Egy idõállandós rendszer modell
|
|
- Léna Kisné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Egy idõállandós rendszer modell Egyszerű, gyaran használ (öbb öölszabályban is eenérheő) özelíés; az áviel RC (aluláeresző) - szűrő [ τ = RC időállandó] modellezi.. ALAPÖSSZEFÜGGÉSEK A. Szinuszos, ω = π revenciájú (T = / periódusidejű) és A ampliúdójú bemene (gerjeszés) eseén - a eszülségoszás, valamin a omplex szám abszolu érée és ázisa épleé elhasználva - a imenő jel (a válasz) u KI a a A = cos( ω Φ) = cos ( ) ahol az ampliúdó áviel (az abszolu éré): a = + B és i B a sávszélesség (az a revencia éré, ahol a = / [ ω ]... () 06, B =... () π RC τ a (relaív) ázis nagysága: Φ= arcg( ω RC) = arcg B... (3), azaz -3 db) (és Φ = 45 0 = π/4, ha = B), illeve a ázissal evivalens időésleleés érée Φ Φ =, azaz ω T =... (4) π Az áviel (a) és a ázis (Φ) revencia-üggése (B-re normál revencia): B =.57 B = π a( ) φ ( ) 0.79 π elsőrendű hálóza [ s -order low-pass (LP) sysem] papay@hi.bme.hu Egy-időállandós rendszer modell
2 B. Egységugrás bemenere a válasz exponenciális : e τ... (5) au = 0.9 e τ (τ-ra normál idő), a eluási idő (0-90%) érée pedig = RC ln 9, τ... (6) C. A eluási ido ( ) és sávszélesség (B) apcsolaa (6) és () alapján = ln 9 035, π B B... (7) és ez az összeüggés pl. az oszcilloszópo adalapján is eledezhejü! Megjegyzés: egymás öveő (aszád apcsolású) egy-időállandós oozao eseén, az eredő e eluási idő éréére jó özelíés a négyze-szabály e ( ) + ( ) = +... (8) ahol pl. oszcilloszóp eseén e : a megigyel éré, : a mérendo, pedig az oszcilloszóp sajá eluási ideje (lásd (7))..4 3 x x Valójában, modell szinen is bonyolulabb az összeüggés... Csa mazochisána: C. Miermayer, A. Seininger: On he deerminaion o dynamic errors or Rise Time measuremen wih an oscilloscope, IEEE Trans. on Insr. and Meas., pp , Dec. 999 papay@hi.bme.hu Egy-időállandós rendszer modell
3 . FELADAT Egy-időállandós (RC aluláeresző szűrő) rendszer modell alapján 3 haározzu meg (a) a eluási idő ( ) és a sávszélesség (B) apcsolaá [ 0.35/B], (b)* az ampliúdó hibá becslő hármas-szabály [3-szor nagyobb sávszélességű oszcilloszóp ell 5%-os ponosságú méréshez], (c)* a eluási idő hibájá becslő harmados-szabály [harmadnyi eluási idejű oszcilloszóp ell 5%-os hibához], (d) a apaciív erhelés haásá egy orrásra [a eluási idő:, RC], (e)* egy ado ponossághoz szüséges beállási idő, ()* a diszré-idejű EXPonenciális ÁTLAGolás reurzív algorimusá. 3 A *-gal jelöl eladao megoldásá lásd a Függelében. papay@hi.bme.hu Egy-időállandós rendszer modell 3
4 3. KÍSÉRLET RC hálóza: ellenállás-méréssel R = 9,9 Ω, C ismerelen Gerjeszés: ARB generáor, válasz-elemzés: digiális oszcilloszóp (DSO) - () csaorna: bemene (gerjeszés), () csaorna: imene (válasz) A. Szinuszos gerjeszésnél, a mér adaoból (α) ellenőrízzü a idő-ésleleés adaá, (β) haározzu meg C éréé, ha R = 9,9 Ω és adju meg a B sávszélessége, (γ) a Lissajous-görbe alapján is ellenőrízzü a Φ ázis adao. (α) mér idő-adao: Úm: ésleleés (D: Delay) ellenőrzéséhez lásd a (4) egyenlee [vigyáza: a épleben rad, a mérésnél o a ázis dimenziója] papay@hi.bme.hu Egy-időállandós rendszer modell 4
5 (β) mér ampliúdó adao: V max( ) Úm: pl. V max( ) =, ebből + ω RC ( ) C = V max( ) V max( ) ω R [lásd (α) mérésnél a revencia éréé], a B sávszélesség ()-ből adódi. (Vegyü észre: mivel Φ π/4, ezér B az (α)-nál mér revencia ) (γ) Lissajous-görbe: X = () csa, Y = () csa Y Úm: egyszerűen beláhaó, hogy sin( Φ) = Y ( Megjegyzés: ermészeesen Y Max() ) papay@hi.bme.hu Egy-időállandós rendszer modell 5
6 A. Ugyancsa szinuszos gerjeszés, de nagy revencián: Ellenőrízzü mos a Φ (=.ω) ázis adao! Haározzu meg i is C éréé (a mér ampliúdó adaoból, az ellenállás válozalanul R = 9,9 Ω)! papay@hi.bme.hu Egy-időállandós rendszer modell 6
7 B. Egységugrás ( Hz-es négyszög-impulzus) gerjeszésre a válasz: Haározzu meg i is C éréé a mér eluási idő (Rise) ada - és az ismer R ellenállás - elhasználásával, lásd (6)-o! Megnövel revenciájú négyszög-impulzus sorozara ado válasz (az RC hálóza min inegráor...): papay@hi.bme.hu Egy-időállandós rendszer modell 7
8 B. Nagy revenciás háromszög jelre ado válasz: Megjegyzés: ezen a revencián már láhaóan radiális a szűrő haás... B3. SINC-pulzusra ( Dirac-impulzusra) ado válasz: Megjegyzése: () Nagy ampliúdó ell használni miér? () Emléezzün az RC-ag (Dirac)impulzus-válaszára! (3) Végezzü el a ísérlee (a) növel számú (pl. 30) zero cross paraméerű SINC pulzussal [Waveorm Edior], illeve (b) igen is iölésű ényezőjű négyszög jellel ( Dirac-impulzus) a generáor (330A ype) burs üzemmódjá használva [carrier: Square, Freq: 00Hz, burs Coun:, burs Rae: 00 Hz], vagy 330A ype eseén pulse üzemmód Haározzu meg az ábra alapján a τ = RC időállandó! papay@hi.bme.hu Egy-időállandós rendszer modell 8
9 FÜGGELÉK: elada megoldáso (b) A hármas-szabály ()-ből özvelenül adódi (elhasználva az x + x özelíés, és az, hogy a relaív hiba melle - mer -nél jóval isebb - elhanyagolhaó a relaív hiba négyzee ), (c) A harmados-szabály (8)-ból apju, lásd még a hozzá arozó ábrá is. (e) Egységugrás bemenre a válasz exponenciális : R és a - végéré h relaív hibájú megözelíéséhez szüséges - beállási idő az egyenleből: = τ ln(/h). C e τ Például %-os ponosságú beálláshoz = 4,6 τ. = h () Írju el az áramör egyenlee diszré alajá! R i() x() C u() Az ábra alapján: x = i R + u, ebből a (ölés: Q =) i d = C du apcsola és τ = RC (időállandó) elhasználásával, a -adi minavéeli időpillanaban a dierencia egyenle (d = és du = u - u - ) x u = u + u τ, vagyis a imene: u n x = u + n n ahol n = + (τ/ ) onsans. Az aluláeresző szűréssel evivalens exponenciális álagolás oozaosan eleleji a régi mér (álag)éréee és csa részben érvényesíi az új adao. Megjegyzés: a reurzív egyenle mási, szoásosabb ormája: u x = u + u n, ahol ehá x az új mina, u - a régi álag és u az új álagéré, n pedig az időállandó. papay@hi.bme.hu Egy-időállandós rendszer modell 9
párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.
6/1.Vezesse le az eredő ávieli üggvény soros apcsolás eseén a haásvázla elrajzolásával. az i-edi agra, illeve az uolsó agra., melyből iejezheő a sorba apcsol ago eredő ávieli üggvénye: 6/3.Vezesse le az
Túlgerjesztés elleni védelmi funkció
Túlgerjeszés elleni védelmi unkció Budapes, 2011. auguszus Túlgerjeszés elleni védelmi unkció Bevezeés A úlgerjeszés elleni védelmi unkció generáorok és egységkapcsolású ranszormáorok vasmagjainak úlzoan
Elektronika 2. TFBE1302
DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek
Elektronika 1. vizsga Σ
Eleronia. vizsga.. 7..... Σ Név: Nepn:. elada dja eg eleronis apcsoló ne ideális viseledéséne száíására alalas lineáris, dinais helyeesíő épe és anna paraéerei! apliúdójú apcsoló jel haására egyen eszülsége
Gingl Zoltán, Szeged, szept. 1
Gngl Zolán, Szeged, 8. 8 szep. 8 szep. z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem mndg arányos apcsola ovábbra s lneárs 8 szep. 3 d di L d I I Feszülség
Digitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD
Nepun: Digiális echnika felvéeli feladaok 008. szepember 30. D :.a:.b: 3: Σ:. Adja meg annak a 4 bemeneő (ABCD), kimeneő (F) kombinációs hálózanak a Karnaugh áblázaá, amelynek kimenee, ha: - A és B bemenee
Gingl Zoltán, Szeged, :41 Elektronika - Váltófeszültségű házatok
Gngl Zolán, Szeged, 6. 6.. 3. 7:4 Elerona - Válófeszülségű házao 6.. 3. 7:4 Elerona - Válófeszülségű házao z Ohm örvény, Krchhoff örvénye érvényese z alarészeen eső feszülség és áram pllanany érée nem
Σ imsc
Elekronika.. vizsga 7........ Σ imsc Név: Nepun:. Felada ajzoljon le egy egyszerű, de működőképes differenciál erősíő, mely véges β paraméerű, npn ranziszorpár aralmaz, munkapon állíásra ideális áram-
F1301 Bevezetés az elektronikába Műveleti erősítők
F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás
Anyagdiagnosztika kommunikációs dosszié ANYAGDIAGNOSZTIKA ANYAGMÉRNÖK MESTERKÉPZÉS ANYAGDIAGNOSZTIKA SZAKIRÁNY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
nyagdiagnszia mmuniációs dsszié NYGDIGNOSZIK NYGÉRNÖK ESERKÉPZÉS NYGDIGNOSZIK SZKIRÁNY NÁRGYI KOUNIKÁCIÓS DOSSZIÉ ISKOLCI EGYEE GÉPÉSZÉRNÖKI ÉS INFORIKI KR GÉPELEEK NSZÉKE ISKOLC, 008. nyagdiagnszia mmuniációs
5. Differenciálegyenlet rendszerek
5 Differenciálegyenle rendszerek Elsőrendű explici differenciálegyenle rendszer álalános alakja: d = f (, x, x,, x n ) d = f (, x, x,, x n ) (5) n d = f n (, x, x,, x n ) ömörebben: d = f(, x) Definíció:
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
BUDAPESTI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉRNÖKI FŐISKOLAI KAR AUTOMATIKA INTÉZET. Dr. Iváncsyné Csepesz Erzsébet ELEKTRONIKA
BDAPESI MŰSZAKI FŐISKOLA KANDÓ KÁLMÁN VILLAMOSMÉNÖKI FŐISKOLAI KA AOMAIKA INÉZE Dr. Iváncsyné Csepesz Erzsébe ELEKONIKA Művelei erősíők BDAPES, 00. 6. MŰVELEI EŐSÍŐK A művelei erősíők inegrál áramköri
8. előadás Ultrarövid impulzusok mérése - autokorreláció
Ágazai Á felkészíés a hazai LI projekel összefüggő ő képzési é és KF feladaokra" " 8. előadás Ulrarövid impulzusok mérése - auokorreláció TÁMOP-4.1.1.C-1/1/KONV-1-5 projek 1 Bevezeés Jelen fejezeben áekinjük,
Munkapont: gerjesztetlen állapotban Uki = 0 követelményből a munkaponti áramokra
~ ~ T T - Az áraör aaa: 6 V, Ω ranzszoro : V, 4Ω A Haározza eg az ábrán láhaó ellenüeű, opleener végooza eljesíény paraéere ax?, ax?, r ax?,?,? "A" oszályú és "B" oszályú üzeóban s, sznuszos és jel sn
MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)
Okaási Hivaal A 015/016 anévi Országos Közéiskolai Tanulmányi Verseny dönő forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javíási-érékelési úmuaó 1 Ado három egymásól és nulláól különböző számjegy, melyekből
JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI.
216. okóber 7., Budapes JELEK ALAPSÁVI LEÍRÁSA. MODULÁCIÓK. A CSATORNA LEÍRÁSA, TULAJDONSÁGAI. Alapfogalmak, fizikai réeg mindenki álal ismer fogalmak (hobbiból azér rákérdezheek vizsgán): jel, eljesímény,
Fizika A2E, 11. feladatsor
Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk
A digitális multiméterek
A digiális muliméere A digiális muliméere - z nlóg muliméerehez hsonlón - egyen- és válozó feszülség, egyen- és válozó árm, vlmin ohmos-ellenállás mérésére llms. Szolgálásu zonbn - digiális jelfeldolgozás
Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
Schmitt-trigger tanulmányozása
Schmirigger anulmányozása 1. Bevezeés Analóg makroszkopikus világunkban minden fizikai mennyiség folyonos érékkészleű. Csak néhánya emlíve ilyenek a hossz, idő, sebesség, az elekromos mennyiségek (feszülség,
Speciális függvénysorok: Taylor-sorok
Speciális függvénysoro: Taylor-soro Állítsu elő az alábbi függvénye x 0 0 helyhez tartozó hatványsorát esetleg ülönféle módszereel és állapítsu meg a hatványsor onvergenciatartományát! A cos 5x függvény
4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.
4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó 0 ÉETTSÉGI VIZSG 0. május 3. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Elekronikai
! Védelmek és automatikák!
! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA
FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás
FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár
8. A KATÓDSUGÁR-OSZCILLOSZKÓP, MÉRÉSEK OSZCILLOSZKÓPPAL
8. A KATÓDSUGÁR-OSZCILLOSZKÓP, MÉRÉSEK OSZCILLOSZKÓPPAL Célkiűzés: Az oszcilloszkóp min mérőeszköz felépíésének és kezelésének megismerése. Az oszcilloszkópos mérésechnika alapveő ismereeinek alkalmazása.
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
Komplex számok. 6. fejezet. A komplex szám algebrai alakja. Feladatok. alábbi komplex számokat és helyvektorukat:
6 fejezet Komplex számo A omplex szám algebrai alaja D 61 Komplex száma evezü mide olya a+bi alaú ifejezést amelybe a és b valós szám i pedig az összes valós számtól ülöböz épzetes egysége evezett szimbólum
Fourier-sorok konvergenciájáról
Fourier-sorok konvergenciájáról A szereplő függvényekről mindenü felesszük, hogy szerin periodikusak. Az ilyen függvények megközelíésére (nem a polinomok, hanem) a rigonomerikus polinomok űnnek ermészees
A gyors Fourier-transzformáció (FFT)
A gyors Fourier-transzformáció (FFT) Egy analóg jel spetrumát az esete döntő többségében számítástechniai eszözöel határozzu meg. A jelet mintavételezzü és elvégezzü a mintasorozat diszrét Fouriertranszformációját.
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II.
MISKOLCI EGYETEM GÉPÉSZMÉNÖKI ÉS INFOMATIKAI KA ELEKTOTECHNIKAI-ELEKTONIKAI TANSZÉK D. KOVÁCS ENŐ ELEKTONIKA II. (MŰVELETI EŐSÍTŐK II. ÉSZ, OPTOELEKTONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVETEEK) Villamosmérnö
II. Egyenáramú generátorokkal kapcsolatos egyéb tudnivalók:
Bolizsár Zolán Aila Enika -. Eyenáramú eneráorok (NEM ÉGLEGES EZÓ, TT HÁNYOS, HBÁT TATALMAZHAT!!!). Eyenáramú eneráorokkal kapcsolaos eyé univalók: a. alós eneráorok: Természeesen ieális eneráorok nem
BODE-diagram szerkesztés
BODE-diagram szerkeszés Egy lineáris ulajdonságú szabályozandó szakasz (process) dinamikus viselkedése egyérelmű kapcsolaban áll a rendszer szinuszos jelekre ado válaszával, vagyis a G(j) frekvenciaávieli
3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?
Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-
A feladatok megoldása
A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,
Síkalapok vizsgálata - az EC-7 bevezetése
Szilvágyi László - Wolf Ákos Síkalapok vizsgálaa - az EC-7 bevezeése Síkalapozási feladaokkal a geoehnikus mérnökök szine minden nap alálkoznak annak ellenére, hogy mosanában egyre inkább a mélyépíés kerül
Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)
Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı
Előszó. 1. Rendszertechnikai alapfogalmak.
Plel Álalános áekinés, jel és rendszerechnikai alapfogalmak. Jelek feloszása (folyonos idejű, diszkré idejű és folyonos érékű, diszkré érékű, deerminiszikus és szochaszikus. Előszó Anyagi világunkban,
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés RC tag Bartha András, Dobránszky Márk
Bevezetés a méréstechnikába és jelfeldolgozásba 7. mérés 2015.05.13. RC tag Bartha András, Dobránszky Márk 1. Tanulmányozza át az ELVIS rendszer rövid leírását! Áttanulmányoztuk. 2. Húzzon a tartóból két
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer
Kinemaikai egyensúly éele: Téel: zár kinemaikai lánc relaív szögsebesség-vekorrendszere egyensúlyi. Mechanizmusok sebességállapoa a kinemaikai egyensúly éelével is meghaározhaó. sebességállapo ismer, ha
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása
umerius módszere. emlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel Legye :[ a, b] R olyoos, a, b, és eressü az egyele egy [ a, b] -beli megoldásá. Bolzao éele: Legye olyoos a véges,
A termelési, szolgáltatási igény előrejelzése
A ermelés, szolgálaás gény előrejelzése Termelés- és szolgálaásmenedzsmen r. alló oém egyeem docens Menedzsmen és Vállalagazdaságan Tanszék Termelés- és szolgálaásmenedzsmen Részdős üzle meserszakok r.
Jelgenerátorok ELEKTRONIKA_2
Jelgenerátorok ELEKTRONIKA_2 TEMATIKA Jelgenerátorok osztályozása. Túlvezérelt erősítők. Feszültségkomparátorok. Visszacsatolt komparátorok. Multivibrátor. Pozitív visszacsatolás. Oszcillátorok. RC oszcillátorok.
Néhány fontosabb folytonosidejű jel
Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1
OSZCILLÓSZKÓP AZ ANALÓG VALÓS IDEJŰ OSZCILLOSZKÓP MŰKÖDÉSE ÉS ALKALMAZÁSA OSZCILLOSZKÓP ALKALMAZÁSA AZ OSZCILLOSZKÓP LEHET. Major László.
OSZCILLÓSZKÓP OSZCILLOSZKÓP ALKALMAZÁSA u Villamos jel időbeni megjeleníése u Feszülség mérés u Időmérés u Frekvencia mérés u Fázisszög mérés 2004.09.20. AZ OSZCILLOSZKÓP LEHET ANALÓG VALÓS IDEJŰ TÁROLÓ
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉGI VIZSGA 0. okór 5. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ EMBEI EŐFOÁSOK MINISZTÉIMA Egyszerű, rövid feladaok
Digitális jelfeldolgozás
Digitális jelfeldolgozás Átviteli függvények Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2011. október 13. Digitális
Állapottér modellek tulajdonságai PTE PMMK MI BSc 1
Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza
Fa kapcsolatok kialakítása, méretezése
TARTÓSZERKEZETEK. a apcsolao ialaíása méreezése Az előaásvázla Dr. Halvax Kaalin Tarószerezee V. anárgy a apcsolao ialaíása méreezése című előaásvázlaára épül. A KAPCSOLATOK a gyenge pon Milyen ípusú a
Laplace-transzformáció. Vajda István február 26.
Anlízis elődások Vjd István 9. február 6. Az improprius integrálok fjtái Tegyük fel, hogy egy vlós-vlós függvényt szeretnénk z I intervllumon integrálni, de függvény nincs értelmezve I minden pontjábn,
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 05 ÉETTSÉGI VIZSGA 005. május 0. ELEKTONIKAI ALAPISMEETEK EMELT SZINTŰ ÉETTSÉGI VIZSGA Az írásbeli vizsga időarama: 0 perc JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ OKTATÁSI MINISZTÉIM
REAKCIÓKINETIKA ELEMI REAKCIÓK ÖSSZETETT REAKCIÓK. Egyszer modellek
REKIÓKINETIK ELEMI REKIÓK ÖSSZETETT REKIÓK Egyszer moelle Párhuzamos (parallel reaió Egyensúlyra veze reaió Egymás öve (sorozaos onszeuív reaió 4 Sorozaos reaió egyensúlyi lépéssel Moleuláris moelle reaiósebességi
Az éjszakai rovarok repüléséről
Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel
) (11.17) 11.2 Rácsos tartók párhuzamos övekkel
Rácsos arók párhuzamos övekkel Azér, hog a sabiliási eléelek haásá megvizsgáljuk, eg egszerű síkbeli, saikailag haározo, K- rácsozású aró vizsgálunk párhuzamos övekkel és hézagos csomóponokkal A rúdelemek
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben
Foton-visszhang alapú optikai kvantum-memóriák: koherens kontroll optikailag sűrű közegben Demeter Gábor MTA Wigner Fizikai Kutatóközpont, RMI Demeter Gábor (MTA Wigner RCP... / 4 Bevezetés / Motiváció
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális
Függvények hatványsorba fejtése, Maclaurin-sor, konvergenciatartomány
Függvénye hatványsorba fejtése, Maclaurin-sor, onvergenciatartomány Taylor-sor, ) Állítsu elő az alábbi függvénye x helyhez tartozó hatványsorát esetleg ülönféle módszereel) éa állapítsu meg a hatványsor
3. ábra nem periodikus, változó jel 4. ábra periodikusan változó jel
Válakozó (hibásan váló-) menniségeknek nevezzük azoka a jeleke, melek időbeli lefolásuk közben polariás (előjele) válanak, legalább egszer. A legalább eg nullámenei (polariásválás) kriériumnak megfelelnek
Proporcionális hmérsékletszabályozás
Proporcionális hmérséletszabályozás 1. A gyaorlat célja Az implzsszélesség modlált jele szoftverrel történ generálása. Hmérsélet szabályozás implementálása P szabályozóval. 2. Elméleti bevezet 2.1 A proporcionális
Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő
É 9-6// A /7 (. 7.) SzMM rendeleel módosío /6 (. 7.) OM rendele Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe örénő felvéel és örlés eljárási rendjéről alapján. Szakképesíés, szakképesíés-elágazás,
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmaó 063 ÉETTSÉGI VIZSG 006. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM
HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok
Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 08 ÉRETTSÉGI VIZSGA 008. október 0. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ OKTATÁSI ÉS KLTRÁLIS MINISZTÉRIM Az
A FORGALMI ÁRAM FLUKTUÁCIÓJÁNAK HATÁSA AZ ÚT-TELJESÍTMÉNY GÖRBÉRE
Gradus Vol 4, No 2 (27) 46-466 ISSN 264-84 A FORGALMI ÁRAM FLUKTUÁCIÓJÁNAK HATÁSA AZ ÚT-TELJESÍTMÉNY GÖRBÉRE Kovács Tamás *, Alvarez Gil Rafael Informaika Tanszék, GAMF Műszaki és Informaikai Kar, Neumann
GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK
BG PzK Módszerani Inézei Tanszéki Oszály GAZDAÁGI É ÜZLETI TATIZTIKA jegyze ÜZLETI ELŐREJELZÉI MÓDZEREK A jegyzee a BG Módszerani Inézei Tanszékének okaói készíeék 00-ben. Az idősoros vizsgálaok legfonosabb
Intraspecifikus verseny
Inraspecifikus verseny Források limiálsága evolúciós (finesz) kövekezmény aszimmeria Denziás-függés Park és msai (930-as évek, Chicago) - Tribolium casaneum = denziás-függelen (D-ID) 2 = alulkompenzál
Á Ő ö Ö ő ú ő ö ő ú ö ő ö Á Ö ö Í ö ő ő ü ü ű ő Í ő ü ö ö ő ö ö ő Í ü ű Í Í Á Í Á Áú ú Í Ü ö ö É ú ü ö ú ö ü Í ő Á ő ü ő Á ú Ö Í Á Í ú Á ű Á ú ú Á ű ő ö ö ö ü ő Á Á Á Á Ő Á Á Ő É Á Á ö Í ő ü ü ü ö Á Í
Dr. Tóth László, Kombinatorika (PTE TTK, 2007)
A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi
5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás
5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
Szélsőérték feladatok megoldása
Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =
MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1
MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi
2. gyakorlat: Z épület ferdeségmérésének mérése
. gyakorla: Z épüle ferdeségének mérése. gyakorla: Z épüle ferdeségmérésének mérése Felada: Épíésellenőrzési feladakén egy 1 szines épüle függőleges élének érbeli helyzeé kell meghaározni, majd az 1986-ban
Gyakorlat anyag. Veszely. February 13, Figure 1: Koaxiális kábel
Gyakorlat anyag Veszely February 13, 2012 1 Koaxiális kábel d b a Figure 1: Koaxiális kábel A 1 ábrán látható koaxiális kábel adatai: a = 7,2 mm, b = 4a = 8,28 mm, d = 0,6 mm, ε r = 3,5; 10 4 tanδ = 80,
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus
Függvények Mi a függvény? A függvény egy hozzárendelési szabály. Egy valós függvény a valós számokhoz, esetleg egy részükhöz rendel hozzá pontosan egy valós számot valamilyen szabály (nem feltétlen képlet)
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok
Passzív és aktív aluláteresztő szűrők
7. Laboratóriumi gyakorlat Passzív és aktív aluláteresztő szűrők. A gyakorlat célja: A Micro-Cap és Filterlab programok segítségével tanulmányozzuk a passzív és aktív aluláteresztő szűrők elépítését, jelátvitelét.
Kis orvosi jelfeldolgozás
Jel: olyan (izikai) mennyiség, amely inormáció hordoz, ovábbí vagy árol Kis orvosi jeleldolgozás pl () elekromos eszülség, amely a szív-/izom-/agyműködés kövekezén a es vagy a koponya elszínén mérheő (EKG/EMG/EEG)
Áramtükrök. A legegyszerűbb két tranzisztoros áramtükör:
Áramtükrök Az áramtükör egy olyan alapvető építő elem az analóg elektronikában, amelynek ismerete elengedhetetlen. Az áramtükrök olyan áramkörök, amik az áramok irányát változtatják meg, de a be- ill.
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN. várfalvi.
AZ INSTACIONER HŐVEZETÉS ÉPÜLETSZERKEZETEKBEN várfalvi. IDÉZZÜK FEL A STACIONER HŐVEZETÉST q áll. t x áll. q λ t x t λ áll x. λ < λ t áll. t λ áll x. x HŐMÉRSÉKLETELOSZLÁS INSTACIONER ESETBEN Hőáram, hőmérsékleteloszlás
t, u v. u v t A kúpra írt csavarvonalról I. rész
A kúpra írt csavarvonalról I. rész Sokféle kúpra írt csavarvonal létezik. Ezek közül először a legegyszerűbbel foglalko - zunk. Ezt azért tesszük mert meglepő az a tény hogy eddig még szinte sehol nem
GPK M1 (BME) Interpoláció / 16
Interpoláció Matematika M1 gépészmérnököknek 2017. március 13. GPK M1 (BME) Interpoláció 2017 1 / 16 Az interpoláció alapfeladata - Példa Tegyük fel, hogy egy ipari termék - pl. autó - előzetes konstrukciójának
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint ÉETTSÉG VZSGA 0. október 5. ELEKTONKA ALAPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladatok Maximális
Elektrotechnika 2. előadás
Óudai Eyeem Bánki Doná Gépész és Bizonsáechnikai Kar Mecharonikai és Auechnikai néze Elekroechnika. előadás Összeállíoa: aner nrid adjunkus Szuperpozició-éel Generáorokól és lineáris impedanciákól álló
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
Mérésadatgyűjtés, jelfeldolgozás.
Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások
Teljesítm. ltség. U max
1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
5. Szerkezetek méretezése
. Serkeeek méreeése Hajlío, ömör gerinű gerendaarók és oso selvénű nomo rúd méreeési példái..1. Tömör gerinű gerendaarók méreeése.1.1. elegen hengerel gerendaarók Sükséges ismereek: - Keresmesei ellenállások