) MT002 Tantárgyfelelős
Centrális határeloszlás-tétel
13. fejezet Centrális határeloszlás-tétel A valószínűségszámítás legfontosabb állításai azok, amelyek független valószínűségi változók normalizált összegeire vonatkoznak. A legfontosabb ilyen tételek a
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Differenciál - és integrálszámítás. (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár. Meghirdető tanszék: Analízis Tanszék
Differenciál - és integrálszámítás (Óraszám: 3+3) (Kreditszám: 7) Tantárgyfelelős: Dr. Losonczi László egyetemi tanár Meghirdető tanszék: Analízis Tanszék Debrecen, 2005 A tárgy neve: Differenciál- és
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O
1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 1. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016 Követelmények, osztályozás Jelenlét: A laborgyakorlat
Néhány szó a könyv egyes fejezeteinek tartalmáról.
Előszó Az elmúlt évtizedekben a matematika az informatikához, fizikához, biológiához és más természettudományokhoz hasonlóan önálló szakmává vált; a matematika hagyományos elsősorban műszaki és orvosi
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
Numerikus módszerek: Nemlineáris egyenlet megoldása (Newton módszer, húrmódszer). Lagrange interpoláció. Lineáris regresszió.
YBL - SGYMMAT202XXX Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
Bevezetés. Valószínűségszámítás 2 előadás III. alk. matematikus szak. Irodalom. Egyéb info., számonkérés. Cél. Alapfogalmak (ismétlés)
Valószínűségszámítás 2 előaás III. alk. matematikus szak 2016/2017 1. félév Zempléni Anrás Bevezetés Iroalom, követelmények A félév célja Alapfogalmak mértékelméleti alapon Kapcsolóás a val.szám. 1-hez
TANTÁRGYFELELŐS INTÉZET: Építőmérnöki Intézet. címe:
Tantárgy rövid neve (Matematika II.) Tantárgy teljes neve (Matematika II.) Tantárgy neve angolul (Mathematics II.) Neptun kódja (SGYMMAT2012XA) Szak (Építőmérnöki szak, Menedzser szak) Tagozat (Nappali
A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.
Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ
Alkalmazott matematikus mesterszak
Alkalmazott matematikus mesterszak Szakirányok: alkalmazott analízis, operációkutatás, számítástudomány, sztochasztika Képzési idő: 4 félév A szak indításának időpontja: 2009. 09. 01. A szakért felelős
Valószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
TANTÁRGYI PROGRAM Matematikai alapok I. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok I. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Matematikai alapok
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Matematikai statisztika Tómács Tibor
Matematikai statisztika Tómács Tibor Matematikai statisztika Tómács Tibor Publication date 2011 Szerzői jog 2011 Hallgatói Információs Központ Copyright 2011, Educatio Kht., Hallgatói Információs Központ
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika III. KMEMA31TND Kreditérték:
Alkalmazott matematikus mesterszak MINTATANTERV
Alkalmazott matematikus mesterszak MINTATANTERV Tartalom A MESTERSZAK SZERKEZETE... 1 A KÉPZÉSI PROGRAM ÁTTEKINTŐ SÉMÁJA... 1 NAPPALI TAGOZAT... 2 ESTI TAGOZAT... 6 0BA mesterszak szerkezete Alapozó ismeretek
Tantárgyi útmutató. Gazdasági matematika II.
Módszertani Intézeti Tanszék Tantárgyi útmutató Gazdasági matematika II. Nappali Tagozat 2015/16 tanév II. félév 1/5 Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa: Gazdasági matematika
Matematikai alapok 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdaságinformatikus szak nappali tagozat Matematikai alapok 1 Tantárgyi útmutató 2015/16 tanév II. félév 1/5 Tantárgy megnevezése Matematikai alapok 1 Tantárgy jellege/típusa:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS
EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 Matematikus mesterszak 2013 Szakleírás Képzési idı: 4 félév A szak indításának tervezett idıpontja: 2013.
A Valószínőségelméleti és Statisztika Tanszék által tartott sávos tárgyak matematikus szakon
A Valószínőségelméleti és Statisztika Tanszék által tartott sávos tárgyak matematikus szakon AKTUÁRIUS ÉS PÉNZÜGYI MATEMATIKA SZAKIRÁNY (máshol nem szereplı) MMMN5AP1 Biztosítástan (heti 2 óra, 2 kredit)
előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás
13-14. előadás Diszkrét idejű tömegkiszolgálási modellek Poisson-folyamat Folytonos idejű Markov-láncok Folytonos idejű sorbanállás 2016. november 28. és december 5. 13-14. előadás 1 / 35 Bevezetés A diszkrét
I. Fejezetek a klasszikus analízisből 3
Tartalomjegyzék Előszó 1 I. Fejezetek a klasszikus analízisből 3 1. Topológia R n -ben 5 2. Lebesgue-integrál, L p - terek, paraméteres integrál 9 2.1. Lebesgue-integrál, L p terek................... 9
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Matematika MSc záróvizsgák (2015. június )
Június 23. (kedd) H45a 12.00 13.00 Bizottság: Simonovits András (elnök), Simon András, Katona Gyula Y., Pap Gyula (külső tag) 12.00 Bácsi Marcell Közelítő algoritmusok és bonyolultságuk tv.: Friedl Katalin
Gazdasági matematika 1 Tantárgyi útmutató
Módszertani Intézeti Tanszék Emberi erőforrások, gazdálkodási és menedzsment, pénzügy és számvitel szakok nappali tagozat Gazdasági matematika 1 Tantárgyi útmutató 2016/17 tanév I. félév 1/5 Tantárgy megnevezése
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika Kar 1.3 Intézet Magyar Matematika és Informatika Intézet 1.4
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha
Válogatott fejezetek a matematikából
Válogatott fejezetek a matematikából ---- ---- Simon Péter Válogatott fejezetek a matematikából Egyetemi jegyzet IK ISBN 978-963-489-068-3 Simon Péter --- simon_valogatott_matematika_borito.indd 1 2019.03.19.
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Alkalmazott matematika és módszerei I Tantárgy kódja
Tantárgy neve Alkalmazott matematika és módszerei I Tantárgy kódja MTB1901 Meghirdetés féléve Kreditpont 4 Összóraszám (elm+gyak) + Számonkérés módja G Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve
TANTÁRGYI ADATLAP. 2.7 A tantárgy jellege DI
TANTÁRGYI ADATLAP 1. Programadatok 1.1 Intézmény Sapientia, Erdélyi Magyar Tudományegyetem 1.2 Kar Műszaki és Humántudományok 1.3 Intézet Matematika Informatika 1.4 Szak Informatika 1.5 Tanulmányi típus
A statisztika oktatásáról konkrétan
A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés
Matematikai statisztika I. témakör: Valószínűségszámítási ismétlés Elek Péter 1. Valószínűségi változók és eloszlások 1.1. Egyváltozós eset Ismétlés: valószínűség fogalma Valószínűségekre vonatkozó axiómák
Valószínűségszámítás összefoglaló
Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
TANTÁRGYI ÚTMUTATÓ. Alkalmazott számítástechnika. tanulmányokhoz
2. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Alkalmazott számítástechnika tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) 1. félév A KURZUS ALAPADATAI Tárgy megnevezése: Alkalmazott Számítástechnika Tanszék:
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Közgazdasági- és Gazdálkodástudományi Kar 1.3 Intézet Közgazdaság- és Gazdálkodástudományi
Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010)
Pap Gyula Születési hely és idő: Debrecen, 1954 Feleségem Hizsnyik Mária, gyermekeim Gyula (1979) és Júlia (1981), unokáim Lola (2007), Kende (2010) és Márkó (2010) TANULMÁNYOK, TUDOMÁNYOS FOKOZATOK Gimnáziumi
Részletes tantárgyprogram és követelményrendszer
Részletes tantárgyprogram és követelményrendszer Óbudai Egyetem Mikroelektronikai és Technológia Intézet Kandó Kálmán Villamosmérnöki Kar Tantárgy neve és kódja: Matematika II. KMEMA21TND Kreditérték:
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
TANTÁRGYI PROGRAM Matematikai alapok II. útmutató
BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2014/2015. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:
LINEÁRIS MODELLBEN május. 1. Lineáris modell, legkisebb négyzetek elve
BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT LINEÁRIS MODELLBEN Móri Tamás ELTE TTK Valószínűségelméleti és Statisztika Tanszék 2008 május Lineáris modell, legkisebb négyzetek elve Tegyük fel, hogy egy bizonyos pl fizikai)
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
TANTÁRGYI ÚTMUTATÓ. Gazdasági matematika I. tanulmányokhoz
I. évfolyam BA TANTÁRGYI ÚTMUTATÓ Gazdasági matematika I. tanulmányokhoz TÁVOKTATÁS 2015/2016-os tanév I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Gazdasági matematika I. (Analízis) Tanszék: Módszertani
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák
Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz
Elméleti összefoglaló a Sztochasztika alapjai kurzushoz 1. dolgozat Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet
A Jövő Internet elméleti alapjai. Vaszil György Debreceni Egyetem, Informatikai Kar
A Jövő Internet elméleti alapjai Vaszil György Debreceni Egyetem, Informatikai Kar Kutatási témák Bizalmas adatok védelme, kriptográfiai protokollok DE IK Számítógéptudományi Tsz., MTA Atomki Informatikai
Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév
Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen
A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.
ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,
Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Gazdasági matematika II. vizsgadolgozat megoldása A csoport
Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége
Biomatematikai Tanszék
BIOSTATISZTIKA DENTISTRY Biomatematikai Tanszék Tantárgy: BIOSTATISZTIKA Év, szemeszter: 1. évfolyam - 1. félév Óraszám: Szeminárium: 28 Kód: FOBST03F1 ECTS Kredit: 2 A tárgyat oktató intézet: Biofizikai
Mi az adat? Az adat elemi ismeret. Az adatokból információkat
Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro
Kriptográfia és Információbiztonság 10. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Vizsgatematika 1 Klasszikus kriptográfiai rendszerek
Tárgy- és névmutató. C Cox & Snell R négyzet 357 Cramer-V 139, , 151, 155, 159 csoportok közötti korrelációs mátrix 342 csúcsosság 93 95, 102
Tárgy- és névmutató A a priori kontraszt 174 175 a priori kritérium 259, 264, 276 adatbevitel 43, 47, 49 52 adatbeviteli nézet (data view) 45 adat-elôkészítés 12, 37, 62 adatgyûjtés 12, 15, 19, 20, 23,
Khi-négyzet eloszlás. Statisztika II., 3. alkalom
Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek