Elektrotechnika 2. előadás
|
|
- Gyula Mészáros
- 6 évvel ezelőtt
- Látták:
Átírás
1 Óudai Eyeem Bánki Doná Gépész és Bizonsáechnikai Kar Mecharonikai és Auechnikai néze Elekroechnika. előadás Összeállíoa: aner nrid adjunkus
2 Szuperpozició-éel Generáorokól és lineáris impedanciákól álló hálóza ármely áának árama eyenlő azoknak az áramoknak az összeével, amelye ey-ey eneráor hozna lére, ha a vizsála idejére a öi feszülséeneráor rövidre zárnánk, az árameneráorok áramá pedi meszakíanánk. Vayis a énylees áramo az eyes eneráorok álal lérehozo áramok összee (szuperpoziciója) adja. =? =? =? a = + = = = + ' = + " = + = = ÓE-BGK ME Elekroechnika aner nrid
3 Hurokáramok módszere Tö eneráoról és ellenállásól álló hálóza minden áramának mehaározására a Kirchoff csomóponi és hurokeyenleekől álló eyenlerendszer meoldása szolál. Pl. 4 4 s s s Felírhaó hurok, csomóponi eyenle ismerelen:,,, 4, () () () (4) () A Kirchhoff eyenleek a hurokáramok módszerével: ) ( ) ( ) ( ) ( 4 4 s s s s s s s s s s s () () () s s 4 s s s s s ÓE-BGK ME Elekroechnika aner nrid A valós ááramok helye feléelezzük, hoy minden zár hurok önálló hurokárammal rendelkezik, az eyes áak áramá ezek eredője adja. Összefüés az ááramok és a fikív hurokáramok közö: Az ismerelenek száma a hurokeyenleek számára csökken!
4 somóponi poenciálok módszere Valamely hálózaan folyó ááramok naysáa füelen aól, hoy a hálóza ey eszőlees csomóponja mekkora poenciálon van ey külső, a hálózaól füelen ponhoz képes. sak az áak ké csomóponjának poenciálja közöi különsé haározza me az á áramá. Ezér a hálóza ey csomóponjának poenciáljá önkénesen felvehejük pl. nullának. Pl. 4 4 A B Áak száma:, csomóponok száma:, hurkok száma: somóponi poenciálok: A, B, eyen = Az ááramok a csomóponi poenciálokkal kifejezve: () () A csomóponi eyenleek: (A) (B) () (4) () B B c B B B c B B A B A A A c A A A c A 4 (A) (B) B 4 B B A B A A A ÓE-BGK ME Elekroechnika aner nrid Az eyenlerendszeren szereplő ismerelenek száma a csomóponi eyenleek számára csökken!
5 Villamos eljesímény: Teljesímény, haásfok Ey villamos hálózai elem feszülséének és áramának a szorzaa. P W V A Villamos munka/ villamos eneria: W E P Ws V As Haásfok: P P hasznos összes ÓE-BGK ME Elekroechnika aner nrid
6 Teljesíményilleszés Mi a feléele annak, hoy az árán láhaó akív képólus a lenayo eljesímény szolálassa? A kören folyó áram: A erhelésre juó eljesímény: ) ( P Haásfok: ) ( ) ( P P P veszesé hasznos hasznos A P=f( ) füvény szélső éréke o van, ahol a füvény deriválja : 4 ) ( ) ( ) ( ) ( ) ( d dp, 4 ) ( P ÓE-BGK ME Elekroechnika aner nrid
7 Teljesíményilleszés A erhelésre juó eljesímény és a haásfok a erhelő ellenállás füvényéen:,,8,6,4, Teljesímény, P/P Haásfok 4 6 / ÓE-BGK ME Elekroechnika aner nrid
8 Kondenzáor Ké eymással párhuzamos A felüleű, eymásól d ávolsára lévő fémlemezre feszülsée kapcsolva a lemezek közö E naysáú homoén villamos ér alakul ki. E Q A d Q A d 8, 86 As Vm F m As kapaciás F(farad) V A kapaciás a esek ölésároló képessée Ha a felüleek közö ε r permiiviású anya van, akkor a kapaciás: d A r A d + - ÓE-BGK ME Elekroechnika aner nrid
9 c/ / d d dq d Q d d dq d d d,,8,6 A kondenzáor felölése e e e e,,8,6,4, e,4, /τ ÓE-BGK ME Elekroechnika aner nrid /τ
10 c/ / A kondenzáor kisüése Q d d d d d d,,8,6,4 dq d e = = = e τ /τ -, -,4 -,6 -,8, /τ ÓE-BGK ME Elekroechnika aner nrid e - -,
11 ndukiviás A ekercsen folyó áramra annak meválozásakor ké feszülsé ha: az áramválozás lérehozó külső eneráorfeszülsé és az áramválozásá akadályozó, késleleő ( a eneráor feszülséel ellenées irányú) önindukciós feszülsé. i N d d N d( B d A) N N l A di d N l A di d di d B = μ N l [Vs/A=H, henry] önindukciós ényező, indukiviás A ekercsek indukiviásáól adódó önindukciós képessée az áramválozás késleleésé okozza. A ekercseknek ez a ulajdonsáá áramköröken is felhasználják. Áramköri elemkén indukiviásnak nevezzük. deális indukiviás: nincs ohmos ellenállása, nincs szór fluxusa és ha van vasmaja, az veszesé nélkül ámánesezheő. ÓE-BGK ME Elekroechnika aner nrid
12 / / ndukiviás viselkedése az áramkören Bekapcsolás, () ( e ) ( ) ( ) d d d d ( ) d d,, d ( e ) d ( ( e ) e e,8,8,6,6,4,4,, /τ ÓE-BGK ME Elekroechnika aner nrid /τ
13 / / ndukiviás viselkedése az áramkören Kikapcsolás d ( ) d d ( ) d ( ) d d ( ) e ( ) e e e -, /τ, -,4,8 -,6 -,8,6,4, - -, ÓE-BGK ME Elekroechnika aner nrid /τ
14 ndukiviás és kondenzáor viselkedése eyenáramú áramkören ÓE-BGK ME Elekroechnika aner nrid
15 Válakozó áramú hálózaok Szinuszosan válakozó mennyiséek: u( ) sin( ) i = sin(ω + φ) u = sin(ω) idő [sec] körfrekvencia [rad/sec] ampliudó [V] T = φ π i( ) sin( ) fázisszö [rad] ÓE-BGK ME Elekroechnika aner nrid
16 Szinuszosan válakozó mennyiséek középérékei i=sinω =sin ω eff Effekív érék (néyzees középérék) Válakozó áram/feszülsé effekív érékén az az eyenáramo/feszülsée érjük, amely uyanakkora ellenálláson uyanannyi idő ala uyanannyi hő fejlesz. P eff T i ()d eff eff T T i () d eff ÓE-BGK ME Elekroechnika aner nrid
17 Szinuszosan válakozó mennyiséek középérékei i()=sinω k Aszolú középérék (eyenáramú középérék) Válakozó áram/feszülsé aszolú középérékén az az eyenáramo/feszülsée érjük, amely uyanannyi idő ala uyanannyi ölés szállí. Q sinω i()= k T T i() d k eff alakényező: k, k ÓE-BGK ME Elekroechnika aner nrid
18 Ellenállás, kondenzáor és ekercs válakozó áramú kören i () u () i() u() sin( ) sin( ) u() és i() fázisan vannak i () i() d() d d sin( ) d cos( ) u () i() cos( ) i() 9 -kal sie u()-hoz képes i () u() di() d d(i sin( ) d cos( ) u () u() cos( ) i() 9 -kal késik u()-hoz képes ÓE-BGK ME Elekroechnika aner nrid
19 A komplex szám meadása: x a e x j a j m x Komplex írásmód. Alerai alak:. Trionomerikus alak:. Exponenciális alak (Euler formula) x X (cos j sin ) e x X cos m x X sin m x X X e j e x m x m x arc e x j φ e u() i() sin( ) sin( ) Komplex írásmód u() i() (cos (cos j( ) j sin ) e j( ) j sin ) e ÓE-BGK ME Elekroechnika aner nrid
20 Fázor ára A komplex feszülsé és áram = időpillanaan: u() i() e e j j( ) Komplex ampliudó A komplex ampliudó ill. annak -ed részé, a komplex effekiv éréke ( ) álló síkvekor árázolja, melynek neve fázor m φ α e Mivel az áram fázishelyzeé a feszülséhez szokuk viszonyíani, ezér célszerű a koordináa rendszer úy felvenni, hoy a feszülséfázor a poziív valós enely irányáa essék. Ekkor α=, a komplex effekív érék: e ÓE-BGK ME Elekroechnika aner nrid j m φ e
21 Komplex impedanciák e j e j = Z Z [] X Kapaciív impedancia = d d ejω = = j ω e jω d d = j X = j ω d d d( e d j ) j e j j X Z Z Z Z [ ] j ndukív impedancia j[] Z Z Álalános Ohm-örvény ÓE-BGK ME Elekroechnika aner nrid
22 A komplex mennyiséek evezeésének mayarázaa Írjuk fel a Kirchhoff eyenleeke az alái áramkörre! Valós időfüvények: i i i ~ ~ u u uc i i i i () di d i i d i u Differenciál eyenleek u Komplex mennyiséek: j j Alerai eyenleek komplex i = e jω e jω = e jω, = jω Euler reláció valós i = cosω u = i, u = di d, i = du d u u Kiindulás - komplex Kiindulás - valós Véeredmény - komplex = e jω = e j ω+φ alerai eyenleek u = e u = cos ω + φ differenciál és rionomerikus eyenleek Véeredmény - valós Álalános Ohm-örvény Differenciál eyenleek
23 Válakozó áramú eljesímény P()=u()i() a szinuszosan válozó áram eljesíménye idően periodikusan válozik. i ) sin( ) u( ) sin sin, P( ) sin sin( ), ( sin( ) sin( ) sin cos cos sin P( ) (sin cos sin cos sin) sin cos, sin cos sin Íy az eyfázisú válakozó áram pillananyi eljesíménye: P( ) cos ( cos ) sin sin ÓE-BGK ME Elekroechnika aner nrid
24 A haásos és a meddő eljesímény P=cosφ Q=sinφ P() cos ( cos) sin sin ω körfrekvenciával lenő cosinusöre, amelyiknek a szimmeriaenelye az időenely fele cosφ maassáan van és e körül len cosφ ampliudóval. dőeli álaa: P=cosφ [W, wa] haásos eljesímény ω körfrekvenciával lenő sinusöre, amelyiknek a szimmeriaenelye az időenely,íy álaéréke. Ampliudója: Q=sinφ [var]* meddő eljesímény *volamper reakív(=nem haásos) S= [VA,volamper] lászólaos eljesímény P/S=cosφ eljesíményényező
25 Eyszerű válakozó áramú körök Soros kapcsolás u ~ Z ( ) i j ( u u j ) ( j ) Z Z j ( ) arc ahol m m Z jω e e Z( ) ( ) arc Z Z 9 ÓE-BGK ME Elekroechnika aner nrid
26 Párhuzamos kapcsolás m / Y j e u i i i ~ m e Y ( ) ( ) ( j ) Z j j ahol Y ( ) Z( ) Z( ) Z Z ; ; 9 ( ) arc ÓE-BGK ME Elekroechnika aner nrid
27 Soros kapcsolás m Z j e u ~ i u u m e Z ( ) ( ) ( j ) j j ahol Z( ) ( ) arc Z Z ; ; 9 ÓE-BGK ME Elekroechnika aner nrid
28 Párhuzamos kapcsolás m Y jω u i i i ~ m / e e Y ( ) Z ( ) j ( j) ( j ) ahol Y ( ) Z( ) Z Z 9 ( ) arc ÓE-BGK ME Elekroechnika aner nrid
29 Soros kapcsolás m u ~ Z ( ) i j u u j u j( ) m m jω j Z e e m jω j Z e e Z( ) ( ) ( ) arc( ) Z( ezonáns körfrekvencia: ), Z Z Thomson-képle ( ) 9 9 m j m jω Z e e ÓE-BGK ME Elekroechnika aner nrid
30 Párhuzamos kapcsolás m u i i i i ~ m jω j / e m jω Y / j e m Y ( ) Z ( ) j j j( ) e e Y ( ) Z( ) ( ) ( ) Y ( ) arc( ) ezonáns körfrekvencia: Thomson-képle Z( ), ( ) Z Z 9 9 m m jω j / e e ÓE-BGK ME Elekroechnika aner nrid
Elektrotechnika. 2. előadás. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
Budaps Műszaki Főiskola Bánki Doná Gépész és Bizonsáchnikai Kar Mcharonikai és Auchnikai néz Elkrochnika. lőadás Összállíoa: anr nrid főisk. adunkus Kondnzáor Ké ymással párhuzamos p A flül lű,, ymás sól
VILLANYSZERELŐ KÉPZÉS VILLAMOS TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR
VILLANYSZERELŐ KÉPZÉS 2 5 VILLAMOS TÉR ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Taralomjeyzék Villamos ér foalma, jellemzői...3 Szieelők a villamos érben...4 Vezeők a villamos érben...4 A csúcshaás...4
Elektrotechnika 3. előadás
Óbuda Egyetem Bánk Donát Gépész és Bztonságtechnka Kar Mechatronka és Autechnka ntézet Elektrotechnka 3. előadás Összeállította: anger ngrd adjunktus A komplex szám megadása: x a x b j a jb x Komplex írásmód.
4. HÁZI FELADAT 1 szabadsági fokú csillapított lengırendszer
Lenésan 4.1. HF BME, Mőszaki Mechanikai sz. Lenésan 4. HÁZI FELD 1 szabadsái fokú csillapío lenırendszer 4.1. Felada z ábrán vázol lenırendszer (az m öme anyai ponnak ekinheı, a 3l hosszúsáú rúd merev,
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 06 ÉETTSÉG VZSG 006. május 8. EEKTONK PSMEETEK EMET SZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS MNSZTÉM Tesz jelleű kérdések meoldása Maximális ponszám: 0.)
Fizika A2E, 11. feladatsor
Fizika AE, 11. feladasor Vida György József vidagyorgy@gmail.com 1. felada: Állandó, =,1 A er sség áram öl egy a = 5 cm él, d = 4 mm ávolságban lév, négyze alakú lapokból álló síkkondenzáor. a Haározzuk
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin ÉETTSÉGI VIZSG. május 5. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Eyszerű, rövid feladaok Maximális
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
II. Egyenáramú generátorokkal kapcsolatos egyéb tudnivalók:
Bolizsár Zolán Aila Enika -. Eyenáramú eneráorok (NEM ÉGLEGES EZÓ, TT HÁNYOS, HBÁT TATALMAZHAT!!!). Eyenáramú eneráorokkal kapcsolaos eyé univalók: a. alós eneráorok: Természeesen ieális eneráorok nem
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
Közelítés: h 21(1) = h 21(2) = h 21 (B 1 = B 2 = B és h 21 = B) 2 B 1
LKTONIK (BMVIMI07) Fázishasíó kapcsolás U + B ukis U - feszülséerősíés az -es kimene felé a F-es, a -es kimene felé pedi a FK-os fokoza erősíésének minájára számíhaó ki: x u x u x x Ha x = x, akkor u =
1 g21 (R C x R t ) = -g 21 (R C x R t ) A u FE. R be = R 1 x R 2 x h 11
ELEKTONIKA (BMEVIMIA7) Az ún. (normál) kaszkád erősíő. A kapcsolás: C B = C c = 3 C T ki + C c = C A ranziszorok soros kapcsolása mia egyforma a mnkaponi áramk (I B - -nak véve, + -re való leoszásával
Kereskedelmi, háztartási és vendéglátóipari gépszerelő 31 521 14 0000 00 00 Kereskedelmi, háztartási és vendéglátóipari gépszerelő
É 9-6// A /7 (. 7.) SzMM rendeleel módosío /6 (. 7.) OM rendele Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe örénő felvéel és örlés eljárási rendjéről alapján. Szakképesíés, szakképesíés-elágazás,
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március 14. 3. előadás
FIZIKA Elekromágneses indukció, válakozó 6 március 14. 3. előadás FIZIKA II. 5/6 II. félév Áram ás mágneses ér egymásra haása Válakozó feszülség jellemzése FIZIKA II. 5/6 II. félév Lorenz erő mal ájár
II. EGYENÁRAMÚ KÖRÖK
. EGYENÁAMÚ KÖÖK Bevezeés Eyenáramú körnek nevezzük az áramkör, ha a körben mozó öléshordozók mozási iránya a vizsálaunk ideje ala nem válozik ellenées irányúvá. . Ohm örvénye Kísérle és kövekezeés A mérés
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
Elektronika 2. TFBE1302
Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.
Teljesítm. ltség. U max
1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete
FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 5 ÉETTSÉGI VIZSG 06. május 8. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ EMEI EŐFOÁSOK MINISZTÉIM Egyszerű, rövid feladaok Maximális
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1
Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test
Villamosságtan II. főiskolai jegyzet. Írta: Isza Sándor. Debreceni Egyetem Kísérleti Fizika Tanszék Debrecen, 2002.
Villamosságan II főiskolai jegyze Íra: Isza Sándor Debreceni Egyeem Kísérlei Fizika anszék Debrecen, Uolsó frissíés: 93 :5 Villamosságan II félév oldal aralom aralom emaikus árgymuaó 3 Bevezeés 4 Válóáramú
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
4. Konzultáció: Periodikus jelek soros RC és RL tagokon, komplex ellenállás Részlet (nagyon béta)
4. Konzultáció: Periodikus jelek soros és tagokon, komplex ellenállás észlet (nagyon béta) "Elektrós"-Zoli 203. november 3. A jegyzetről Jelen jegyzet a negyedik konzultációm anyagának egy részletét tartalmazza.
Ns/m, y0 3 mm, v0 0,18 m/s. Feladat: meghatározása. meghatározása. 4 2 k 1600 Ns 1. , rad/s, rad/s. 0,209 s.
SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 8. MECHANIKA-EZGÉSTAN GYAKOLAT (kidoloza: Fehér Lajos, sz. mérnök; Tarnai Gábor, mérnök anár; Molnár Zolán, ey. adj., Dr. Nay Zolán, ey. adj.) Ey
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Elektromosságtan. III. Szinuszos áramú hálózatok. Magyar Attila
Eletromosságtan III. Szinuszos áramú hálózato Magyar Attila Pannon Egyetem Műszai Informatia Kar Villamosmérnöi és Információs Rendszere Tanszé amagyar@almos.vein.hu 2010. április 26. Átteintés Szinuszosan
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
F1301 Bevezetés az elektronikába Műveleti erősítők
F3 Beezeés az elekronikába Műelei erősíők F3 Be. az elekronikába MŰVELET EŐSÍTŐK Műelei erősíők: Kiáló minőségű differenciálerősíő inegrál áramkör, amely egyenfeszülség erősíésére is alkalmas. nalóg számíás
Matematika a fizikában
DIMENZIÓK 53 Matematikai Közlemények III kötet, 015 doi:10031/dim01508 Matematika a fizikában Nay Zsolt Roth Gyula Erdészeti, Faipari Szakközépiskola és Kolléium nayzs@emknymehu ÖSSZEFOGLALÓ A cikkben
ANALÓG ELEKTRONIKA - előadás vázlat -
Analó elekronka - előaás vázla ANAÓG EEKONIKA - előaás vázla - Eyen mennyséek (eyen-áramú körök) vzsálaa áramkör alkaelemek: -akív / passzív fesz/áramo ermelő elemeke szokás akív, öbke passzív elemeknek
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmaó 063 ÉETTSÉGI VIZSG 006. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTÁLIS MINISZTÉIM
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin 080 ÉETTSÉGI VISGA 009. május. EEKTONIKAI AAPISMEETEK EMET SINTŰ ÍÁSBEI ÉETTSÉGI VISGA JAVÍTÁSI-ÉTÉKEÉSI ÚTMTATÓ OKTATÁSI ÉS KTÁIS MINISTÉIM Egyszerű, rövid feladaok
Fizika A2E, 7. feladatsor megoldások
Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó 0 ÉETTSÉGI VIZSG 0. május 3. EEKTONIKI PISMEETEK EMET SZINTŰ ÍÁSBEI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKEÉSI ÚTMTTÓ NEMZETI EŐFOÁS MINISZTÉIM Elekronikai
A dinamikus vasúti járműterhelés elméleti meghatározása a pálya tényleges állapotának figyelembevételével
A dinamikus vasúi járműerelés elmélei meaározása a pálya énylees állapoának fiyelembevéelével Dr. Kazinczy László eyeemi docens Budapesi Műszaki és Gazdasáudományi Eyeem Ú és Vasúépíési Tanszék 1. A dinamikus
Fizika A2E, 9. feladatsor
Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
Elektrotechnika. 7. előadás. Összeállította: Dr. Hodossy László
7. előadás Összeállította: Dr. Hodossy László . Ellenállás 7.. Impedancia.. Csillag kapcsolás Váltakozóáramú Teljesítményszámítás Váltakozóáramú teljesítmény általában: Váltakozóáramú teljesítmény ellenálláson
SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok
DR. GYURCSEK ISTVÁN SZINUSZOS ÁRAMÚ HÁLÓZATOK Számítási feladatok Forrás és ajánlott irodalom q Iványi A. Hardverek villamosságtani alapjai, Pollack Press, Pécs 2015, ISBN 978-963-7298-59-2 q Gyurcsek
Villamosság biztonsága
Óbudai Egyetem ánki Donát Gépész és iztonságtechnikai Kar Mechatronikai és utótechnikai ntézet Villamosság biztonsága Dr. Noothny Ferenc jegyzete alapján, Összeállította: Nagy stán tárgy tematikája iztonságtechnika
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
! Védelmek és automatikák!
! Védelmek és auomaikák! 4. eloadás. Védelme ápláló áramváló méreezése. 2002-2003 év, I. félév " Előadó: Póka Gyula PÓKA GYULA Védelme ápláló áramváló méreezése sacioner és ranziens viszonyokra. PÓKA GYULA
2. Közös-emitteres erősítő fokozat
Elekronka Lneárs erősíők. Közös-emeres erősíő fokoza.. Mnkapon a karakerszkán Kapcsoljnk a ranzszor kollekor körével sorba ey ellenállás ( ), és kapcsoljnk rájk pozív ápfeszülsée. ranzszoron áfolyó kollekoráram
1. Egyenáramú feszültséggenerátor teljesítményviszonyainak elemzése
. Eyenáramú eszültséenerátor teljesítményviszonyaina elemzése Áramerıssé: A apocseszültsé (eszültséosztással özvetlenül elírható): A enerátor által ejlesztett teljesítmény: A oyasztóna átadott teljesítmény:
Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:
Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek
Elektronika 2. TFBE1302
DE, Kísérlei Fizika Tanszék Elekronika 2. TFBE302 Jelparaméerek és üzemi paraméerek mérési módszerei TFBE302 Elekronika 2. DE, Kísérlei Fizika Tanszék Analóg elekronika, jelparaméerek Impulzus paraméerek
2.11. Feladatok megoldásai
Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
Elektrotechnika 4. előadás
Óbuda Egyeem ánk Doná Gépész és zonságechnka Kar Mecharonka és uóechnka néze Elekroechnka 4. előadás Összeállíoa: Langer ngrd adjunkus Háromázsú hálózaok gyakorlaban a llamos energa ermelésében, eloszásában
VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Villamosipar és elekronika ismereek emel szin Javíási-érékelési úmuaó 7 ÉETTSÉGI VIZSGA 07. okóber 0. VILLAMOSIPA ÉS ELEKTONIKA ISMEETEK EMELT SZINTŰ ÍÁSBELI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMUTATÓ EMBEI EŐFOÁSOK
Ellenáll. llások a. ltség. A szinuszosan váltakozv U = 4V U = 4V I = 0,21A
A szinuszosan váltakozv ltakozó feszülts ltség Ellenáll ok a váltakozó áramú körben = Összeállította: CSSZÁ ME SZTE, Ságvári E. Gyakorló Gimnázium SZEGED, 006. május ( = sin( 314, 16 nduktív v ellenáll
Σ imsc
Elekronika.. vizsga 7........ Σ imsc Név: Nepun:. Felada ajzoljon le egy egyszerű, de működőképes differenciál erősíő, mely véges β paraméerű, npn ranziszorpár aralmaz, munkapon állíásra ideális áram-
1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.
1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76
A Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30.
Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és ársadalomtudományi Kar Fizika dolgozat 4. Váltakozó áramú áramkörök munkája és teljesítménye Kovács Emese Műszaki szakoktató hallgató 4-es tankör
Elektrotechnika. 1. előad. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai Intézet
Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autechnikai ntézet Elektrotechnika. előad adás Összeállította: Langer ngrid főisk. adjunktus A tárgy t tematikája
Elektrotechnika 1. előadás
Óudai Egyetem ánki Donát épész és iztonságtechnikai Kar Mechatronikai és utechnikai ntézet Elektrotechnika. előadás Összeállította: Langer ngrid adjunktus tárgy tematikája Egyen- és váltakozó áramú villamos
Í Á ó É ö ó ö ű ő ú ő ő ő Ö Í ü ő ö ó őí ő ő Á ú ö ő ő ú ú ő Á ű ő ö ő ó ó ö ö ó ö ö ő ó ó ö ú ö ö ö ü ú ó ö ö ő ő ő ő ő ö ő ő ő ö ü ú ő ö ö ő ü ű ö ő ö ó ő ő ó ő ó ő ő ö ő ő ö ő ö ó ő ő ó ü ő ü ő ő ö
Négypólusok tárgyalása Laplace transzformációval
Négypólusok tárgyalása Laplace transzformációval Segédlet az Elektrotechnika II. c. tantárgyhoz Összeállította: Dr. Kurutz Károly egyetemi tanár Szászi István egyetemi tanársegéd . Laplace transzformáció
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK
MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?
Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-
1. konferencia: Egyenáramú hálózatok számítása
1. konferencia: Egyenáramú hálózatok számítása 1.feladat: 20 1 kω Határozzuk meg az R jelű ellenállás értékét! 10 5 kω R z ellenállás értéke meghatározható az Ohm-törvény alapján. Ehhez ismernünk kell
u ki ) = 2 x 100 k = 1,96 k (g 22 = 0 esetén: 2 k)
lektronika 2 (MVIMIA027 Számpélda a földelt emitteres erősítőre: Adott kapcsolás: =0 µ = k 4,7k U t+ = 0V 2 k 2 = 0µ u u =3 k =00µ U t- =-0V Számított tranzisztor-paraméterek: ezzel: és u ki t =0k Tranzisztoradatok:
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége
Jelformálás. 1) Határozza meg a terheletlen feszültségosztó u ki kimenı feszültségét! Adatok: R 1 =3,3 kω, R 2 =8,6 kω, u be =10V. (Eredmény: 7,23 V)
Jelformálás ) Haározza meg a erhelelen feszülségoszó ki kimenı feszülségé! Adaok: =3,3 kω, =8,6 kω, e =V. (Eredmény: 7,3 V) e ki ) Haározza meg a feszülségoszó ki kimenı feszülségé, ha a mérımőszer elsı
1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?
Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját!
1. Adja meg az áram egységének mértékrendszerünkben (m, kg, s, A) érvényes definícióját! A villamos áram a villamos töltések rendezett mozgása. A villamos áramerősség egységét az áramot vivő vezetők közti
Fizika 1X, pótzh (2010/11 őszi félév) Teszt
Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
Fizika A2E, 8. feladatsor
Fizika AE, 8. feladatsor ida György József vidagyorgy@gmail.com. feladat: Az ábrán látható áramkörben határozzuk meg az áramer sséget! 4 5 Utolsó módosítás: 05. április 4., 0:9 El ször ki kell számolnunk
Átmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
Gingl Zoltán, Szeged, szept. 1
Gingl Zoltán, Szeged, 08. 8 szept. 8 szept. 4 A 5 3 B Csomópontok feszültség Ágak (szomszédos csomópontok között) áram Áramköri elemek 4 Az elemeken eső feszültség Az elemeken átfolyó áram Ezek összefüggenek
1. tétel: EGYENLETES MOZGÁS
1. éel: EGYENLETES MOZGÁS Kérdéek: a.) Mikor bezélünk eyene vonalú eyenlee ozáról? b.) Ké e közül elyiknek nayobb a ebeée? (Elí e yakorlai példá!) c.) Mi ua e a ebeé? Mi a jele, érékeyée? Hoyan záoljuk
KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Közlekedésgépész ismereek középszin 1811 ÉRETTSÉGI VIZSGA 018. okóber 19. KÖZLEKEDÉSGÉPÉSZ ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Úmuaó a vizsgázók
7.1 ábra Stabilizált tápegység elvi felépítése
7. Tápegységek A ápegységek az elekronikus rendezések megfelelő működéséhez szükséges elekromos energiá bizosíják. Felépíésüke és jellemzőike a áplálandó rendezés igényei haározzák meg. A legöbb elekronikus
Digitális technika felvételi feladatok szeptember a. Jelölje meg, hogy X=1 esetén mit valósít meg a hálózat! (2p) X. órajel X X X X /LD
Nepun: Digiális echnika felvéeli feladaok 008. szepember 30. D :.a:.b: 3: Σ:. Adja meg annak a 4 bemeneő (ABCD), kimeneő (F) kombinációs hálózanak a Karnaugh áblázaá, amelynek kimenee, ha: - A és B bemenee
Gingl Zoltán, Szeged, :14 Elektronika - Hálózatszámítási módszerek
Gingl Zoltán, Szeged, 05. 05.09.9. 9:4 Elektronika - Hálózatszámítási módszerek 05.09.9. 9:4 Elektronika - Alapok 4 A G 5 3 3 B C 4 G Áramköri elemek vezetékekkel összekötve Csomópontok Ágak (szomszédos
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉG VZSG 05. okóber. ELEKTONK LPSMEETEK EMELT SZNTŰ ÍÁSBEL ÉETTSÉG VZSG JVÍTÁS-ÉTÉKELÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Elekronikai alapismereek
4.1. VÁLTÓÁRAMÚ HÁLÓZATSZÁMÍTÁS
4. VÁTAKOZÓ ÁRAM A váltóáramú hálózatszámításhoz szükséges általános alapismeretek a Váltóáramú hálózatszámítás c. részben vannak leírva, de a legfontosabbakat itt is összefoglaljuk. 4.. VÁTÓÁRAMÚ HÁÓZATSZÁMÍTÁS
Elektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan Általános áramú hálózatok 1 Magyar Attila Tömördi Katalin Alaptörvények-áttekintés Alaptörvények Áram, feszültség, teljesítmény, potenciál Források Ellenállás Kondenzátor
Primitív függvény. (határozatlan integrál)
PR Primiív füvény (haározalan inerál) Az ebben a részben szereplő füvények mindeyike leyen ey I eszőlees, poziív hosszúsáú inervallumon érelmeze valós érékű füvény (I R). PR Definíió: primiív füvény Ha
Fizika I minimumkérdések:
Fizika I minimumkérdések: 1. Elmozdulás: r 1, = r r 1. Sebesség: v = dr 3. Gyorsulás: a = dv 4. Sebesség a gyorsulás és kezdei sebesség ismereében: v ( 1 ) = 1 a () + v ( 0 0 ) 5. Helyvekor a sebesség
Elektrotechnika példatár
Elektrotechnika példatár Langer Ingrid Tartalomjegyzék Előszó... 2 1. Egyenáramú hálózatok... 3 1.1. lapfogalmak... 3 1.2. Példák passzív hálózatok eredő ellenállásának kiszámítására... 6 1.3. Impedanciahű
Solow modell levezetések
Solow modell levezetések Szabó-Bakos Eszter 25. 7. hét, Makroökonómia. Aranyszabály A azdasá működését az alábbi eyenletek határozzák me: = ak α t L α t C t = MP C S t = C t = ( MP C) = MP S I t = + (
ELEKTRONIKAI ALAPISMERETEK
Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok
HF1. Határozza meg az f t 5 2 ugyanabban a koordinátarendszerben. Mi a lehetséges legbővebb értelmezési tartománya és
Házi feladaok megoldása 0. nov. 6. HF. Haározza meg az f 5 ugyanabban a koordináarendszerben. Mi a leheséges legbővebb érelmezési arománya és érékkészlee az f és az f függvényeknek? ( ) = függvény inverzé.
Elektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati
17/1. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram.
7/. Négypólusok átviteli függvényének ábrázolása. Nyquist diagram. A szinuszos áramú hálózatok vizsgálatánál gyakran alkalmazunk különbözı komplex átviteli függvényeket. Végezzük ezt a hálózat valamilyen