Mechanika FBL101E előadás november 5. (Kísérletek: függőleges hajítás 1) állandó sebességű, illetve 2) gyorsuló kiskocsin
|
|
- Renáta Patakiné
- 6 évvel ezelőtt
- Látták:
Átírás
1 Mechanika FBL101E-1 4. előadás novembe 5. Egymáshoz képest k mozgó vonatkoztatási endszeek 1. Egyenletes tanszláci ció: (Kíséletek: függőleges hajítás 1) állandó sebességű, illetve 2) gyosuló kiskocsin Film: TÁMOP 51:05-, 52:01-) x z K y 0 x z K P K endsze K-hoz viszonyítva állandó sebességgel mozog v 0 y 0 = v0 t + 00 = + 0 = + v d d = + v0 dt dt v = v + v0 dv dv = + 0 dt dt a = a 0 t + 00
2 Egyenletes tanszlációt végző endszeek esetén a test gyosulása nem függ a endszetől a test tömege sem függ a endszetől az eők sem függnek a vonatkoztatási endszeől, azaz a két endszeben azonos a tömegpont mozgásegyenlete: n i= 2 d Fi = ma = m 2 1 dt n i= 1 F i 2 d ' = ma' = m 2 dt Galilei-féle elativitási elv: Az egymáshoz képest EVEM-t végző koodinátaendszeek a mechanikai jelenségek leíása szempontjából ekvivalensek. Egymáshoz képest k mozgó vonatkoztatási endszeek 2. x Gyosuló tanszláci ció: z K y 0 x z K P K endsze K-hoz viszonyítva állandó a 0 gyosulással mozog y a0 2 0 = 00 + v0 t + t 2 = + 0 = v d d = + v0 + a0 t dt dt v = v + v0 + a0 t dv dv = + a0 dt dt a = a + a0 ma ma = ma 0 0 a0 t + t 2 F ma i 2 0 = ma Ha egy ineciaendszehez képest a 0 gyosulású EVEV mozgást végző koodinátaendszeben akajuk alkalmazni a dinamika alapegyenletét, akko az ineciaendszeben is fellépő eőkhöz hozzá kell adnunk egy ún. tehetetlenségi eőt is: F tehetetlen = ma 0 m: a test tömege a 0 : a K endsze gyosulása!!!
3 Gyosuló tanszláci ciót t végzv gző endszeek Példák és alkalmazások: 1) Gyosuló asztalon levő golyó. 2) Gyosuló kiskocsin az embenek előe kell dőlnie, hogy el ne essen. 3) Mit mé a méleg egy gyosuló liftben? Egymáshoz képest k mozgó vonatkoztatási endszeek 3. A sebességhez hasonlóan a szögsebesség is vektomennyiség v = ω v ω Fogó koodináta-endszeek: h = m k hüvelyk Egy ineciaendszehez képest ω szögsebességgel fogó endszeben az m tömegű anyagi ponta az ineciaendszeben is ható eőkhöz hozzá kell adnunk a következő két tehetetlenségi eőt is: középső mutató F F h = m k sin ( m, k ) centifugális Coiolis = mω = 2 m v ω ( ω ) jobbkéz szabály Minden fogó endszeben fellép. Akko lép fel, ha a fogó endszeben a test még mozog is.
4 A Föld F mint fogó endsze Centifugális eő (lapultság, a súly helyfüggése) (Filmek: fogó dob vidámpakban, FILM: vidampak pögetett folyadék, FILM: 700/48 vágás fogó papíkoonggal, FILM: 700/50 gyosan fogó lánc, FILM: 700/51 dót gömb pögetése függőleges tengely köül) Példák, alkalmazások: 1) a v sebességgel kanyaodó keékpáosnak a kö középpontja felé kell dőlnie 2) kö alakú papílap gyos fogatása 3) a tácsa peemée tett pögetett lánc meev gyűűként viselkedik 4) centifugák (gyosan pögetett edényben a Hg és víz szétválik) Coiolis-eő: A Föld F mint fogó endsze a szögsebesség vekto felbontása talaja meőleges és talajjal páhuzamos F ω ω komponenseke 2 m v ω Coiolis = FCoiolis + FCoiolis = m v ω + 2 ω ω É ω ψ M ω ω É ω M D az Északi féltekén D a Déli féltekén
5 F C hatásáa (az északi féltekén) a Foucault-inga jobba té ki a lövedékek jobba téülnek el Coiolis-e eő ciklonok jönnek léte, melyben a levegő az óamutató jáásával ellentétesen mozog (Filmek: 1) Foucault inga homokot szóó ingatesttel, FILM: Foucault2.flv, elengedett_foucault_inga és Foucault_inga 2) lefolyó víz, FILM: Coiolis_sink 3) ciklonok keletkezése, FILM: Coiolis_on_eath 4) fogó endszeben labdázó gyeekek, FILM: MIT_The Coiolis Effect) F C hatásáa (mindkét féltekén azonosan) a szabadon eső testek a talppontjuktól kelete esnek a nyugata mozgó testek látszólagos súlynövekedése (Eötvös effektus) A Coiolis eő hatása a Föld F globális lis folyamataia ha a Föld nem foogna, a sakok és az egyenlítő légtömegeit zát áamlási endsze cseélné ki DE! a fogó Földön a széle is hat a Coiolis eő
6 Idealizált lt cikuláci ciós s modelm odell Pola Font Low Pola High Pola Cell Intetopical Convegence Zone Low Subtopical High Feel Cell Hadley Cell High Pessue -anticyclonic otation -descending ai Low Pessue -cyclonic otation -ascending ai Subtopical High Pola Font Low Pola High Figue modified fom Eath: Potait of a Planet vízövény gye sivatagok tópusi eső edők sivatagok
7 Ekman-spi spiál, Ekman-tanszpot 12 óa 100 cm/s szél 2 cm/s áamlás (kb. 2%) m az északi féltekén
8 Geosztófikus áamlás Kék: nyomáskülönbségből számazó eő Pios: Coiolis eő Fekete: áamlás iánya
9 Szelek hatása az óceáni áamlásoka H Az egyenlítői szelek keletől nyugata fújnak (eastely) H Middle latitude winds blow fom west to east (westely) A saki szelek általában keletiek Net esult: anticyclonic ocean gyes in the subtopics; cyclonic gyes in the subpola egions Pentice Hall, Inc.
10 Upwelling Whee Ekman tanspot moves suface wates away fom the coast, suface wates ae eplaced by wate that wells up fom below in the pocess known as upwelling. This example is fom the Nothen Hemisphee. Nomális esetben
11 El-Nino jelenség
12 El Niño - kvantitatív v jellemzés SST = Sea Suface Tempeatue SOI = Southen Oscillation Index (légnyomás) SOI SST SST > 0.4 C min. 5 hónapig (Tenbeth,1997)( El Niño SST < -0.4 C min. 5 hónapig La Niña Összehasonlítás SST hőméséklet eltéés SOI nyomáskülönbség
13 Jelenlegi állapot El Niño La Niña A legfisebb adat: (2010 Aug) -0.6 C Hatásai Nem csak az időjáás... esőzések ova szapoulat jáványok penész-spóa allegia tenge hőméséklet: halvándolás halászok, állatvilág (pingvinek) edőtüzek növekvő CO 2 kibocsátás, csökkenő elnyelés füstiadó gabona-ültetvények pusztulása
14 esőzések, ávizek ávizek huikánok halvándolás aszály, bozót-tüzek extém időjáás, monszun Aszály: Dél- Afika, Dél-India, Si Lanka, Fülöp szgtk, Indonézia, Ausztália, Dél- Peu, Nyugat Bolívia, Mexikó, Közép- Ameika Esőzések, ávízek: Bolívia, Ecuado, Észak- Peu, Kuba, USA DK Államok Huikánok: Tahiti, Hawaii global_effects.avi Az óceánok mélysm lységi szekezete A coss-sectional longitudinal pofile of the Atlantic Ocean fom 60 degees N to 60 degees S showing the location of the mixed laye, pycnocline, and deep laye. Note that the ocean (and deep laye) extend to depths of 4000 to 6000 m.
15 A speciális elativitáselm selméletlet Albet EINSTEIN ( ) Az utolsó előadáson keül tágyalása. Szilád testek ugalmassága Rugalmasnak nevezünk egy szilád testet akko, ha a test alakját megváltoztató eők hatásáa a testben olyan eők ébednek, melyek a test eedeti alakját vissza igyekeznek állítani. Hooke-féle tövény: Ha az alakváltozás, vagy a defomáló eő elegendően kicsiny (az aányossági hatá alatt maad), akko az alakváltozás aányos a defomáló eővel. A következőkben kizáólag homogén és izotóp esetekkel foglalkozunk. homogén/inhomogén: az anyagi jellemzők HELYfüggetlenek/-függőek izotóp/anizotóp: az anyagi jellemzők IRÁNYfüggetlenek/-függőek
16 Nyújt jtás Hooke-tövény E: ugalmassági, nyújtási, vagy Young-féle modulus l 1 F = ε = 1 σ l E q E ahol l ε = l F σ = q elatív megnyúlás húzófeszültség Haántösszehúzódás: µ = d d l l µ: Poisson-féle szám, vagy haántösszehúzódási együttható nyújtásnál/összenyomásnál a téfogat növekszik/csökken Egyenletes nyomás (folyadékokban, gázokban) V V = κ p κ: kompesszibilitás, vagy összenyomhatósági együttható p: nyomás=felületegysége eső nyomóeő Hajlítás,, nyíás, tozió Nyíás, vagy csúsztatás: γ = 1 G F q ahol G a nyíási vagy toziómodulus Téglalap keesztmetszetű homogén úd szabad végének lehajlása: 3 4 l E ab s = 3 F nyújtás semleges sík összenyomás Csavaás, vagy tozió: 2 ϕ = π l G 4 M
17 Rugalmas állandók összefüggése l p p l l 1 2µ κ = 3 E Az összenyomás mindig téfogatcsökkenéssel já! Mivel κ, µ és E pozitívak: 0 < µ < 0.5 Szintén megmutatható: G = E 2 (1 + µ ) E 3 < G < E 2 Az izotóp testek ugalmas viselkedése négy állandóval íható le (E, µ, κ és G), de ezek között fenáll a fenti két összefőggés, azaz a teljes jellemzéshez elegendő 2db független állandó. Feszülts ltség-megnyúlás s gafikon plasztikus (képlékeny) szakítósziládság feszültség, σ σ y Typical ugalmassági esponse hatá of a metal F = töés (töősziládság) Befűződés feszültség koncentáló hatású aányosság (Hooke tövény) stain alakváltozás, ε hasonló göbék másfajta igénybevétele (összenyomás, hajlítás, nyíás és csavaás) is felvehetőek
18 Szívóss sság Nyújtási feszültség σ Kevéssé szívós (pl. keámiák) Szívós (fémek) Alacsony szívósság (nem megeősített műanyag) Relatív megnyúlás, ε Fluidumok mechanikája Fluidum: folyadékok és gázok Tágyalásuk mikoszkópikus szinten igen bonyolult fenomenologikus modell (Film: gázok modellje (ázógép), FILM: 700/69 A fluidum-modell alapfeltevése: nyugvó fluidumban nincs éintőleges eő, ill. nyíófeszültség (sulódásmentes vagy ideális egy folyadék: ha benne mozgás közben sem lép fel nyíófeszültség) Következmény: a nyugvó folyadék szabad felszíne meőleges a á ható eők eedőjée.
19 Pascal tövt vény A súlytalannak képzelt, nyugvó fluidumban a nyomás, 1) mindenütt ugyanakkoa és 2) nem függ a felület iányától (izotóp). F p = A (Gondolat kísélet: üveghenge gumihátyás szondával Film: Hidosztatikai nyomás, 4:43-) vizi buzogány hidaulikus sajtó Hidosztatika A fluidumok közül a folyadékokat összenyomhatatlannak, azaz állandó sűűségűnek, míg a gázokat teljesen összenyomhatónak, azaz változó sűűségűnek tekintjük. A nehézségi eő hatása alatt álló folyadékban nyomás-eloszlás tat egyensúlyt a folyadék súlyából számazó eőkkel. hidosztatikai nyomás: p hidosztatikai = ρ gh (Film: utalás a gumihátyás szondával végzett meülése Film: Hidosztatikai nyomás, 4:43-) vényomásméés, elviselhető max. gyosulás (4-5g)
20 Hidosztatikai paadoxon (Kísélet: hidosztatikai paadoxon) 1 h 2 3 A Pascal vázái (Kísélet: közlekedőedények) Közlekedőedények (atézi kút) Akhimédész tövt vénye 1. (Film: felhajtóeő FILM: Felhajtóeő, Akhimédesz tövénye) Egy folyadékba meülő teste felhajtóeő hat, amely nagysága nézve megegyezik a test bemeülő észével azonos téfogatú folyadék súlyával. A felhajtóeő támadáspontja egybeesik a kiszoított folyedékész súlypontjával. F = ρ folyadék V g felhajtó Ahhoz, hogy Akhimédész tövénye évényes legyen szükség van aa, hogy a testet minden iányból folytonos folyadékéteg vegye köül! II. Hieón
21 Akhimédész tövt vénye 2. 2 (Kíséletek: achimédeszi hengepá gázok felhajtóeeje) akhimédeszi hengepá gázokban is jelentős lehet Catesius-búvá (halak, tengealattjáók) (Film: Catesius-búvá FILM: Catesius búvá) aeométe Aeosztatika, légnyoml gnyomás (Film: Toicelli kísélet FILM: A légnyomás) Evangelista TORRICELLI Vincenzo VIVIANI Pascal kíséletei a Toicelli ű mibenlétének tisztázásáa Blaise PASCAL
22 Aeosztatika, légnyoml gnyomás (Film: lufi a lombikban + hodó FILM: Nyomáskülönbség Gondolatkísélet: magdebugi féltekék) Otto von Gueicke magdebugi féltekéi Otto von Gueicke Stich, mm vastag acéllemez!
rnök k informatikusoknak 1. FBNxE-1
izika ménm nök k infomatikusoknak 1. BNxE-1 Mechanika 6. előadás D. Geetovszky Zsolt 2010. októbe 13. Ismétl tlés Ütközések tágyalása Egymáshoz képest mozgó vonatkoztatási endszeek egymáshoz képest EVEM-t
RészletesebbenMerev testek kinematikája
Merev testek kinematikája Egy pontrendszert merev testnek tekintünk, ha bármely két pontjának távolsága állandó. (f=6, Euler) A merev test tetszőleges mozgása leírható elemi transzlációk és elemi rotációk
RészletesebbenRugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai
Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben
RészletesebbenFizika és 6. Előadás
Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn
RészletesebbenSzilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
RészletesebbenMechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
RészletesebbenNyújtás. Ismétlés. Hooke-törvény. Harántösszehúzódás: nyújtásnál/összenyomásnál a térfogat növekszik/csökken
Ismétlés Mozgó vonatkoztatási rendszerek Szilárd testek rugalmassága. (nyújtás és összenyomás, hajlítás, nyírás, csavarás) A rugalmassági állandók közötti összefüggések. Szilárd testek viselkedése az arányossági
RészletesebbenA LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN
A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő
Részletesebben9. ábra. A 25B-7 feladathoz
. gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,
RészletesebbenMerev testek kinematikája
Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók
RészletesebbenDr. Geretovszky Zsolt október 12. impulzustétel és az impulzus megmaradásának tétele
zk é ökökek kek. D. Geeoszky Zsol. okóbe. Sulóás eők Megó eységek Töegpo eseé Ipulzus: I Isél lés pulzuséel és z pulzus egásák éele Ipulzusoeu: N I pulzusoeu éel és z pulzusoeu egásák éele Eeg ukéel, eegfják,
RészletesebbenMECHANIKA I. rész: Szilárd testek mechanikája
Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre
RészletesebbenA Maxwell-féle villamos feszültségtenzor
A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban
Részletesebben1. TRANSZPORTFOLYAMATOK
1. TRNSZPORTFOLYMTOK 1.1. halmazállapot és az anyagszekezet kapcsolata. folyadékállapot általános jellemzése - a szilád, folyadék és gáz halmazállapotok jellemzése (téfogat, alak, endezettség, észecskék
Részletesebbenrnök k informatikusoknak 1. FBNxE-1
Fizika ménm nök k infomatikusoknak. FBNxE- Mechanika 7. előadás D. Geetovszky Zsolt. októbe. Ismétl tlés Centifugális és Coiolis eő (a Föld mint fogó von. endsze) Fluidumok mechanikája folyadékok szabad
RészletesebbenSzilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség
Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd
Részletesebben1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
Részletesebbenrnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
RészletesebbenDR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus
RészletesebbenDinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
RészletesebbenFolyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye
Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú
RészletesebbenX. MÁGNESES TÉR AZ ANYAGBAN
X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének
RészletesebbenElméleti kérdések 11. osztály érettségire el ı készít ı csoport
Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor
RészletesebbenRezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
RészletesebbenFolyadékok és gázok mechanikája
Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop
RészletesebbenFogorvosi anyagtan fizikai alapjai 6.
Fogorvosi anyagtan fizikai alapjai 6. Mechanikai tulajdonságok 1. Kiemelt témák: Rugalmas alakváltozás Merevség és összefüggése a kötési energiával A geometriai tényezők szerepe egy test merevségében Tankönyv
RészletesebbenFolyadékok és gázok mechanikája
Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a
RészletesebbenHidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
Részletesebbent 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,
Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése
RészletesebbenHidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
RészletesebbenÁbragyűjtemény levelező hallgatók számára
Ábragyűjtemény levelező hallgatók számára Ez a bemutató a tanszéki Fizika jegyzet kiegészítése Mechanika I. félév 1 Stabilitás Az úszás stabilitása indifferens a stabil, b labilis S súlypont Sf a kiszorított
RészletesebbenElőszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
RészletesebbenTestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
légnyomás függ... 1. 1:40 Normál egyiktől sem a tengerszint feletti magasságtól a levegő páratartalmától öntsd el melyik igaz vagy hamis. 2. 3:34 Normál E minden sorban pontosan egy helyes válasz van Hamis
RészletesebbenTestLine - Fizika 7. évfolyam folyadékok, gázok nyomása Minta feladatsor
Melyik állítás az igaz? (1 helyes válasz) 1. 2:09 Normál Zárt térben a gázok nyomása annál nagyobb, minél kevesebb részecske ütközik másodpercenként az edény falához. Zárt térben a gázok nyomása annál
RészletesebbenA Hamilton-Jacobi-egyenlet
A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P
RészletesebbenA Coulomb-törvény : 4πε. ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) elektromos térerősség : ponttöltés tere : ( r)
Villamosságtan A Coulomb-tövény : F 1 = 1 Q1Q 4π ahol, [ Q ] = coulomb = 1C = a vákuum pemittivitása (dielektomos álladója) 1 4π 9 { k} = = 9 1 elektomos téeősség : E ponttöltés tee : ( ) F E = Q = 1 Q
RészletesebbenTalajok összenyom sszenyomódása sa és s konszolidáci. ció. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés
Talajok összenyom sszenyomódása sa és s konszolidáci ció Dr. Mócz M czár r Balázs BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Miért fontos? BME Geotechnikai Tanszék Talajok összenyomhatósági
RészletesebbenA Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :
Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye
RészletesebbenMozgás centrális erőtérben
Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének
RészletesebbenMit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
RészletesebbenHIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
RészletesebbenHELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
RészletesebbenLemez- és gerendaalapok méretezése
Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén
RészletesebbenA nyomás. IV. fejezet Összefoglalás
A nyomás IV. fejezet Összefoglalás Mit nevezünk nyomott felületnek? Amikor a testek egymásra erőhatást gyakorolnak, felületeik egy része egymáshoz nyomódik. Az egymásra erőhatást kifejtő testek érintkező
RészletesebbenMunka, energia Munkatétel, a mechanikai energia megmaradása
Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő
Részletesebbenfia) A trópusi monszunok területén: légáramlás irányára hegyvonulatok Madagaszkár ( mm) Hawaii ( mm) Mont Waialeale 12.
(2) Légáramlások (+ orográfia fia) A trópusi monszunok területén: légáramlás irányára hegyvonulatok Madagaszkár (2000 300-500 mm) Hawaii (4000 500 mm) Mont Waialeale 12.000 mm/év kiugróan csapadékos és
RészletesebbenFizika és 3. Előadás
Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???
RészletesebbenFIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Pontszeű töltések elektomos tee Folytonos töltéseloszlások tee Elektomos té munkája Feszültség, potenciál Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu
RészletesebbenPÉLDÁK ERŐTÖRVÉNYEKRE
PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,
RészletesebbenFIZIKA. Ma igazán feltöltődhettek! (Elektrosztatika) Dr. Seres István
Ma igazán feltöltődhettek! () D. Sees István Elektomágnesesség Töltések elektomos tee Kondenzátook fft.szie.hu 2 Sees.Istvan@gek.szie.hu Elektomágnesesség, elektomos alapjelenségek Dözselektomosság Ruha,
Részletesebbenmerevség engedékeny merev rugalmasság rugalmatlan rugalmas képlékenység nem képlékeny képlékeny alakíthatóság nem alakítható, törékeny alakítható
Értelmező szótár: FAFA: Tudományos elnevezés: merev B mn 1. Nem rugalmas, nem hajlékony . Rugalmasságát, hajlékonyságát vesztett . merevség engedékeny merev Young-modulus, E (Pa)
Részletesebben1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel
1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora
RészletesebbenIrányításelmélet és technika I.
Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010
RészletesebbenDinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.
Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test
RészletesebbenGEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI
GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A
Részletesebben(1) Definiálja a mechanizmus fogalmát! Mechanizmuson gépek, berendezések mechanikai elven működő részeinek együttesét értjük.
ZÉCHENYI ITVÁN EGYETEM MECHANIZMUOK ALKALMAZOTT MECHANIKA TANZÉK Elméleti kédések és válaszok egyetemi alapképzésbe (Bc képzésbe) észtvevő méökhallgatók számáa () Defiiálja a mechaizmus fogalmát! Mechaizmuso
Részletesebbena világ rendszere determinizmus: mozgástörvények örvényelmélet tehetetlenség ütközési törvények matematikai leírás
determinizmus: mozgástörvények tehetetlenség ütközési törvények matematikai leírás a világ rendszere örvényelmélet középpontban a Nap örvényében a bolygók ezek másodlagos örvényeiben a holdak kitöltöttség,
RészletesebbenKérdések Fizika112. Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika
Kérdések Fizika112 Mozgás leírása gyorsuló koordinátarendszerben, folyadékok mechanikája, hullámok, termodinamika, elektrosztatika 1. Adjuk meg egy tömegpontra ható centrifugális erő nagyságát és irányát!
RészletesebbenFolyadékok és gázok áramlása
Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok
RészletesebbenSzegedi Péter ( ) 1695) ( ) 1659) fiztort1 1
determinizmus: mozgástörvények tehetetlenség ütközési törvények matematikai leírás a világ rendszere örvényelmélet középpontban a Nap örvényében a bolygók ezek másodlagos örvényeiben a holdak kitöltöttség,
RészletesebbenNewton törvények, erők
Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső
RészletesebbenMechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
RészletesebbenHasználhatósági határállapotok. Alakváltozások ellenőrzése
1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)
RészletesebbenModern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
RészletesebbenNewton törvények, lendület, sűrűség
Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja
RészletesebbenHatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
RészletesebbenNewton törvények és a gravitációs kölcsönhatás (Vázlat)
Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások
RészletesebbenÁramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás
Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.
RészletesebbenKomplex természettudomány 3.
Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott
Részletesebbenazonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
RészletesebbenDR. BUDO ÁGOSTON ' # i. akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA. Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST
DR. BUDO ÁGOSTON ' # i akadémikus, Kossuth-díjas egyetemi tanár MECHANIKA Kilencedik kiadás TANKÖNYVKIADÓ, BUDAPEST 1991 TARTALOMJEGYZÉK Bevezette 1.. A klasszikus mechanika feladata, érvényességi határai
RészletesebbenA talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
Részletesebben4. STACIONÁRIUS MÁGNESES TÉR
4. STACONÁRUS MÁGNESES TÉR Az időben állandó sebességgel mozgó töltések keltette áam nemcsak elektomos, de mágneses teet is kelt. 4.1. A mágneses té jelenléte 4.1.1. A mágneses dipólus A tapasztalat azt
RészletesebbenA mechanika alapjai. A pontszerű testek dinamikája
A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton
RészletesebbenFolyadékok Mechanikája Válogatott Példatár
Budaesti Mőszaki és Gazdaságtudományi Egyetem Géészménöki Ka 4 D. Blahó Miklós Folyadékok Mechanikája álogatott Példatá Hidosztatika... Kinematika... 8 Benoulli egyenlet... 4 Imulzustétel... Csısúlódás...
RészletesebbenFogalma. bar - ban is kifejezhetjük (1 bar = 10 5 Pa 1 atm.). A barométereket millibar (mb) beosztású skálával kell ellátni.
A légnyomás mérése Fogalma A légnyomáson a talajfelszín vagy a légkör adott magasságában, a vonatkoztatás helyétől a légkör felső határáig terjedő függőleges légoszlop felületegységre ható súlyát értjük.
RészletesebbenA FÖLD PRECESSZIÓS MOZGÁSA
A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás
RészletesebbenReológia Mérési technikák
Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test
RészletesebbenA nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p
Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,
RészletesebbenKÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS
KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS
RészletesebbenVasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet
Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban
RészletesebbenAlapvető mechanikai elvek
Mi a biomechanika? Biomechanika Mechanika: a testek mozgásával, a testeke ható eőkkel foglalkozó tudományág Biomechanika: a mechanika tövényszeűségeinek alkalmazása élő szevezeteke, elsősoban az embei
RészletesebbenGépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
Részletesebben2. E L Ő A D Á S D R. H U S I G É Z A
Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A
RészletesebbenA magnetosztatika törvényei anyag jelenlétében
TÓTH A.: Mágnesség anyagban (kibővített óavázlat) 1 A magnetosztatika tövényei anyag jelenlétében Eddig: a mágneses jelenségeket levegőben vizsgáltuk. Kimutatható, hogy vákuumban gyakolatilag ugyanolyanok
RészletesebbenA monszun szél és éghajlat
A monszun szél és éghajlat Kiegészítő prezentáció a 7. osztályos földrajz tananyaghoz Készítette : Cseresznyés Géza e-mail: csgeza@truenet.hu Éghajlatok szélrendszerek - ismétlés - Az éghajlati rendszer
RészletesebbenAz általános földi légkörzés. Dr. Lakotár Katalin
Az általános földi légkörzés Dr. Lakotár Katalin A Nap a Földet egyenlőtlenül melegíti fel máskülönbség légkörzés szűnteti meg légnyo- lokális (helyi), regionális, egy-egy terület éghajlatában fontos szerepű
Részletesebben= 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg, V víz = 450 dm 3 = 0,45 m 3. = 0,009 m = 9 mm = 1 14
. kategória... Adatok: h = 5 cm = 0,5 m, A = 50 m, ρ = 60 kg m 3 a) kg A hó tömege m = ρ V = ρ A h m = 0,5 m 50 m 60 3 = 450 kg. b) A hó 4500 N erővel nyomja a tetőt. c) A víz tömege m víz = m = 450 kg,
RészletesebbenHősugárzás. 2. Milyen kölcsönhatások lépnek fel sugárzás és anyag között?
Hősugázás. Milyen hőtejedési fomát nevezünk hőmésékleti sugázásnak? Minden test bocsát ki elektomágneses hullámok fomájában enegiát a hőméséklete által meghatáozott intenzitással ( az anyag a molekulái
RészletesebbenFolyadékok és gázok áramlása
Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért
Részletesebbenα v e φ e r Név: Pontszám: Számítási Módszerek a Fizikában ZH 1
Név: Pontsám: Sámítási Módseek a Fiikában ZH 1 1. Feladat 2 pont A éjsakai pillangók a Hold fénye alapján tájékoódnak: úgy epülnek, ogy a Holdat állandó sög alatt lássák! A lepkétől a Hold felé mutató
Részletesebben6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás
SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk
RészletesebbenHidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
RészletesebbenA= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező
Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:
RészletesebbenÁ Á Ó É Á Ó É É Á Á ó ó é á ú í á á é á Á ó ű á ó í ó á á á ú ö űú é é ö ö ű ö ő á é ö ö é é ú ő á ú ő á ü á á ú ü á é ö ú ú á á á ú í á é ő é ó é é é
Á Á Ó É Á Ó É É Á Á ó ó á ú í á á á Á ó ű á ó í ó á á á ú ö űú ö ö ű ö ő á ö ö ú ő á ú ő á ü á á ú ü á ö ú ú á á á ú í á ő ó ő ü á á á á á ó á ó ű á ö ö ü á á á ő ü á ó á á á ö á á ó ö őí á á á áí á á
Részletesebben(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2
. Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =
RészletesebbenMőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık
Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer
Részletesebben