NEHÉZ ELEMEK KELETKEZÉSE CSILLAGOKBAN FORMATION OF HEAVY ELEMENTS IN STARS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "NEHÉZ ELEMEK KELETKEZÉSE CSILLAGOKBAN FORMATION OF HEAVY ELEMENTS IN STARS"

Átírás

1 EHÉZ ELEMEK KELETKEZÉSE CSILLGOKB FORMTIO OF HEVY ELEMETS I STRS Kiss Miklós Berze agy Jáos Gimázium Gyögyös/Debrecei Egyetem Fizika Doktori Iskola ÖSSZEFOGLLÁS vaso túli ehéz elemek keletkezéséek kérdése fotos és érdekes probléma, ezért érdemes arra, hogy szóba kerüljö az iskolai oktatás keretébe. Hagyomáyosa csak az elemek kialakulásáak a kezdetét (fúzió), illetve a már valahogya kialakult elemek átalakulásait (bomlások, hasadás) tárgyaljuk. Igazá szép kérdés, hogy hol, és hogya jöek létre a vasál ehezebb elemek (építkezés). témával kapcsolatba az elsődleges cél em oktatási jellegű volt, de a folyamatok jól követhetők és jól szemléltethetők, és így az oktatásba jól beilleszthetők. BSTRCT The origi of heavy elemets beyod iro is a importat ad iterestig problem; therefore, it is worth to discuss it i the classroom. Traditioally we speak oly about fusio ad decays, but it also is a iterestig questio how the elemets heavier the iro formed. The primary purpose of our ivestigatio was ot educatioal, but the processes ca be followed ad demostrated easily ad ca be itegrated ito educatio. KULCSSZVK/KEYWORDS s-folyamat, eutrobefogás, r-mag s-process, eutro capture, r-oly uclei BEVEZETÉS Magszitézis modellük számításaiba eltértük a hagyomáyos megközelítéstől [1,2], em vettük figyelembe a szokásos korlátozásokat, haem működtettük a modellt, a vas 56-os izotópjából ( 56 Fe) kiidulva, hagytuk a keletkező magokat megkötés élkül átalakuli. z s-folyamatról való eddigi elképzelésüktől eltérőe a fejlődés em csak a béta stabilitás völgyébe, haem egy ahhoz illeszkedő sávba törtéik. sáv szélességét két dolog határozza meg: a számolás időalapja és a eutrosűrűség. KLSSZIKUS MEGKÖZELÍTÉS Érdemes az elem és az izotóp szavak helyett a mag szót haszáli. Két meyiség egyértelműe jellemzi a magokat: a protook száma (Z), és a eutrook száma (). folyamat két fő lépése a eutrobefogás és a bétabomlás. eutrobefogásál eggyel ő a eutrook száma. Ha a keletkező mag em stabil és bétabomlással elbomlik, akkor a redszám eggyel övekszik. két folyamattal együtt egyet feljebb léphetük az elemek létrájá. két lépés addig ismétlődik, amíg a fizikai körülméyek egedik.

2 1. ábra. klasszikus folyamat lépései dott mag meyisége megváltozik e két folyamattal, a eutrobefogás övelheti is és csökketheti is a meyiséget. Midegyik folyamatak megva az esélye, amit a körülméyek határozak meg, a eutrobefogást a eutrosűrűség és a mag eutrobefogó képessége, a bomlást a felezési idő. d dt = = λ () t () t < σ v > () t () t < σ v > λ () t () t λ () t λβ () t, λβ =, λ = < σ > vt 1 z összes magra (1) egy csatolt egyeletredszer, amelyet mide magra egyszerre kell megoldai, ami számítógép élkül csak egyszerűsítő feltevésekkel lehetséges. T felezési idejű em stabil mag átlagos élettartama β l 2 T 1 T T τ β = = = = 1,4427 T (2) λ l 2 0,6932 β felezési idő statisztikai jeletésű fogalom, csak magok sokaságáról tehetük biztos kijeletéseket. z egyes magokak va egy átlagos élettartamuk, de eél jóval rövidebb, vagy hosszabb ideig is létezhetek. Ugyaakkor két eutrobefogás között is eltelik valameyi idő, ami a körülméyektől függ. Két eutrobefogás között átlagosa 1 1 τ ~ = (3) λ < σ > vt időtartam telik el, ahol <σ> a sebességre átlagolt eutrobefogási hatáskeresztmetszet. Lehetséges, hogy a eutro befogása utá a mag egy újabb eutro befogása előtt bomlik el. Ha ez többyire így va, lassú vagy s-folyamatról beszélük. Ha a bomlást újabb eutrobefogás előzi meg, akkor a folyamat gyors vagy r-folyamat. 1. táblázat. folyamatok összehasolítása Időviszoyok s-folyamat r-folyamat τ << τβ τ >> τβ (1) eutrobefogási idő τ 10 év τ 10 3 s eutrosűrűség = 10 8 cm 3 = cm 3 Érdemes a Z- síko áttekitei a folyamatokat. lassú folyamat a stabil magok közelébe halad a béta stabilitás völgyébe (a Z- síko a stabil magok tartomáya), a

3 gyors pedig a völgytől jobbra, a eutrodús magok meté. távolodás csak a kis befogási hatáskeresztmetszetű magoko akad el a telített eutrohéjú magokál, az úgyevezett 209 mágikus számokál: 50, 82, 126. lassú folyamat a bizmutál ( 83 Bi ) véget ér. z urá pedig csak gyors folyamatba keletkezik. 2. ábra. béta stabilitás völgye [2]. Z ÚJ MEGKÖZELÍTÉS Modellükbe csak a magfolyamatokat vizsgáltuk, a csillagok fizikáját em vettük figyelembe, z új megközelítés csillagmodellbe is alkalmazható, azoba oktatási célra túl lassú programot eredméyeze. Álladóak feltételezzük a eutrofluxust és homogéek a köryezetet. klasszikus folyamattól eltérőe em feltételezük semmit a magfolyamatok sebességviszoyairól, haem az összes lehetséges folyamatot egyszerre figyelembe véve umerikusa határozzuk meg melyik magból meyi és mivé alakul át az egyes lépésekbe. Tekitsük mide olya átalakulást, amely egy adott mag meyiségét megváltoztatja: bétabomlással érkezi is lehet egy magba, de az alfabomlás is övelheti és csökketheti a magok számát. 3. ábra. legfotosabb folyamatok További folyamatok: elektrobefogás, pozitív bétabomlás, alfabomlás, protokibocsátás, kettős bétabomlás (egatív), kettős bétabomlás (pozitív), spotá hasadás. Valamit ezek

4 együtt, elágazásokkal, összese 19 folyamat. Ezek az átalakulások bizoyos magokál jeletősek is lehetek. Létezek hármas elágazások, de a harmadik ág aráya jeletéktele. teljes egyelet kezdete (csak -befogást, valamit α- és β-bomlásokat figyelembe véve): d Z, dt = (4) ( t) ( t) < σv > + λ ( t) + λ ( t) Z, 1 Z, 1 β Z 1, + 1 α Z + 2, + 2 ( t) ( t) < σv > λ ( t) λ ( t), Z, Z, β Z, α Z, Ha potosabb eredméyt szereték, akkor az egyelet jobb oldalá figyelembe vehetjük a többi folyamat járulékát is. z egyeletredszer megoldása számítógéppel lehetséges. Válasszuk egy időtartamot (t), amelyet a továbbiakba időalapak evezük. Iduljuk ki csak vasból és haszáljuk két egymást követő lépést. ézzük, ez alatt milye és háy átalakulás következik be. Mide magál számoljuk meyiségéek változását. 1. lépés a eutrobefogás: meghagyva a maradék magokat a helyükö, az átalakult magokat hozzáadjuk a megfelelő helyhez (készletezés). 0 λ t, 0 ( 1 λ t). (5) befog megmaradó 2. lépés a magok bomlása: Most a magokat a rájuk jellemző bomlásak megfelelőe készletezzük, megit mide magál a rá jellemző adatokak megfelelőe számoluk. Tekitjük az időalapot. Eze időtartammal számoluk. Először áttöltjük az átalakult magokat, megőrizve azokat, amelyek megmaradtak, aztá a célhelyre midegyiket hozzáadjuk. Ezeket a lépéseket a mag felezési ideje és a bomlási aráy alapjá meg tudjuk tei. Mivel számítógéppel dolgozuk, át kell godoluk, hogy a felezési időek megfelelőe hogya járjuk el. haszált három eset: Ha a felezési idő közepes: megmaradó λt λt = e, = (1 e ). (6) 0 átalakuló Ha 99 százalékosa számoluk (megmaradás, ill. elbomlás): pl. egy másodperc lépésközt alkalmazva: a 0,15 s <T <69 s tartomáyba kell expoeciálisa számoli. Ha T > 69 s, akkor λt << 1, és az expoeciális függvéy lieáris közelítését haszáljuk, 0 ( 1 λt), = 0 λt. (7) megmaradó átalakuló Ha pedig T < 0,15 s, akkor λt >> 1, és feltesszük, hogy mide részecske elbomlik. hhoz, hogy a számolást téylegese elvégezhessük, szükség va az egyes magokat jellemző eutrobefogási és bomlási adatokra. programukba figyelembe vett 2096 magra mitegy adatot haszáluk [3]. éháy további paraméter értékéek rögzítésével (időalap, eutrosűrűség) idulhat a számolás. z eredméyeket grafikus felülettel agyo látváyosa jeleíthetjük meg. Követhetjük az épülést, és az azt követő bomlást is ábra. Pillaatfelvételek. magok gyakoriságáak logaritmusát szískálával érzékeltetjük. Ha hosszabb időt váruk, éháy elem el is tűik, azok, amelyekek ics stabil izotópja, pl. a techécium. ( 43. elem az s-folyamat észlelési bizoyítéka. Itt most em kell százezer

5 éveket váruk.) z oktatásbeli alkalmazási lehetőség em ér véget itt, hisze paraméterek (pl. a eutrosűrűség) változtatásával a magok keletkezéséek körülméyeit is változtathatjuk. Ugyaakkor a folyamatokat célzotta is vizsgálhatjuk, elemezhetjük. Ezeket itt em soroltjuk fel, csak éháy tapasztalatról íruk mag keletkezik! (Sőt, szuperóva szimulációba, amikor ige agy a eutrosűrűség, 1. táblázat még több!) 5. ábra. fejlődés sávja az időalap függvéyébe 2. program időalapja jeletős hatással va a futásra. fejlődés midig sávos. sáv szélességét a számítás időalapja befolyásolja. Fotos, hogy ez em fizikai, haem techikai paraméter. z eredméyek az 5. ábrá láthatók. futások összese ugyaayi fizikai ideig tartottak. Látható, hogy ha agy időalappal számoluk, keskey sávba, szite a béta stabilitás völgyébe halad a folyamat. Ha rövid időalapot választuk, a sáv kiszélesedik. z ábrát ézve elgodolkodhatuk: Mi is az s-folyamat? 6. ábra. völgy agy eutrofluxus eseté szélesebb 3. eutrosűrűség, és így a eutrofluxus már fizikai paraméter. agy fluxus hatására a sáv kiszélesedi (képszerűe: az erős eutroszél messze elfújja a magokat a völgyből a agy eutroszámú magok felé ). 6. ábrá más is látható. Bejelöltük, a stabil magokat, kiemelve keletkezésük módját: s-mag, r-mag, p-mag. Pl. az s-mag oa kapta a evét, hogy csak s-folyamatba keletkezik, mert egy stabil mag leáryékolja az r-folyamatba való keletkezés elöl. z r- és p-magok pedig az elfogadott ézetek szerit csak gyors eutrobefogási, illetve protobefogási folyamatba keletkezek. (z utóbbit modellük em

6 veszi figyelembe.) z s- és az r-magok többyire párba állíthatók pl.: Te Xe, Sm Gd, Os Pt. 4. programmal a eutrosűrűséget változtatva vizsgálhatjuk, meyi lesz az r/s aráy, azaz az r-magok és az s-magok meyiségéek aráya. Ezt összehasolíthatjuk a apredszerbeli aráyal: r r R = :. (8) s modell s apreszer 7. ábrá az R háyados logaritmusát ábrázoltuk a eutrosűrűség függvéyébe. Látható, 10± 1 3 hogy = 10 cm sűrűséggel a modell jóslata leírja a megfigyelt értékeket. 7. ábra. z R aráy logaritmusa a eutrosűrűség függvéyébe. 5. klasszikus s-folyamat a polóium gyors alfabomlása miatt véget ér a bizmutál. hogy a polóium keletkezik, úgy rögtö el is bomlik. Megpróbálhatjuk öveli a eutrosűrűséget. Ha cm 3, akkor a széles sáv miatt elkerülhető a polóium csapdája. fejlődések ebbe az esetbe csak a fermium spotá hasadása vet véget. 8. ábra. bizmut körüli klasszikus kép és a modell egy lehetősége vörös óriás csillagok között az ú. GB csillagokba időkét va ilye körülméy [4]. mag főleg széből és oxigéből áll, ezt veszi körül a hélium réteg, azt pedig kívülről a kovektív zóa. hélium réteg aljá hélium-égés, a kovektív zóa aljá hidrogé-égés törtéik felváltva. Ezt a lehetőséget kétféle eutrofluxus felváltva törtéő alkalmazásával modellezhetjük.

7 OKTTÁSI LEHETŐSÉGEK vázolt folyamatok fizikai alapjai középiskolai keretek között feldolgozhatók. radioaktivitás taulmáyozás utá a szükséges fogalmak redelkezésre állak. differeciálegyeletet persze em kell közölük, az alapvető folyamatokról eélkül is átfogó képet adhatuk. probléma felvetése közbe ismertetjük az 1. és 3. ábrát, és a számolás alapját jelető (5 7) képletekek megfelelő fizikai képet. Ezek utá a program grafikus felülettel törtéő futtatása, vagy az ebből készült aimáció segítségével élméyszerűvé tehetjük a magok keletkezését (4. ábra). IRODLOMJEGYZÉK 1. F. Käpeller, H. Beer ad K. Wisshak: Rep. Prog. Phys Rolfs C. E., Rodey W. S. Cauldros i the Cosmos, The Uiv. of Chicago Press, J. K. Tuli, uclear Wallet Cards, Brookhave atioal Laboratory, M. Lugaro,. I. Karakas, S. Bisterzo: PoS (IC X) 034, IC X Mackiac Islad, Michiga, US 27 July 1 ugust, 2008 SZERZŐ Kiss Miklós taár, Berze agy Jáos Gimázium, kiss-m@chello.hu

Magszintézis neutronbefogással

Magszintézis neutronbefogással Magszintézis neutronbefogással Kiss Miklós, Berze Nagy János Gimnázium Gyöngyös Magyar Fizikus Vándorgyűlés Debrecen, 2013. augusztus 21-24. Tartalom 1. A magok táblája 2. Elemgyakoriság 3. Neutrontermelés

Részletesebben

1. A radioaktivitás statisztikus jellege

1. A radioaktivitás statisztikus jellege A radioaktivitás időfüggése 1. A radioaktivitás statisztikus jellege Va N darab azoos radioaktív atomuk, melyekek az atommagja spotá átalakulásra képes. tegyük fel, hogy ezek em bomlaak tovább. Ekkor a

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi taár Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel-

Cserjésné Sutyák Ágnes *, Szilágyiné Biró Andrea ** ismerete mellett több kísérleti és empirikus képletet fel- ACÉLOK KÉMIAI LITY OF STEELS THROUGH Cserjésé Sutyák Áges *, Szilágyié Biró Adrea ** beig s s 1. E kutatás célja, hogy képet meghatározásáak kísérleti és számítási móiek tosságáról, és ezzel felfedjük

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

V. Deriválható függvények

V. Deriválható függvények Deriválható függvéyek V Deriválható függvéyek 5 A derivált fogalmához vezető feladatok A sebesség értelmezése Legye az M egy egyees voalú egyeletes mozgást végző pot Ez azt jeleti, hogy a mozgás pályája

Részletesebben

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA)

MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) O k t a t á s i H i v a t a l A 5/6 taévi Országos Középiskolai Taulmáyi Versey első forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató A 5 olya égyjegyű szám, amelyek számjegyei

Részletesebben

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése

Miért érdekes? Magsugárzások. Az atommag felépítése. Az atom felépítése Miért érdekes? Magsugárzások Dr Smeller László egyetemi doces Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika)

Részletesebben

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet):

(A TÁMOP /2/A/KMR számú projekt keretében írt egyetemi jegyzetrészlet): A umerikus sorozatok fogalma, határértéke (A TÁMOP-4-8//A/KMR-9-8 számú projekt keretébe írt egyetemi jegyzetrészlet): Koverges és diverges sorozatok Defiíció: A természetes számoko értelmezett N R sorozatokak

Részletesebben

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai

Hiba! Nincs ilyen stílusú szöveg a dokumentumban.-86. ábra: A példa-feladat kódolási változatai közzétéve a szerző egedélyével) Öfüggő szekuder-változó csoport keresése: egy bevezető példa Ez a módszer az állapothalmazo értelmezett partíció-párok elméleté alapul. E helye em lehet céluk az elmélet

Részletesebben

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit!

Sorozatok október 15. Határozza meg a következ sorozatok határértékeit! Sorozatok 20. október 5. Határozza meg a következ sorozatok határértékeit!. Zh feladat:vizsgálja meg mootoitás és korlátosság szerit az alábbi sorozatot! a + ha ; 2; 5 Mootoitás eldötéséhez vizsgáljuk

Részletesebben

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1

A FUNDAMENTÁLIS EGYENLET KÉT REPREZENTÁCIÓBAN. A függvény teljes differenciálja, a differenciális fundamentális egyenlet: U V S U + dn 1 A FUNDAMENÁLIS EGYENLE KÉ REPREZENÁCIÓBAN A differeciális fudametális egyelet A fudametális egyelet a belső eergiára: UU (S V K ) A függvéy teljes differeciálja a differeciális fudametális egyelet: U S

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis

Reakciómechanizmusok leírása. Paraméterek. Reakciókinetikai bizonytalanságanalízis. Bizonytalanságanalízis Megbízható kémiai modellek kifejlesztése sok mérési adat egyidejő feldolgozása alajá uráyi amás www.turayi.eu ELE Kémiai Itézet Reakciókietikai Laboratórium Eddig dolgoztak eze a témá: (témavezetık: uráyi

Részletesebben

Kalkulus II., második házi feladat

Kalkulus II., második házi feladat Uger Tamás Istvá FTDYJ Név: Uger Tamás Istvá Neptu: FTDYJ Web: http://maxwellszehu/~ugert Kalkulus II, második házi feladat pot) Koverges? Abszolút koverges? ) l A feladat teljese yilvávalóa arra kívácsi,

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló

3. Számelmélet. 1-nek pedig pontosan három. Hány pozitív osztója van az n számnak? OKTV 2012/2013; I. kategória, 1. forduló . Számelmélet I. Feladatok 1. Háy égyzetszám osztója va a 7 5 5 7 számak?. Az pozitív egész számak potosa két pozitív osztója va, az + 1-ek pedig potosa három. Háy pozitív osztója va az + 01 számak? OKTV

Részletesebben

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198.

ALGEBRA. egyenlet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 198. ALGEBRA MÁSODFOKÚ POLINOMOK. Határozzuk meg az + p + q = 0 egyelet megoldásait, ha tudjuk, hogy egész számok, továbbá p + q = 98.. Határozzuk meg az összes olya pozitív egész p és q számot, amelyre az

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k.

8.1. A rezgések szétcsatolása harmonikus közelítésben. Normálrezgések. = =q n és legyen itt a potenciál nulla. q i j. szimmetrikus. q k. 8. KIS REZGÉSEK STABIL EGYENSÚLYI HELYZET KÖRÜL 8.. A rezgések szétcsatolása harmoikus közelítésbe. Normálrezgések Egyesúlyi helyzet: olya helyzet, amelybe belehelyezve a redszert (ulla kezdősebességgel),

Részletesebben

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet):

X = 9,477 10 3 mol. ph = 4,07 [H + ] = 8,51138 10 5 mol/dm 3 Gyenge sav ph-jának a számolása (általánosan alkalmazható képlet): . Egy átrium-hidroxidot és átrium-acetátot tartalmazó mita 50,00 cm 3 -es részletée megmérjük a ph-t, ami,65-ek adódott. 8,65 cm 3 0, mol/dm 3 kocetrációjú sósavat adva a mitához, a mért ph 5,065. Meyi

Részletesebben

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik.

Számsorozatok. 1. Alapfeladatok december 22. sorozat határértékét, ha. 1. Feladat: Határozzuk meg az a n = 3n2 + 7n 5n létezik. Számsorozatok 2015. december 22. 1. Alapfeladatok 1. Feladat: Határozzuk meg az a 2 + 7 5 2 + 4 létezik. sorozat határértékét, ha Megoldás: Mivel egy tört határértéke a kérdés, ezért vizsgáljuk meg el

Részletesebben

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a

EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z n HALMAZON. egyenletrendszer megoldása a Az érettségi vizsgára előkészülő taulók figyelmébe! 4. Az EGYENLETEK ÉS EGYENLETRENDSZEREK MEGOLDÁSA A Z HALMAZON a1 x + b1 y = c1 egyeletredszer megoldása a a x + b y = c Z halmazo (. rész) Ebbe a részbe

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba számú proto, és N = számú eutro va, és stabil képződméy Mi tartja össze az atommagot? Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus eergiája

Részletesebben

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +...

2. Hatványsorok. A végtelen soroknál tanultuk, hogy az. végtelen sort adja: 1 + x + x x n +... . Függvéysorok. Bevezetés és defiíciók A végtele sorokál taultuk, hogy az + x + x + + x +... végtele összeg x < eseté koverges. A feti végtele összegre úgy is godolhatuk, hogy végtele sok függvéyt aduk

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó.

I. Függelék. A valószínűségszámítás alapjai. I.1. Alapfogalamak: A valószínűség fogalma: I.2. Valószínűségi változó. I. Függelék A valószíűségszámítás alapjai I.1. Alapfogalamak: Véletle jeleség: létrejöttét befolyásoló összes téyezőt em ismerjük. Tömegjeleség: a jeleség adott feltételek mellett akárháyszor megismételhető.

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Matematika B4 I. gyakorlat

Matematika B4 I. gyakorlat Matematika B4 I. gyakorlat 2006. február 16. 1. Egy-dimeziós adatredszerek Va valamilye adatredszer (számsorozat), amelyről szereték kiszámoli bizoyos dolgokat. Az egyes értékeket jelöljük z i -vel, a

Részletesebben

Egy lehetséges tételsor megoldásokkal

Egy lehetséges tételsor megoldásokkal Egy lehetséges tételsor megoldásokkal A vizsgatétel I része a IX és X osztályos ayagot öleli fel, 6 külöböző fejezetből vett feladatból áll, összese potot ér A közzétett tétel-variások és az előző évekbe

Részletesebben

ODE SOLVER-ek használata a MATLAB-ban

ODE SOLVER-ek használata a MATLAB-ban ODE SOLVER-ek használata a MATLAB-ban Mi az az ODE? ordinary differential equation Milyen ODE megoldók vannak a MATLAB-ban? ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb, stb. A részletes leírásuk

Részletesebben

Rádiókommunikációs hálózatok

Rádiókommunikációs hálózatok Rádiókommuikációs hálózatok Készült az NJSZT Számítógéphálózat modellek Tavaszi Iskola elöadás-sorozataihoz. 977-980. Gyarmati Péter IBM Research, USA; Budapest Föváros Taácsa. I this paper we show a somewhat

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 10. A statisztika alapjai Debrecei Egyetem, 2015 Dr. Bérczes Attila, Bertók Csaád A diasor tartalma 1 Bevezetés 2 Statisztikai függvéyek Defiíció, empirikus várható érték Empirikus

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

NAGYVADÁLLOMÁNY JELLEMZŐ ADATAINAK MEGHATÁROZÁSA KÖZVETETT ÚTON

NAGYVADÁLLOMÁNY JELLEMZŐ ADATAINAK MEGHATÁROZÁSA KÖZVETETT ÚTON 634.0.907.13 GYARMATI LÁSZLÓ, HAVAS TIBOR NAGYVADÁLLOMÁNY JELLEMZŐ ADATAINAK MEGHATÁROZÁSA KÖZVETETT ÚTON Vadgazdálkodási terveik legsebezhetőbb potja a meglévő vadállomáy jellemzése. Fotos érdek fűződik

Részletesebben

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok,

A függvénysorozatok olyanok, mint a valós számsorozatok, csak éppen a tagjai nem valós számok, l.ch FÜGGVÉNYSOROZATOK, FÜGGVÉNYSOROK, HATVÁNYSOROK Itt egy függvéysorozat: f( A függvéysorozatok olyaok, mit a valós számsorozatok, csak éppe a tagjai em valós számok, 5 haem függvéyek, f ( ; f ( ; f

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Életta Aatóma Kéma Lehet kérdés?? Statsztka! Az orvos dötéseket hoz! Mkor jó egy dötés? Meyre helyes egy dötés? Mekkora a tévedés lehetősége? Példa: test hőmérséklet

Részletesebben

Statisztika 1. zárthelyi dolgozat március 21.

Statisztika 1. zárthelyi dolgozat március 21. Statisztika 1 zárthelyi dolgozat 011 március 1 1 Legye X = X 1,, X 00 függetle mita b paraméterű Poisso-eloszlásból b > 0 Legye T 1 X = X 1+X ++X 100, T 100 X = X 1+X ++X 00 00 a Milye a számra igaz, hogy

Részletesebben

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT KÍVÁNCSISÁGVEZÉRELT MATEMATIKA TANÍTÁS STÁTUS KIADÓ CSÍKSZEREDA, 010 c PRIMAS projekt c Adrás Szilárd Descrierea CIP a Bibliotecii

Részletesebben

A matematikai statisztika elemei

A matematikai statisztika elemei A matematikai statisztika elemei Mikó Teréz, dr. Szalkai Istvá szalkai@almos.ui-pao.hu Pao Egyetem, Veszprém 2014. március 23. 2 Tartalomjegyzék Tartalomjegyzék 3 Bevezetés................................

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Statisztika 1. zárthelyi dolgozat március 18.

Statisztika 1. zárthelyi dolgozat március 18. Statisztika. zárthelyi dolgozat 009. március 8.. Ismeretle m várható értékű, szórású ormális eloszlásból a következő hatelemű mitát kaptuk:, 48 3, 3, 83 0,, 3, 97 a) Számítsuk ki a mitaközepet és a tapasztalati

Részletesebben

Függvényhatárérték-számítás

Függvényhatárérték-számítás Függvéyhatárérték-számítás I Függvéyek véges helye vett véges határértéke I itervallumo, ha va olya k valós szám, melyre az I itervallumo, ha va olya K valós szám, melyre I itervallumo, ha alulról és felülről

Részletesebben

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, konfidenciaintervallum. Dr. Boda Krisztina PhD SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet A biostatisztika alapfogalmai, kofideciaitervallum Dr. Boda Krisztia PhD SZTE ÁOK Orvosi Fizikai és Orvosi Iformatikai Itézet Mitavétel ormális eloszlásból http://www.ruf.rice.edu/~lae/stat_sim/idex.html

Részletesebben

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész

A kommutáció elve. Gyűrűs tekercselésű forgórész. Gyűrűs tekercselésű kommutátoros forgórész Egyeáramú gépek 008 É É É + Φp + Φp + Φp - - - D D D A kommutáció elve Gyűrűs tekercselésű forgórész Gyűrűs tekercselésű kommutátoros forgórész 1 Egyeáramú gép forgórésze a) b) A feszültség időbeli változása

Részletesebben

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak

Populáció. Történet. Adatok. Minta. A matematikai statisztika tárgya. Valószínűségszámítás és statisztika előadás info. BSC/B-C szakosoknak Valószíűségszámítás és statisztika előadás ifo. BSC/B-C szakosokak 6. előadás október 16. A matematikai statisztika tárgya Következtetések levoása adatok alapjá Ipari termelés Mezőgazdaság Szociológia

Részletesebben

Az új építőipari termelőiár-index részletes módszertani leírása

Az új építőipari termelőiár-index részletes módszertani leírása Az új építőipari termelőiár-idex részletes módszertai leírása. Előzméyek Az elmúlt évekbe az építőipari árstatisztikába egy új, a korábba haszálatos költségalapú áridextől eltérő termelői ár alapú idexmutató

Részletesebben

Matematikai statisztika

Matematikai statisztika Matematikai statisztika PROGRAMTERVEZŐ INFORMATIKUS alapszak, A szakiráy Arató Miklós Valószíűségelméleti és Statisztika Taszék Természettudomáyi Kar 2019. február 18. Arató Miklós (ELTE) Matematikai statisztika

Részletesebben

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3.

(2) Határozzuk meg a következő területi integrálokat a megadott halmazokon: x sin y dx dy, ahol T : 0 x 1, 2 y 3. . feladatsor () Határozzuk meg a következő területi itegrálokat a megadott téglalapoko: ( (x + y) dx dy, ahol T : x, y 3. ( T T x si y dx dy, ahol T : x, 2 y 3. (2) Határozzuk meg a következő területi

Részletesebben

Számítások. *Előadásanyagban nem szerepel. Kamat idővel egyenesen arányos. 1.3. Példa - Kamatos kamat egész évekre éven belül egyszerű kamat

Számítások. *Előadásanyagban nem szerepel. Kamat idővel egyenesen arányos. 1.3. Példa - Kamatos kamat egész évekre éven belül egyszerű kamat Számítások.Kamatszámítás..Péda - Kamatos kamat Számítsuk ki a visszafizetedő összeget az aábbi kostrukció eseté (kamatos kamatta számova), ha 2005.0.0-é köcsö adtuk 200.000 Ft- ot, 205.2.3-é kapjuk vissza

Részletesebben

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk.

NUMERIKUS SOROK II. Ebben a részben kizárólag a konvergencia vizsgálatával foglalkozunk. NUMERIKUS SOROK II. Ebbe a részbe kizárólag a kovergecia vizsgálatával foglalkozuk. SZÜKSÉGES FELTÉTEL Ha pozitív (vagy em egatív) tagú umerikus sor, akkor a kovergecia szükséges feltétele, hogy lim a

Részletesebben

1. ALGORITMUSOK MŰVELETIGÉNYE

1. ALGORITMUSOK MŰVELETIGÉNYE 1 ALGORITMUSOK MŰVELETIGÉNYE Az ismertetésre kerülő adatszerkezeteket és algoritmusokat midig jellemezzük majd a hatékoyság szempotjából Az adatszerkezetek egyes ábrázolásairól megállapítjuk a helyfoglalásukat,

Részletesebben

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük:

1. A KOMPLEX SZÁMTEST A természetes, az egész, a racionális és a valós számok ismeretét feltételezzük: 1. A KOMPLEX SZÁMTEST A természetes, az egész, a raioális és a valós számok ismeretét feltételezzük: N = f1 ::: :::g Z = f::: 3 0 1 3 :::g p Q = j p q Z és q 6= 0 : q A valós szám értelmezése végtele tizedestörtkét

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet

Miért érdekes? Magsugárzások. Az atom felépítése. Az atommag felépítése. Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Miért érdekes? Magsugárzások Dr Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Itézet Radioaktív izotóok ill. sugárzások orvosi felhaszálása: - diagosztika (izotódiagosztika) - teráia (sugárteráia)

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

Δ x Δ px 2. V elektromos. nukleáris. neutron proton

Δ x Δ px 2. V elektromos. nukleáris. neutron proton Nukleáris kölcsöhatás: az atommagba Z számú proto, és N = A Z számú eutro va, és stabil képződméy Mi tartja össze az atommagot? A Heiseberg-féle határozatlasági reláció alapjá egy ukleo becsült kietikus

Részletesebben

Méréstani összefoglaló

Méréstani összefoglaló PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Méréstai összefoglaló (köryezettudomáyi szakos hallgatók laboratóriumi mérési gyakorlataihoz) Összeállította: Dr. Német Béla Pécs 2008 1 Bevezetés

Részletesebben

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.:

16. Az AVL-fa. (Adelszon-Velszkij és Landisz, 1962) Definíció: t kiegyensúlyozott (AVL-tulajdonságú) t minden x csúcsára: Pl.: 6. Az AVL-fa Adelszo-Velszkij és Ladisz, 96 Defiíció: t kiegyesúlyozott AVL-tulajdoságú t mide x csúcsára: bal x jobb x. Pl.: A majdem teljes biáris fa AVLtulajdoságú. Az AVL-fára, mit speciális alakú

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk;

2. egy iskola tanulói, a változók: magasságuk cm-ben, súlyuk (tömegük) kilóban; 3. egy iskola tanulói, a változó: tanulmányi átlaguk; Statisztika Tegyük fel, hogy va egy halmazuk, és tekitsük egy vagy több valószíűségi változót, amelyek a halmaz mide elemé felveszek valamilye értéket. A halmazt populációak vagy sokaságak evezzük. Példák:

Részletesebben

SOROK Feladatok és megoldások 1. Numerikus sorok

SOROK Feladatok és megoldások 1. Numerikus sorok SOROK Feladatok és megoldások. Numerikus sorok I. Határozza meg az alábbi, mértai sorra visszavezethető sorok esetébe az S -edik részletösszeget és a sor S összegét! )...... k 5 5 5 5 )...... 5 5 5 5 )......

Részletesebben

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya

1. előadás: Bevezetés. Irodalom. Számonkérés. Cél. Matematikai statisztika előadás survey statisztika MA szakosoknak. A matematikai statisztika tárgya Matematikai statisztika előadás survey statisztika MA szakosokak 206/207 2. félév Zempléi Adrás. előadás: Bevezetés Irodalom, követelméyek A félév célja Matematikai statisztika tárgya Törtéet Alapfogalmak

Részletesebben

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem

Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3

1 k < n(1 + log n) C 1n log n, d n. (1 1 r k + 1 ) = 1. = 0 és lim. lim n. f(n) < C 3 Dr. Tóth László, Fejezetek az elemi számelméletből és az algebrából (PTE TTK, 200) Számelméleti függvéyek Számelméleti függvéyek értékeire voatkozó becslések A τ() = d, σ() = d d és φ() (Euler-függvéy)

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szit 1011 ÉRETTSÉGI VIZSGA 013. május 7. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fotos tudivalók

Részletesebben

Eseme nyalgebra e s kombinatorika feladatok, megolda sok

Eseme nyalgebra e s kombinatorika feladatok, megolda sok Eseme yalgebra e s kombiatorika feladatok, megolda sok Szűk elméleti áttekitő Kombiatorika quick-guide: - db. elemből db. sorredjeire vagyuk kívácsiak: permutáció - db. elemből m < db. háyféleképp rakható

Részletesebben

= λ valós megoldása van.

= λ valós megoldása van. Másodredű álladó együtthatós lieáris differeciálegyelet. Általáos alakja: y + a y + by= q Ha q = 0 Ha q 0 akkor homogé lieárisak evezzük. akkor ihomogé lieárisak evezzük. A jobb oldalo lévő q függvéyt

Részletesebben

Rajzolja fel a helyettesítő vázlatot és határozza meg az elemek értékét, ha minden mennyiséget az N2 menetszámú, szekunder oldalra redukálunk.

Rajzolja fel a helyettesítő vázlatot és határozza meg az elemek értékét, ha minden mennyiséget az N2 menetszámú, szekunder oldalra redukálunk. Villams Gépek Gyakrlat 1. 1.S = 100 kva évleges teljesítméyű egyfázisú, köpey típusú traszfrmátr (1. ábra) feszültsége U 1 /U = 5000 / 400 V. A meetfeszültség effektív értéke U M =4,6 V, a frekvecia f=50hz.

Részletesebben

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat

biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert Hipotézisvizsgálat Kísérlettervezés - biometria III. foglalkozás előadó: Prof. Dr. Rajkó Róbert u-próba Feltétel: egy ormális eloszlású sokaság σ variaciájáak számszerű értéke ismert. Hipotézis: a sokaság µ várható értéke

Részletesebben

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során

Elektrokémiai fémleválasztás. Felületi érdesség: definíciók, mérési módszerek és érdesség-változás a fémleválasztás során Elektrokémiai fémleválasztás Felületi érdesség: defiíciók, mérési módszerek és érdesség-változás a fémleválasztás sorá Péter László Elektrokémiai fémleválasztás Felületi érdesség fogalomköre és az érdesség

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

Minta JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA EMELT SZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által haszált szíűtől eltérő szíű tollal kell javítai, és a taári gyakorlatak megfelelőe

Részletesebben

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat

Megoldás a, A sebességből és a hullámhosszból számított periódusidőket T a táblázat Fzka feladatok: F.1. Cuam A cuam hullám formájáak változása, ahogy a sekélyebb víz felé mozog (OAA) (https://www.wdowsuverse.org/?page=/earth/tsuam1.html) Az ábra, táblázat a cuam egyes jellemzőt tartalmazza.

Részletesebben

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011

Hajós György Versenyre javasolt feladatok SZIE.YMÉTK 2011 1 Molár-Sáska Gáboré: Hajós György Verseyre javasolt feladatok SZIE.YMÉTK 011 1. Írja fel a számokat 1-tıl 011-ig egymás utá! Határozza meg az így kapott agy szám 0-cal való osztási maradékát!. Az { }

Részletesebben

8. AZ ATOMMAG FIZIKÁJA

8. AZ ATOMMAG FIZIKÁJA 8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

VÉLETLENÍTETT ALGORITMUSOK. 1.ea.

VÉLETLENÍTETT ALGORITMUSOK. 1.ea. VÉLETLENÍTETT ALGORITMUSOK 1.ea. 1. Bevezetés - (Mire jók a véletleített algoritmusok, alap techikák) 1.1. Gyorsredezés Vegyük egy ismert példát, a redezések témaköréből, méghozzá a gyorsredezés algoritmusát.

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

HosszútávúBefektetések Döntései

HosszútávúBefektetések Döntései VállalatgadaságtaII. HossútávúBefektetések Dötései Előadó: Koma Tímea Tatárgyfelelős: Dr. Illés B. Csaba 27. November 9. A hossútávúbefektetések sajátosságai Rövidebb időre sóló befektetés hossabb időtávra

Részletesebben

2.2. Indukció a geometriában

2.2. Indukció a geometriában .. Idukció a geometriába... Számítási feladatok... Feladat. Határozzuk meg az R sugarú körbe írt, oldalú szabályos sokszög oldalhosszát! Megoldás eseté a oldalú szabályos sokszög a égyzet; az R sugarú

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

2. fejezet. Számsorozatok, számsorok

2. fejezet. Számsorozatok, számsorok . fejezet Számsorozatok, számsorok .. Számsorozatok és számsorok... Számsorozat megadása, határértéke Írjuk fel képlettel az alábbi sorozatok -dik elemét! mooto, korlátos, illetve koverges-e! Vizsgáljuk

Részletesebben

Mérések, hibák. 11. mérés. 1. Bevezető

Mérések, hibák. 11. mérés. 1. Bevezető 11. méré Méréek, hibák 1. evezető laboratóriumi muka orá gyakra mérük külöböző fizikai meyiégeket. Ezeket a méréeket bármeyire ügyeek vagyuk i, bármeyire moder digitáli mérőezköz gombjait yomogatjuk i

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs

Részletesebben

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Fourier sorok FO 1. Trigonometrikus. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! Fourier sorok FO Trigoometrikus Fourier sorok FO Trigoometrikus redszer Defiíció: trigoometrikus redszer Az {, cos x, si x, cos x, si x, cos 3x, si 3x, } függvéyekből álló (végtele sok függvéyt tartalmazó)

Részletesebben

Taylor-sorok alkalmazása numerikus sorok vizsgálatára

Taylor-sorok alkalmazása numerikus sorok vizsgálatára Eötvös Lorád Tudomáyegyetem Természettudomáyi Kar Alkalmazott Aalízis és Számításmatematikai Taszék Taylor-sorok alkalmazása umerikus sorok vizsgálatára Szakdolgozat Készítette: Témavezet : Walter Petra

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben